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Outline

• Undirected Graphical Models

• Gaussian models for quantitative variables

• Estimation with known structure

• Estimating the structure via L1 regularization

• Log-linear models for qualitative variables.
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Flow Cytometry

11 proteins measured on

7466 cells. Shown is an esti-

mated undirected graphical

model or Markov Network.

Raf and Jnk are condition-

ally independent, given the

rest. PIP3 is independent

of everything else, as is Erk.

(Sachs et al, 2003). The

model was estimated using

the graphical lasso.
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Undirected graphical models

• Represent the joint distribution of a set of

variables.

• Dependence structure is represented by the

presence or absence of edges.

• Pairwise Markov graphs represent densities

having no higher than second-order depen-

dencies (e.g. Gaussian)
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Conditional Independence in Undirected
Graphical Models
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No edge joining X and Z ⇐⇒ X ⊥ Z|rest

E.g. in (a), X and Z are conditionally independent give Y .
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Gaussian graphical models

Suppose all the variables X = X1, . . . , Xp in a graph are Gaussian,

with joint density X ∼ N(µ,Σ)

Let X = (Z, Y ) where Y = Xp and Z = (X1, . . . , Xp−1). Then with

µ =





µZ

µY



 , Σ =





ΣZZ σZY

σT
ZY σY Y



 ,

we can write the conditional distribution of Y given Z (the rest) as

Y |Z = z ∼ N
(

µY + (z − µZ)
TΣ−1

ZZσZY , σY Y − σT
ZY Σ

−1
ZZσZY

)

• The regression coefficients β = Σ−1
ZZσZY determine the

conditional (in)dependence structure.

• In particular, if βj = 0, then Y and Zj are conditionally

independent, given the rest.
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Inference through regression

• Fit regressions of each variable Xj on the rest.

• Do variable selection to decide which coefficients should be

zero.

• Meinshausen and Bühlmann (2006) use lasso regressions to

achieve this (more later).

Problem:

• in Gaussian model, if Xj is conditionally independent of Xi,

given the rest, then βji = 0.

• But then Xi is conditionally independent of Xj , given the rest,

and βij = 0 as well.

• Regression methods don’t honor this symmetry.
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Θ = Σ−1 and conditional dependence structure

Σ =





ΣZZ σZY

σT
ZY σY Y



 Θ =





ΘZZ θZY

θTZY θY Y





Since ΣΘ = I, using partitioned inverses we get

θZY = −θY Y ·Σ
−1
ZZσZY

= −θY Y βY |Z .

Hence Θ contains all the conditional dependence information for

the multivariate Gaussian model.

In particular, any θij = 0 implies conditional independence of Xi

and Xj , given the rest.
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Estimating Θ by Gaussian Maximum Likelihood

Given a sample xi, i = 1, . . . , N we can write down the Gaussian

log-likelihood of the data:

ℓ(µ,Σ; {xi}) = −
N

2
log det(Σ)−

1

2

N
∑

i=1

(xi − µ)TΣ−1(xi − µ)

Partially maximizing w.r.t µ we get µ̂ = x̄. Setting

S = 1
N

∑N
i=1(xi − x̄)(xi − x̄)T , we get (up to constants)

ℓ(Θ;S) = log detΘ− trace(SΘ)

and (by some miracle)

dℓ(Θ;S)

dΘ
= Θ−1 − S.

Hence Θ̂ = S−1 and of course Σ̂ = S.
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Solving for Θ̂ through regression

We can solve for Θ̂ = S−1 one column at a time in the score

equations

Θ−1 − S = 0.

Let W = Θ̂−1. Suppose we solve for the last column of Θ. Using

the partitioning as before, we can write

w12 = −W11θ12/θ22

= W11β,

with β = −θ12/θ22 (p− 1 vector). Hence the score equation says

W11β − s12 = 0

This looks like an OLS estimating equation ZTZβ = ZTy.
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• Since W = Θ̂−1 = S, then W11 = S11 and β̂ = S−1
11 s12, the

OLS regression coefficient of Xp on the rest.

• Again through partitioned inverses, we have that

θ̂22 = 1/
(

s22 − wT
12β̂

)

,

(the inverse MSR). Hence we get θ̂12 from β̂.

• So with p regressions we construct Θ̂.

This does not seem like such a big deal, because each of the

regressions requires inverting a (p− 1)× (p− 1) matrix. The

payoff comes when we restrict the regressions (next).
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Solving for Θ when zero structure is known

We add Lagrange terms to the log-likelihood corresponding to the

missing edges

max
Θ



log detΘ− trace(SΘ)−
∑

(j,k) 6∈E

γjkθjk





Score equations: Θ−1 − S− Γ = 0

Γ is a matrix of Lagrange parameters with nonzero values for all

pairs with edges absent.

Can solve by regression as before, except now iteration is needed.
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Graphical Regression Algorithm

With partitioning as before, given W11 we need to solve

w12 − s12 − γ12 = 0.

With w12 = W11β, this is

W11β − s12 − γ12 = 0

These are the score equations for a constrained regression where

1. We use the current estimate of W11 rather than S12 for the

predictor covariance matrix

2. We confine ourselves to the sub-system obtained by omitting

the variables constrained to be zero:

W∗
11β

∗ − s∗12 = 0
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• We then fill in β̂ with β̂∗ (and zeros), replace w12 ←W11β̂,

and proceed to the next column.

• As we cycle around the columns, the W matrix changes, as do

the regressions, until the system converges.

• We retain all the β̂s for each column in a matrix B.

• Only at convergence do we need to estimate the

θ̂22 = 1/
(

s22 − wT
12β̂

)

for each column, to recover the entire

matrix Θ̂.
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Simple four-variable example with known structure

X1

X2X3

X4

S =















10 1 5 4

1 10 2 6

5 2 10 3

4 6 3 10















Σ̂ =













10.00 1.00 1.31 4.00

1.00 10.00 2.00 0.87

1.31 2.00 10.00 3.00

4.00 0.87 3.00 10.00













, Θ̂ =













0.12 −0.01 0.00 −0.05

−0.01 0.11 −0.02 0.00

0.00 −0.02 0.11 −0.03

−0.05 0.00 −0.03 0.13
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Estimating the graph structure using the lasso penalty

Use lasso regularized log-likelihood

max
Θ

[log detΘ− trace(SΘ)− λ · ‖Θ‖1]

with score equations Θ−1 − S− λ · Sign(Θ) = 0.

Solving column-wise leads as before to

W11β − s12 + λ · Sign(β) = 0

Compare with solution to lasso problem

min
β

1
2‖y − Zβ)‖22 + λ · ‖β‖1

with solution

ZTZβ − ZTy + λ · Sign(β) = 0

This leads to the graphical lasso algorithm.
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Graphical Lasso Algorithm

1. Initialize W = S+ λI. The diagonal of W remains unchanged

in what follows.

2. Repeat for j = 1, 2, . . . p, 1, 2, . . . p, . . . until convergence:

(a) Partition the matrix W into part 1: all but the jth row

and column, and part 2: the jth row and column.

(b) Solve the estimating equations

W11β − s12 + λ · Sign(β) = 0 using cyclical

coordinate-descent.

(c) Update w12 = W11β̂

3. In the final cycle (for each j) solve for θ̂12 = −β̂ · θ̂22, with

1/θ̂22 = w22 − wT
12β̂.
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λ = 0λ = 7

λ = 27λ = 36

Fit using the glasso package in R (on CRAN).
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Cyclical coordinate descent

This is Gauss-Seidel algorithm for solving system

Wβ − s+ λ · Sign(β) = 0

where Sign(β) = ±1 if β 6= 0, else ∈ [0, 1] if β = 0.

ith row: wiiβi − (si −
∑

j 6=i wijβj) + λ · Sign(βi) = 0

⇒ βi ← Soft(si −
∑

j 6=i

wijβj , λ)/wii

and Soft(z, λ) = sign(z) · (|z| − λ)+.
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Other approaches

The graphical lasso scales as O(p2k), where k is the number of

non-zero values of Θ; can thus be O(p4) for dense problems.

• Meinshausen and Bühlmann (2006) run lasso regression of each

Xj on all the rest. Have different strategies for removing an

edge (j, k). For example, if both β̂jk and β̂kj are zero, remove

the edge. Useful for p≫ N problems, since O(p2N).

• Can do as above, except constrain βjk and βkj jointly, using a

group lasso penalty on the pairs:

min
β1,...,βp





p
∑

j=1

N
∑

i=1

(xij −
∑

k 6=j

xikβjk)
2 + λ ·

∑

k<j

√

β2
jk + β2

kj
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• Same as above, except respect the symmetry between

βjk = −θjk/θjj and βkj = −θkj/θkk with θjk = θkj :

min
Θ

1

2

p
∑

j=1



N log δj −
1

δj

N
∑

i=1

(xij −
∑

k 6=j

xikβjk)
2
2



+ λ
∑

k<j

|θkj |

with βjk = −θjk/θjj , βkj = −θkj/θkk, θjk = θkj , and

δj = 1/θjj .

Small simulation: p = 500, N = 500, λ chosen so 25% of θij

nonzero. Timing in seconds.

Graphical Lasso 184

Meinshausen-Bühlmann 12

Grouped paired lasso 3

Symmetric paired lasso 10
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Qualitative Variables

• With binary variables, second order Ising model. Correspond

to first-order interaction models in log-linear models.

• Conditional distributions are logistic regressions.

• Exact maximum-likelihood inference difficult for large p;

computations grow exponentially due to computation of

partition function.

• Approximations based on lasso-penalized logistic regression

(Wainwright et al 2007). Symmetric version in Hoeffling and

Tibshirani (2008), using pseudo-likelihood
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Mixed variables

General Markov random field representation, with edge and node
potentials. Work with PhD student Jason Lee.

p(x, y; Θ) ∝ exp





p
∑

s=1

p
∑

t=1

−
1

2
βstxsxt +

p
∑

s=1

αsxs +

p
∑

s=1

q
∑

j=1

ρsj(yj)xs +

q
∑

j=1

q
∑

r=1

φrj(yr, yj)





• Pseudo likelihood allows simple inference with mixed variables.

Conditionals for continuous are Gaussian linear regression

models, for categorical are binomial or multinomial logistic

regressions.

• Parameters come in symmetric blocks, and the inference should

respect this symmetry (next slide)
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Group-lasso penalties

Parameters in blocks. Here we have an

interaction between a pair of quantitative

variables (red), a 2-level qualitative with a

quantitative (blue), and an interaction be-

tween the 2 level and a 3 level qualitative.

Minimize a pseudo-likelihood with lasso and group-lasso penalties

on parameter blocks.

min
Θ

ℓ(Θ) + λ

(

p
∑

s=1

s−1
∑

t=1

|βst|+

p
∑

s=1

q
∑

j=1

‖ρsj‖2 +

q
∑

j=1

j−1
∑

r=1

‖φrj‖F

)

Solved using proximal Newton algorithm for a decreasing sequence

of values for λ [Lee and Hastie, 2013].
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Large scale graphical lasso

• The cost of glasso is O(np2 + p3+∆) where ∆ ∈ [0, 1];

prohibitive for genomic scale p.

• For many of these problems, n≪ p, so we can only fit very

sparse solutions anyway.

• Simple idea [Mazumder and Hastie, 2011]:

– Compute S and soft-threshold: Sλij = sign(Sij)(|Sij | − λ)+.

– Reorder rows and columns to achieve block-diagonal pattern

[Tarjan, 1972]

– Run glasso on each corresponding block of S with

parameter λ, and then reconstruct.

– Solution solves original glasso problem!

similar result found independently by Witten et al, 2011
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S

Soft(S, λ)→

Sλ

permute→

Sλ
P
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