
REVIEW OF FUNCTIONAL ANALYSIS*

A function space is a space of functions where each function can be thought of as
a point in Euclidean space. Functional analysis is loosely speaking a mathematical
understanding of function spaces. In the next lecture we will study a very useful
function space called a Reproducing kernel Hilbert space (riches) which is used
extensively in non-linear regression.

4.1. Hilbert Spaces

Examples. The following are three examples of function spaces defined on a subset
of the real line. In these examples the subset of the real line we consider is x ∈ [a, b]
where for example a = 0 and b = 10.

(1) C[a, b] is the set of all real-valued continuous functions on x ∈ [a, b].
y = x3 is in C[a, b] while y = ⌈x⌉ is not in C[a, b].

(2) L2[a, b] is the set of all square integrable functions on x ∈ [a, b]. If

(
∫ b

a
|f(x)|2 dx)1/2 <∞ then f ∈ L2[a, b].

y = x3 is in L2[a, b] and so is y = x3 + δ(x− c) where a < c < b, however
the second function is not defined at x = c.

(3) L1[a, b] is the set of all functions whose absolute value is integrable on
x ∈ [a, b].
y = x3 is in L1[a, b] and so is y = x3 + δ(x− c) where a < c < b, however
the second function is not defined at x = c.

Definition. A normed vector space is a space F in which a norm is defined. A
function ‖ · ‖ is a norm iff for all f, g ∈ F

(1) ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0
(2) ‖f + g‖ ≤ ‖f‖+ ‖g‖
(3) ‖αf‖ = |α| ‖f‖.

Note, if all conditions are satisfied except ‖f‖ = 0 iff f = 0 then the space has a
seminorm instead of a norm.

Definition. An inner product space is a linear vector space E in which an inner
product is defined. A real valued function 〈·, ·〉 is an inner product iff ∀f, g, h ∈ E
and α ∈ IR

(1) 〈f, g〉 = 〈g, f〉
(2) 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉 and 〈αf, g〉 = α〈f, g〉
(3) 〈f, f〉 ≥ 0 and 〈f, f〉 = 0 iff f = 0.
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22 S. MUKHERJEE, PROBABILISTIC MACHINE LEARNING

Given an inner product space the norm is defined as ‖f‖ =
√
〈f, f〉 and an angle

between vectors can be defined.

Definition. For a normed space A a subspace B ⊂ A is dense in A iff A = B̄.
Where B̄ is the closure of the set B.

Definition. A normed space F is separable iff F has a countable dense subset.

Example. The set of all rational points is dense in the real line and therefore the
real line is separable. Note, the set of rational points is countable.

Counterexample. The space of right continuous functions on [0, 1] with the sup
norm is not separable. For example, the step function

f(x) = U(x− a) ∀a ∈ [0, 1]

cannot be approximated by a countable family of functions in the sup norm since
the jump must occur at a and the set of all a is uncountable.

Definition. A sequence {xn} in a normed space F is called a Cauchy sequence if
limn→∞ supm≥n ‖xn − xm‖ = 0.

Definition. A normed space F is called complete iff every Cauchy sequence in it
converges.

Definition. A Hilbert space, H is an inner product space that is complete, separa-
ble, and generally infinite dimensional.
A Hilbert space has a countable basis.

Examples. The following are examples of Hilbert spaces.

(1) IRn is the textbook example of a Hilbert space. Each point in the space
x ∈ IRn can be represented as a vector x = {x1, ..., xn} and the metric

in this space is ‖x‖ =
√∑n

i=1
|xi|2. The space has a very natural basis

composed of the n basis functions e1 = {1, 0, ..., 0}, e2 = {0, 1, ..., 0},...,
en = {0, 0, ..., 1}. The inner product between a vector x and a basis vector
ei is simply the projection of x onto the ith coordinate xi = 〈x, ei〉.
Note, this is not an infinite dimensional Hilbert space.

(2) L2 is also a Hilbert space. This Hilbert space is infinite dimensional.

4.2. Functionals and operators

Definition. A linear functional on a Hilbert space H is a linear transformation
T : V → IR from H into IR.

A linear functional takes an element in a Hilbert space and outputs a real
number, integration is an example of a linear functional.

Theorem (Riesz representation theorem). Let V be a finite-dimensional inner
product space and let T : V → IR be a linear functional. Then there is a vector
w ∈ V such that Tv = 〈v, w〉 for all v ∈ V .

An integral transformation is one example of an operator (in the rest of the
course all examples of operators will be integral transforms). An operator T maps
one vector space into another.
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Definition. An integral transform T maps one function into another function as
follows

g(u) = (Tf)(u) :=

∫ t2

t1

K(t, u)f(t) dt.





LECTURE 5
Reproducing kernel Hilbert spaces

Reproducing Kernel Hilbert Spaces (rkhs) are hypothesis spaces with some very
nice properties. The main property of these spaces is the reproducing property
which relates norms in the Hilbert space to linear algebra. This class of functions
also has a nice interpretation in the context of Gaussian processes. Thus, they are
important for computational, statistical, and functional reasons.

5.1. Reproducing Kernel Hilbert Spaces (rkhs)

We will use two formulations to describe rkhs. The first is less general and more
constructive. The second is more general and abstract. The key idea in both
formulations is that there is a kernel function K : X × X → IR and this kernel
function has associated to it a Hilbert space HK that has wondrous properties for
optimization and inference.

The algorithm we will study in detail in the next lecture is the following

f̂ := arg min
f∈Hk

1

n

n∑

i=1

(f(xi)− yi)
2 + λ‖f‖2HK

,

where HK is a rkhs and ‖f‖HK
is specific norm as defined by the reproducing

kernel K. The beauty of the rkhs is the optimization problem in the above infinite
dimensional function space can be rewritten as a quadratic programming problem
which involves only vectors and matrices.

For the remainder of this lecture we constrain the Hilbert spaces to a compact
domain X.

5.1.1. Constructive formulation

The development of rkhs in this subsection is seen in most formulations of Support
Vector Machines (SVMs) and Kernel Machines. It is less general in that it relies on
the reproducing kernel being a Mercer Kernel. It however requires less knowledge
of functional analysis and is more intuitive for most people.

We start by defining the kernel or reproducing kernel function.

Definition. The reproducing kernel (rk), K(·, ·) is a symmetric real valued function
of two variables s, t ∈ X

K(s, t) : X ×X → IR.
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26 S. MUKHERJEE, PROBABILISTIC MACHINE LEARNING

In addition K(s, t) must be positive definite, that is for all real a1, ..., an and
t1, ..., tn ∈ X

n∑

i,j=1

aiajK(ti, tj) ≥ 0.

If the above inequality is strict then K(s, t) is strictly positive definite.

In this formulation we consider continuous reproducing kernels K : X ×X →
IR. We define an integral operator LK : L2[X] → C[X] by the following integral
transform

(5.1) LKf :=

∫

X

K(s, t)f(t)dt = g(t).

If K is positive definite then LK is positive definite (the converse is also true)
and therefore the eigenvalues of (5.1) are nonnegative.

We denote the eigenvalues and eigenvectors of (5.1) as {λ1, ..., λk} and {φ1, ..., φk}
respectively, where ∫

X

K(s, t)φk(t)dt = λkφk(t) ∀k.

We now state Mercer’s theorem.

Theorem. Given the eigenfunctions and eigenvalues of the integral equation de-
fined by a symmetric positive definite kernel K

∫

X

K(s, t)φ(s)ds = λφ(t).

The kernel has the expansion

K(s, t) =
∑

j

λjφj(s)φj(t),

where convergence is in the L2[X] norm.

We can define the rkhs as the space of functions spanned by the eigenfunctions
of the integral operator defined by the kernel

HK = { f |f(s) =
∑

k

ckφk(s) and ‖f‖HK
<∞},

where the rkhs norm ‖ · ‖HK
is defined as follows

‖f(s)‖2HK
=

〈
∑

j

cjφj(s),
∑

j

cjφj(s)

〉2

HK

:=
∑

j

c2j

λj
.

Similarly the inner product is defined as follows

〈f, g〉 =

〈
∑

j

cjφj(s),
∑

j

djφj(s)

〉

HK

:=
∑

j

djcj

λj
.

Part of a homework problem will be to prove the representer property

〈f(·,K(·, x)〉Hk
= f(x),

using Mercer’s theorem and the above definition of the rkhs norm.
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5.1.2. Kernels and feature space

The rkhs concept has been utilized in the SVM and kernel machines literature in
what is unfortunately called the kernel trick.

Points in the domains x ∈ X ⊂ IRd are mapped into a higher dimensional
space by the eigenvalues and eigenfunctions of the reproducing kernel (the space is
of the dimensionality of the number of nonzero eigenvalues of the integral operator
defined by the kernel)

x→ Φ(x) := {
√

λ1φ1(x), ...,
√

λkφk(x)}.

A standard L2 inner product of two points mapped into the feature space can
be evaluated by a kernel due to Mercer’s theorem

K(s, t) = 〈Φ(s),Φ(t)〉L2
.

5.1.3. Examples of kernel functions

Any (semi) positive definite function can be used as a kernel function. Examples
include

(1) Linear kernel: k(u, v) = 〈u, v〉
(2) Polynomial kernel: k(u, v) = (〈u, v〉+ b)p

(3) Gaussian kernel: k(u, v) = exp(−κ‖u− v‖2)
(4) Double exponential kernel: k(u, v) = exp(−κ‖u− v‖)

5.2. Abstract formulation

Proposition. A linear evaluation function Lt evaluates each function in a Hilbert
space f ∈ H at a point t. It associates f ∈ H to a number f(t) ∈ IR, Lt[f ] = f(t).

(1) Lt[f + g] = f(t) + g(t)
(2) Lt[af ] = af(t).

Example. The delta function δ(x− t) is a linear evaluation function for C[a, b]

f(t) =

∫ b

a

f(x)δ(x− t)dx.

Proposition. A linear evaluation function is bounded if there exists an M such
that for all functions in the Hilbert space f ∈ H

|Lt[f ]| = |f(t)| ≤M‖f‖,

where ‖f‖ is the Hilbert space norm.

Example. For the Hilbert space C[a, b] with the sup norm there exists a bounded
linear evaluation function since |f(x)| ≤M for all functions in C[a, b]. This is due
to continuity and compactness of the domain. The evaluation function is simply
Lt[f ] : t→ f(t) and M = 1.

Counterexample. For the Hibert space L2[a, b] there exists no bounded linear
evaluation function. The following function is in L2[a, b]

y = x3 + δ(x− c) where a < c < b.

At the point x = c there is no M such that |f(c)| ≤ M since the function is
evaluated as “∞”. This is an example of a function in the space that is not even
defined pointwise.
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Definition. If a Hilbert space has a bounded linear evaluation function, Lt, then
it is a Reproducing Kernel Hilbert Space (rkhs), HK .

The following property of a rkhs is very important and is a result of the Riesz
representation theorem.

Proposition. If HK is a rkhs then there exists an element in the space Kt with
the property such that for all f ∈ HK

Lt[f ] = 〈Kt, f〉 = f(t).

The inner product is in the rkhs norm and the element Kt is called the representer
of evaluation of t.

Remark. The above property is somewhat amazing in that it says if a Hilbert
space has a bounded linear evaluation function then there is an element in this
space that evaluates all functions in the space by an inner product.
In the space L2[a, b] we say that the delta function evaluates all functions in L2[a, b]

Lt[f ] =

∫ b

a

f(x)δ(x− t)dx.

However, the delta function is not in L2[a, b].

There is a deep relation between a rkhs and its reproducing kernel. This is
characterized by the following theorem.

Theorem. For every Reproducing Kernel Hilbert Space (rkhs) there exists a unique
reproducing kernel and conversely given a positive definite function K on X×X we
can construct a unique rkhs of real valued functions on X with K as its reproducing
kernel (rk).

Proof.
If HK is a rkhs then there exists an element in the rkhs that is the representer

evaluation by the Reisz representer theorem. We define the rk

K(s, t) := 〈Ks,Kt〉

where Ks and Kt are the representers of evaluation at s and t. The following hold
by the properties of Hilbert spaces and the representer property

∥∥∥∥∥∥

∑

j

ajKtj

∥∥∥∥∥∥

2

≥ 0

∥∥∥∥∥∥

∑

j

ajKtj

∥∥∥∥∥∥

2

=
∑

i,j

aiaj〈Kti ,Ktj 〉

∑

i,j

aiajK(ti, tj) =
∑

i,j

aiaj〈Kti ,Ktj 〉.

Therefore K(s, t) is positive definite.

We now prove the converse. Given a rk K(·, ·) we construct HK . For each
t ∈ X we define the real valued function

Kt(·) = K(t, ·).
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We can show that the rkhs is simply the completion of the space of functions
spanned by the the set Kti

H = {f | f =
∑

i

aiKti where ai ∈ IR, ti ∈ X, and i ∈ IN}

with the following inner product
〈
∑

i

aiKti ,
∑

i

aiKti

〉
=
∑

i,j

aiaj〈Kti ,Ktj 〉 =
∑

i,j

aiajK(ti, tj).

Since K(·, ·) is positive definite the above inner product is well defined. For any
f ∈ HK we can check that

〈Kt, f〉 = f(t)

because for any function in the above linear space norm convergence implies point-
wise convergence

|fn(t)− f(t)| = |〈fn − f,Kt〉| =≤ ‖fn − f‖‖Kt‖,

the last step is due to Cauchy-Schwartz. Therefore every Cauchy sequence in this
space converges and it is complete. �





LECTURE 6
Non-linear regression

The algorithm we will study in detail in the next lecture is the following

f̂ := arg min
f∈Hk

1

n

n∑

i=1

(f(xi)− yi)
2 + λ‖f‖2HK

.

We will see the above minimizer as a particular form well suited for optimization
due to the representer theorem.

6.1. A result of the representer theorem

The following are the three standard regularization methods:

(1) Tikhonov regularization: indirectly constrain the hypothesis space by
adding a penalty term.

min
f∈H

[
n−1

n∑

i=1

V (f, zi) + λΩ(f)

]
.

(2) Ivanov regularization: directly constrain the hypothesis space

min
f∈H

[
n−1

n∑

i=1

V (f, zi)

]
subject to Ω(f) ≤ τ.

(3) Phillips regularization: directly constrain the hypothesis space

min
f∈H

Ω(f) subject to

[
n−1

n∑

i=1

V (f, zi)

]
≤ κ.

Consider the rkhs norm will be as the regularization functional

Ω(f) = ‖f‖2HK
.
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This defines the following optimization problems:

(P1) min
f∈H

[
n−1

n∑

i=1

V (f, zi) + λ‖f‖2HK

]
,

(P2) min
f∈H

[
n−1

n∑

i=1

V (f, zi)

]
subject to ‖f‖2HK

≤ τ,

(P3) min
f∈H

‖f‖2HK
subject to

[
n−1

n∑

i=1

V (f, zi)

]
≤ κ.

All the above optimization problems above are over spaces of functions that
contain an infinite number of functions. Using the formulation in section 5.1.1 we
can write any function in the rhks as

HK =

{
f |f(x) =

∑

k

ckφk(x)

}
,

so the optimization procedure is over the coefficients ck. The number of nonzero
coefficients in the expansion defines the dimensionality of the rkhs and this can be
infinite, for example the Gaussian kernel.

One of the amazing aspects of the all above optimization problems is that a
minimizer satisfies the form

f̂(x) =
n∑

i=1

ciK(x, xi).

So the optimization procedure is over n real variables. This is formalized in the
following “Representer Theorem.”

Theorem. Given a set of points {(xi, yi)}
n
i=1

a function of the form

f̂(x) =
n∑

i=1

ciK(x, xi),

is a minimizer of the following optimization procedure

c ((f(x1), y1), ..., (f(xn), yn)) + λg(‖f‖HK
),

where ‖f‖HK
is a rkhs norm, g(·) is monotonically increasing, and c is an arbitrary

cost function.

Procedure (P1) is special case of the optimization procedure stated in the above
theorem.
Proof. For ease of notation all norms and inner products in the proof are rkhs
norms and inner products.

Assume that the function f has the following form

f =
n∑

i=1

biφi(xi) + v,

where

〈φi(xi), v〉 = 0 ∀i = 1, .., n.

The orthogonality condition simple ensures that v is not in the span of {φi(xi)}
n
i=1

.
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So for any point xj (j = 1, ..., n)

f(xj) =

〈
n∑

i=1

biφ(xi) + v, φ(xj)

〉
=

n∑

i=1

bi〈φ(xi), φ(xj)〉,

so v has no effect on the cost function

c ((f(x1), y1), ..., (f(xn), yn)) .

We now look at the rkhs norm

g(‖f‖) = g

(∥∥∥∥∥

n∑

i=1

biφi(xi) + v

∥∥∥∥∥

)
= g




√√√√
∥∥∥∥∥

n∑

i=1

biφi(xi)

∥∥∥∥∥

2

+ ‖v‖2


 ≥ g




√√√√
∥∥∥∥∥

n∑

i=1

biφi(xi)

∥∥∥∥∥

2


 .

So the extra factor v increases the rkhs norm and has effect on the cost func-
tional and therefore must be zero and the function has the form

f̂ =
n∑

i=1

biφi(xi),

and by the reproducing property

f̂(x) =

n∑

i=1

aiK(x, xi). �

Homework: proving a representer theorem for the other two regularization
formulations.

6.2. Kernel ridge-regression

The Kernel ridge-regression (KRR) algorithm has been invented and reinvented
many times and has been called a variety of names such as Regularization net-
works, Least Square Support Vector Machine (LSSVM), Regularized Least Square
Classification (RLSC).

We start with Tikhonov regularization

min
f∈HK

[
n−1

n∑

i=1

V (f, zi) + λΩ(f)

]

and then set the regularization functional to a RKHS norm

Ω(f) = ‖f‖2HK

and use the square loss functional

n−1

n∑

i=1

V (f, zi) = n−1

n∑

i=1

(f(xi)− yi)
2.

The resulting optimization problem is

(6.1) min
f∈HK

[
n−1

n∑

i=1

(f(xi)− yi)
2 + λ‖f‖2HK

]
,

the minimizer of which we know by the Representer theorem has the form

f̂(x) =
n∑

i=1

ciK(x, xi).
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This implies that we only need to solve the optimization problem for the ci. This
turns the problem of optimizing over functions which maybe infinite-dimensional
into a problem of optimizing over n real numbers.

Using the representer theorem we derive the optimization problem actually
solved for Kernel ridge-regression.

We first define some notation. We will use the symbol K to refer to either the
kernel function K or the n× n matrix K where

Kij ≡ K(xi, xj).

Using this definition the function f(x) evaluated at a training point xj can be
written in matrix notation as

f(xj) =
n∑

i=1

K(xi, xj)ci

= [Kc]j ,

where [Kc]j , is the jth element of the vector obtained in multiplying the kernel
matrix K with the vector c. In this notation we can rewrite equation (6.1) as

min
f∈HK

1

n
(Kc− y)

2
+ λ‖f‖2K ,

where y is the vector of y values. Also by the representer theorem the RKHS norm
can be evaluated using linear algebra

||f ||2K = cTKc,

where cT is the transpose of the vector c. Substituting the above norm into equation
(6.1) results in an optimization problem on the vector c

arg min
c∈IRn

[
g(c) :=

1

ℓ
(Kc− y)2 + λcTKc.

]

This is a convex, differentiable function of c, so we can minimize it simply by
taking the derivative with respect to c, then setting this derivative to 0.

∂g(c)

∂c
=

2

ℓ
K(Kc− y) + 2λKc = 0.

We show that the solution of the above equation is the following linear system

c = (K + λℓI)−1y,

where I is the identity matrix:

differentiation 0 =
2

ℓ
K(Kc− y) + 2λKc

multiplication K(Kc) + λℓKc = Ky

“left multiplication by K−1” (K + λℓI)c = y

inversion c = (K + λℓI)−1y.

The matrix K + λℓI is positive definite and will be well-conditioned if λ is not too
small.

A few properties of the linear system are:



LECTURE 6. NON-LINEAR REGRESSION 35

(1) The matrix (K + λℓI) is guaranteed to be invertible if λ > 0. As λ→ 0,
the regularized least-squares solution goes to the standard Gaussian least-
squares solution which minimizes the empirical loss. As λ → ∞, the
solution goes to f(x) = 0.

(2) In practice, we don’t actually invert (K + λℓI), but instead use an algo-
rithm for solving linear systems.

(3) In order to use this approach, we need to compute and store the entire
kernel matrixK. This makes it impractical for use with very large training
sets.

Lastly, there is nothing to stop us for using the above algorithm for classi-
fication. By doing so, we are essentially treating our classification problem as a
regression problem with y values of 1 or -1.

6.2.1. Solving for c

The conjugate gradient (CG) algorithm is a popular algorithm for solving positive
definite linear systems. For the purposes of this class, we need to know that CG
is an iterative algorithm. The major operation in CG is multiplying a vector v by
the matrix A. Note that matrix A need not always be supplied explicitly, we just
need some way to form a product Av.

For ordinary positive semidefinite systems, CG will be competitive with direct
methods. CG can be much faster if there is a way to multiply by A quickly.

Example. Suppose our kernel K is linear:

K(x, y) = 〈x, y〉.

Then our solution x can be written as

f(x) =
∑

ci〈xi, x〉

=
〈(∑

cixi

)
, x
〉

:= 〈w, x〉,

and we can apply our function to new examples in time d rather than time nd.
This is a general property of Tikhonov regularization with a linear kernel, not

related to the use of the square loss.

We can use the CG algorithm to get a huge savings for solving regularized least-
squares regression with a linear kernel (K(x1,x2) = x1 · x2). With an arbitrary
kernel, we must form a product Kv explicitly — we multiply a vector by K. With
the linear kernel, we note that K = AAT , where A is a matrix with the data points
as row vectors. Using this:

(K + λnI)v = (AAT + λnI)v

= A(AT v) + λnIv.

Suppose we have n points in d dimensions. Forming the kernel matrix K

explicitly takes n2d time, and multiplying a vector by K takes n2 time.
If we use the linear representation, we pay nothing to form the kernel matrix,

and multiplying a vector by K takes 2dn time.
If d ≪ n, we save approximately a factor of n

2d per iteration. The memory
savings are even more important, as we cannot store the kernel matrix at all for
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large training sets, and if were to recompute the entries of the kernel matrix as
needed, each iteration would cost n2d time.

Also note that if the training data are sparse (they consist of a large number
of dimensions, but the majority of dimensions for each point are zero), the cost of
multiplying a vector by K can be written as 2d̄n, where d̄ is the average number of
nonzero entries per data point.

This is often the case for applications relating to text, where the dimensions
will correspond to the words in a “dictionary”. There may be tens of thousands of
words, but only a few hundred will appear in any given document.

6.3. Equivalence of the three forms

The three forms of regularization have a certain equivalence. The equivalence is
that given a set of points {(xi, yi)}

n
i=1

the parameters λ, τ, andκ can be set such
that the same function f(x) minimizes (P1), (P2), and (P3). Given this equivalence
and and the representer theorem for (P1) it is clear that a representer theorem holds
for (P2) and (P3).

Proposition. Given a convex loss function function the following optimization
procedures are equivalent

(P1) min
f∈HK

[
n−1

n∑

i=1

V (f, zi) + λ‖f‖2HK

]
,

(P2) min
f∈HK

[
n−1

n∑

i=1

V (f, zi)

]
subject to ‖f‖2HK

≤ τ,

(P3) min
f∈HK

‖f‖2HK
subject to

[
n−1

n∑

i=1

V (f, zi)

]
≤ κ.

By equivalent we mean that if f0(x) is a solution of one of the problems then there
exist parameters τ, κ, λ for which f0(x) is a of the others.

Proof.
Let f0 be the solution of (P2) for a fixed τ and assume that the constraint

under the optimization is tight (‖f0‖
2

HK
= τ). Let

[
n−1

∑n
i=1

V (f0, zi)
]
= b. By

inspection the solution of (P3) with κ = b will be f0.
Let f0 be the solution of (P3) for a fixed κ and assume that the constraint

under the optimization is tight ([n−1
∑n

i=1
V (f0, zi)] = κ). Let ‖f0‖

2

HK
= b. By

inspection the solution of (P2) with τ = b will be f0.
For both (P2) and (P3) the above argument can be adjusted for the case where

the constraints are not tight but the solution f0 is not necessarily unique.
Let f0 be the solution of (P2) for a fixed τ . Using Lagrange multipliers we can

rewrite (P2) as

(6.2) min
f∈HK ,α

[
n−1

n∑

i=1

V (f, zi)

]
+ α

(
‖f‖2HK

− τ
)
,

where α ≥ 0 the optimal α = α0. By the Karush-Kuhn-Tucker (KKT) conditions
(complimentary slackness) at optimality

α0

(
‖f0‖

2

HK
− τ
)
= 0.



LECTURE 9
Gaussian process regression

The idea behind a Gaussian process regression is to place a distribution over
a space of functions say H. Consider for example an rkhs HK over which we
want to do Bayesian inference. Assume a regression model with the standard noise
assumption

Yi = f(Xi) + εi, εi
iid
∼ N(0, σ2), f ∈ HK .

If we knew how to place a prior over the function space we in theory could do
Bayesian inference.

9.1. Gaussian process

A Gaussian process is a specification of probability distributions over functions
f(x), f ∈ H and x ∈ X parameterized ny a mean function µ and a covariance
function K(·, ·) . The idea can be informally stated as

p(f) ∝ exp
(
−

1

2
‖f‖2HK

)
, p(f) ≥ 0 ∀ f ∈ H,

∫

f∈H

p(f) df = 1,

where we use the term informal because df is not well defined, it is not clear what
the normalization constant is for p(f) and what the space of functions H is not clear
not is the relation of H to HK stated clearly. Instead of making all the points clear
we will develop Gaussian processes from an alternative perspective. There are many
ways to define and think about a Gaussian process. A standard formulation is that
a Gaussian process is an infinite version of a multivariate Gaussian distribution and
has two parameters: a mean function µ corresponding to the mean vector and a
positive definite covariance or kernel function K corresponding to a positive definite
covariance matrix.

A common approach in defining an infinite dimensional object is by defining it’s
finite dimensional projections. This is the approach we will take with a Gaussian
process. Consider x1, ..., xn as a finite collection of points in X . For a Gaussian
process over functions f ∈ H the probability density of f = {f(x1), ...., f(xn)}

T is
a multivariate normal with µ = {µ(x1), ...., µ(xn)} and covariance Σij = K(xi, xj)

f ∼ N
(
µ,Σ

)
,

57
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where µ(x) = IEf(x) and K(xi, xj) = IE
[
(f(xi)− µ(xi))(f(xj)− µ(xj))

]
and

f ∼ GP (µ(·),K(·, ·)).

Definition. A stochastic process over domain X with mean function µ and covari-
ance kernel K is a Gaussian process if and only if for any {x1, ..., xn} ∈ X and
n ∈ IN the distribution of f = {f(x1), ...., f(xn)}

T is

f =




f(x1)
...

f(xn)


 ∼ N







µ(x1)
...

µ(xn)


 ,




K(x1, x1) · · · K(x1, xn)
...

. . .
...

K(x1, xn) · · · K(xn, xn)





 .

9.2. Gaussian process regression

Consider data D = {(xi, yi)}
n
i=1

drawn from the model

Yi = f(xi) + εi, εi
iid
∼ N(0, σ2),

we will place a prior on the space of functions using a Gaussian process

f ∼ GP (µ(·),K(·, ·)).

We are also given some new variables or test data T = {x∗i }
m
i=1

each of which would
have a corresponding y∗i .

We now provide some notation

X =




—x1 —
...

—xn —


 , X∗ =




—x∗
1
—

...
—x∗m —


 , Y =




y1
...
yn


 , Y∗ =




y∗
1

...
y∗m


 ,

ε =




ε1
...
εn


 , ε

∗ =




ε∗
1

...
ε∗m


 , f =




f(x1)
...

f(xn)


 , f∗ =




f(x∗
1
)

...
f(x∗m)


 .

Our ultimate objective will be to specify the predictive distribution on Y∗

which we know will be multivariate normal

Y∗ | X∗,X ∼ N(µ∗,Σ∗).

Now first observe
[

Y
Y∗

] ∣∣∣X∗,X =

[
f
f∗

]
+

[
ε

ε
∗

]
∼ N

(
0,

[
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗) + σ2I

])
,

where K(X,X) is the n × n matrix with Kij = K(xi, xj) and K(X∗,X∗) is the
m×m matrix with K∗ij = K(x∗i , x

∗
j ).

To get to the predictive distribution onY∗ we write the conditionalY∗ | X∗,X.

Given the above multivariate normal distribution we simply condition on all the
other variables to get the mean and covariance for the normal distribution for the
posterior predictive density:

µ∗ = K(X∗,X)(K(X,X) + σ2I)−1 Y

Σ∗ = K(X∗,X∗) + σ2I−K(X∗,X)(K(X,X) + σ2I)−1K(X,X∗).

The beauty of Gaussian process regression is that we can place priors over
functions using a kernel and evaluating the variance of the function values at a
finite number of points, all just based on properties of the multivariate normal
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distribution. This is a very powerful non-linear prediction tool. There is a strong
relation between the kernels, rkhs and Gaussian processes. There are also some
subtle differences. The main difference comes from what is called the Kalianpur
0− 1 law

Theorem (Kallianpur 1970). If Z ∼ GP (µ,K) is a Gaussian process with covari-
ance kernel K and mean µ ∈ HK and HK is infinite dimensional then

P(Z ∈ HK) = 0.

The point of the above theorem is that if we specify a kernel K and ensure the
mean of the Gaussian process is in the rkhs HK corresponding to the kernel K,
draws from this Gaussian process will not be in the rkhs. What one can formally
show is that if one takes any of the random functions, call them g then the following
is true for all g ∫

X

g(u)K(x, u) du ∈ HK .




