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In class, we have seen that the expected response of a single quantitative trait to selection is

given by the standard equation

R = Ws ,
where R, the response to selection, is the change in the mean phenotype of the trait from one
generation to the next, A4° is the heritability of the trait, and s, the selection differential, is the
difference in mean phenotype between the selected individuals and the population before
selection.

In this handout I show how to derive the multivariate generalization of this equation--an
equation that can be used to predict the change in mean phenotype of a suite of correlated
characters. This equation was originally derived by Lande (Evolution 33: 402-416; 1979).
Preliminary definitions and assumptions

We start by defining a vector,

z = (21,20, 23, ... , Zyn),

in which each measurement is the phenotypic value of a different character for a particular
individual. The mean value of this vector in the population is then

z = (21,22,23,-.-,_271)
We will assume that each of these characters is genetically variable, and that the genetic
variation for each character is entirely additive genetic variation. Then in this situation, one
can write, for character 7 in any individual,

z; = X + €&,

where x; is the breeding value of character #, and ¢; is that character's environmental deviation in
that individual. In vector notation,

Z =X+ €
An additional assumption that is made is that the frequency distributions of x and € are

multivariate normal. A single trait, say y, that has a normal distribution has a frequency
distribution £ that is given by the formula
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Ry) = 7 exp dicy) (),

where o is the population mean of the trait and o is its standard deviation. With a complex
phenotype, however, we are not dealing with a single trait but with a vector of traits. The
analagous frequency distribution for such a vector--say the vector of breeding values--is given by
the formula

gx) = /2 ™G] exp M1 x0ICTIT)

where G is the additive genetic variance-covariance matrix. A diagonal element, G;;, of this
matrix, is the genetic variance of character 7, whereas an off-diagonal element, G;;, is the additive
genetic covariance between character 7 and character j. A slice through this frequency distribution
parallel to one of the character axes would give a normal curve described by equation (1) above.

It is also assumed that for each trait, the environmental deviations are normally distributed, and
that jointly, the vector of environmental deviations,

€ =7z — X ,

has a multivariate normal frequency distribution, £, given by

{z—x) = 2r"E][ exp 2@ VECED]

where, E is the variance-covariance matrix of environmental deviations. A diagonal element,
E;;, of this matrix is the variance of the environmental deviations of character i, whereas an off-
diagonal element, E;j, is the covariance of environmental deviations for characters i and j. As was
true for the distribution of breeding values, a slice through this distribution parallel to one of the
character axes would yield a distribution for that trait that is described by Eq. (1).

The frequency distribution of phenotypes is derived as follows. Let p(z) be the frequency with
which phenotype z occurs in the population. Now, this phenotype can arise in a number of ways.
In particular, an individual whose breeding value is x and whose environmental deviation is
(z — x) has a phenotype of x + (z — x) = z. The probability of having breeding value x is g(x)
(defined above), and the probability of having an environmental deviation of (z — x) is £(x)
(defined above). The probability of having both together is simply the product of the individual
probabilities, is



Bio 286: Evolutionary Mechanisms Lande's Equation Page 3

p@x) = gx) €@z —-x) .

This is the probability of obtaining phenotype z by having a particular breeding value x. To get
the total probability of an individual having phenotype z, one simply sums the above probabilities
for all possible breeding values, i.e

p@) = [gx)éz—x)dx .

If one substitutes in the expression for g and £ above and performs the integration, one gets

p@) = /2x~ P71 exp [2e-WPIET]

where P = G + E is the phenotypic variance-covariance matrix, i.e. a diagonal element, P;;, of
this matrix is the phenotypic variance of character /, and an off-diagonal element, P,;, is the
phenotypic covariance of characters i and ;.

Derivation of Multivariate Response to Selection

The goal of this section is to derive the following relationship (the Lande equation) between the
magnitude of selection and the expected response of a multivariate phenotype to that selection:

Az =GVihW = GPls =Gg.

In this equation, AZ is the change in the vector of mean phenotypic values from one generation
to the next. G and P are the additive genetic and phenotypic variance-covariance matrices, as
defined above, s is the vector of selection differentials (i.e. s; is the difference in mean phenotype
between selected and unselected individuals for the #** character), and 8 =P~ !s is the selection
gradient. The symbol V is known as the gradient operator. For any function f of variables x;,
Xg, ... Xp, the gradient operator is defined as the vector of partial derivatives,

vi= (& &

Note a couple features of the Lande equation:

(1) For a single trait, G = V, and P = Vjp, so, from the Lande equation

- — Ya
Az_vps,

which is the standard formula for the change in the mean of a single character subject to selection.
The standard equation R = A?s is thus just a special case of the Lande equation.
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(2) From the equation, it is evident that
B=VihW = VW
As discussed in class:_thjs means that the selection gradient is proportional to the tangent to the
adaptive landscape (W), and thus points in the direction of change inZ that produces the
maximal increase in mean fitness.
The derivation of the Lande equation will be broken down into five steps.
Step 1
To start, note that mean fitness in the population is
W = [p@) W) dz (2).
This relationship follows from the definition of a mean.
Our first task is to find an expression for V In W, in particular to show that
Vin W = Pls

First, we recognize that

VihW = ¢ VW (2a).

This follows from applying the standard result from calculus,

dinx __ 1 dx
d T X 4 >

to each element of V In W.
The next problem is to find an expression for V' W. From equation (2), we have
VW = V [[p@) W) de]

Just like in one-variable calculus, the gradient operator, which is essentially a derivative, can be
pulled inside the integral sign to give

VW = [V [pz) We) dz ]
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Now, the gradient operator acts just like a simple derivative. Therefore, one can use the chain
rule

(Remember the chain rule-- 4&;1@ = g(x) ”_1% + fx) i%((})

i.e, the derivative of a product of two functions is equal to the product of one function times the
derivative of the other, plus the product of the second function times the derivative of the first.) to
obtain

VW = [[Vp@| W@ &z + [p@)[V W) |dz @3) .
Next note that W is not a function of Z . Fitness is a function of an individual's phenotype, but
the fitness of an individual with a particular phenotype does not depend on what the mean
phenotype is in the population. In other words, we assume here that fitness is not frequency
dependent, i.e. it does not depend on the relative proportions of different phenotypes in the
population. This means that

VWz) =0,

since the gradient operator takes derivatives with respect to the means of the characters, i.e.

VW@ = {a%,a%,..., %]W(z)zo .

Consequently, equation (3) reduces to
VW = [[Vp@) W) dz (3a).
Step 2

The next step of the derivation is to find an expression for V p(z). To do so we use the
probability density function for phenotype z that we derived before:

p@) = 2r [P exp ["1@DPED) 4).

We will evaluate V p(z) using this expression. First note that equation (4) can be rewritten as

p@) = Cexp (u) ,

where

C = 2r P11 |
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and
u= —1@@-2)Plz-%) ).

Therefore,
V p(z) = V Cexp ()
(5).
= CV exp ()

(Gradients work just like derivatives--you can pull out a constant from inside the gradient

operator.)

Next, we want to evaluate V exp (). Applying the standard calculus rule
d
100 = exp(y) &

to each element of the gradient operator, we have

V exp(u) = exp(u) Vu = exp() [~} V [z —Z )Pz «@)]

The expression (z —Z )'P~!(z —Z ) is a quadratic form. In general, a quadratic form is any

expression of the type
a'Ma ,

where a is a vector and M is a symmetric matrix. In general, the derivative of a quadratic form is

dfa™a] _ da
ax =2Ma e

(for proof, see, e.g., N. H. Timm, Multivariate Analysis, Brooks/Cole Publishers, 1975, pp. 96-
103). Applying this rule to our quadratic form, we get

Viz-z)'Plz-2Z2) = 2P z-Z) V(Ez-Z) .

Recognizing that V (z —Z ) = Vz — VzZ ,that Vz = I, the identity matrix, and that Vz
= 0 because z is not a function of Z , the denominator of the gradient operator, (7) simplifies to

Viz-z)Plz-2Z) = —-2Plz-7).

Plugging this back into equation (6) then gives
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V exp(u) = exp(u) Vu = P Yz —Z ) exp(u) .
Next, we plug this expression into equation (5), which yields
Vp(z) = C[Vexp()] = P l(z—Z)C exp(u)

= P lz-Z)p@) @®).

Step 3

The next step of the proof is to plug equation (8) into equation (3) and simplify. Replacement
gives

VW = [W@ [PT'z-7)p@) d
= [W@ P dp@dz - [We[PZ]p@)d .
First, simplifying the right-hand term by pulling out the constant P~z yields
VW= [W@)[Pdpa)dz - Pz [WRp@dz .

But the expression involving the second integral is just the mean value of fitness in the population,
SO

VW= [W@) [P lzp@d - Pz W
By pulling the constant P~! out of the remaining integral, one obtains

VW= Pl WR)zp@)dz - Z W].

Substututing this expression in to equation (2a) then yields

VinW = VW = & P W@zp@)dz - T W]

= Pl &[/W@zp)dz - Z (8a).
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Step 4

Next, the relationship (1a) is obtained by showing that the expression in brackets above is equal
to s, the vector of selection differentials. To do this, we rewrite the expression in brackets as

¥IW@zpwd - 7z = [YEEEG _ ()

But, by definition of a mean,
W = [pz)W@)dz |

so equation (9) can be rewritten as

= W(z) p(z) =
w/W@zpde - 7 = [ rp(z)ZW(zz)dz zde -z

Moreover, we can multiply the numerator and denominator of a ratio by &, the number of
individuals in the population before selection, without changing that ratio:

- W@) p@) N z
w/W@zp@de ~ 7 = [poSEEioada -z (10)

But the ratio associated with the left-hand integral,

W(z) p(z) N
JP&)W@)Ndz >
is just the number of individuals of phenotype z surviving selective mortality divided by the total
number of surviving individuals in the population. In other words, it is the frequency of

phenotype z among the selected individuals, which we will designate by p/(z). Consequently,
equation (10) is

v/ Wozp@)dz - Z = [p@zd - z (11)
But the expression involving the right-hand integral is just the mean phenotype among the
selected individuals; therefore, the entire right-hand side of the equation is just the difference

between the mean phenotype vector of the population before and after selection, which is the
selection differential, i.e.

#/Wozp)de - zT = s.



Bio 286: Evolutionary Mechanisms Lande's Equation Page 9

Substituting this into equation (8a) then yields
VinW = Pls =p (11a).

This is part of the Lande equation. In particular, this shows that the selection gradient, 3, is equal
to the gradient of the logarithm of mean fitness. And it is a standard calculus result that the
gradient of a function indicates the direction of change in the independent variables that produce
the greatest change in the dependent variable. In other words, the gradient of log mean fitness
points in the diretion of change inZ that produces the maximal change in mean fitness. As
discussed in class, the components of B represent directional selection acting directly on the
individual characters.

Step S
The final step in the derivation is to relate the above equation to change in the mean phenotype.

Because this involves a derivation completely parallel to the one just undertaken, only the main
points will be sketched.

First, recognize that the mean fitness of an individual with breeding value x, W(x), is given by
the equation

W) = [Lz-x)W@)dz .

The mean fitness of the population is just the sum of the frequencies of particular values of x
times the mean fitness of individuals with breeding value equal to x :

W = [gx) W(x)dx .

We then manipulate this equation just like equation (2) was manipulated. When this is done, one
obtains the analogue of equation (11):

w/ W) xgx)dx - X = [gx)xdx — x (12),

where g/(x) is the frequency of breeding value x among the selected individuals. Consequently,
the right-hand side of the equation is simply the difference in mean breeding value between the
selected and unselected individuals.

From here, one must realize that if all genetic variation is additive, then the mean breeding value

of the offspring of the selected individuals will be equal to the mean breeding value of the selected
individuals. Consequently, the expression

[g/(x) x dx
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is equal to the mean breeding value in the next generation. Equation (12) thus becomes
FS/ W@ xgx)dx — X = AX = Az (13).
(Remember that mean breeding value equals mean phenotpyic value.)
The analogue of equation (8a) in this step is
VinW = G E[Wx)xgx)dx - X |
Subsistuting equation (13) into this then yields

VinW = GlAz

b

Page

which is the other part of the Lande equation. Equating this equation and equation (11a) gives

Glaz =Pls =8
Multiplying each side of the equation by G then gives

Az = GP's = Gg .

This is Lande's equation for evolutionary change in a multivariate phenotype. The derivation is

thus completed.



