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ABSTRACT 
Bayesian belief networks provide a natural, efficient method for representing probabilistic dependen- 
cies among a set of  variables. For these reasons, numerous researchers are exploring the use of  belief 
networks as a knowledge representation m artificial intelligence. Algorithms have been developed 
previously for efficient probabilistic inference using special classes of  belief networks. More general 
classes of  belief networks, however, have eluded efforts to develop efficient inference algorithms. We 
show that probabilistic inference using belief networks is NP-hard. Therefore, it seems unlikely that 
an exact algorithm can be developed to perform probabilistic inference efficiently over all classes of  
belief networks. This result suggests that research should be directed away from the search for a 
general, efficient probabilistic inference algorithm, and toward the design of efficient special-case, 
average-case, and approximation algorithms. 

1. Introduction 

The graphical representation of probabilistic relationships among events has 
been the subject of considerable research. In the field of artificial intelligence, 
several classical systems, such as PROSPECTOR [9] and CASNET [30], have used 
a directed graph to represent probabilistic relationships among events. Recent- 
ly, a particular type of probabilistic graphical representation, called the 
B a y e s i a n  b e l i e f  n e t w o r k ,  has been defined and explored by numerous re- 
searchers. In addition to being called a Bayesian belief network [20], it has 
been termed a causal  net  [11, 12], causal  n e t w o r k  [17], probab i l i s t i c  causa l  
n e t w o r k  [6], probab i l i s t i c  cause -e f f ec t  m o d e l  [28], a n d  probab i l i s t i c  i n f luence  
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diagram [29]. In this paper, we refer to a Bayesian belief network simply as a 
belief network. 

A key advantage of belief networks is that they represent probabilistic 
relationships concisely. It is necessary to consider only the known dependen- 
cies among variables in a domain, rather than to assume that all variables are 
dependent on all other variables [6, 22]. This provides an efficient and expres- 
sive language for acquiring and representing knowledge in many domains. 
These advantages have been key motivations behind the development of 
several expert systems that use belief networks for diagnosis and for data 
interpretation [1-3, 6, 15, 16]. 

Probabilistic inference using some topological classes of belief networks has 
been resistant to any efficient algorithmic solution [20]. In particular, multiply 
connected belief networks form the most general class of such problems. A 
multiply connected belief network contains at least one pair of nodes (vari- 
ables) that have more than one undirected path connecting them. A singly 
connected belief network contains no pair of nodes that have more than one 
undirected path between them. It appears that large multiply connected 
networks are needed for some complex domains, such as medicine. In this 
paper, we show that probabilistic inference using multiply connected networks 
is NP-hard. Therefore,  it is unlikely that a general, efficient probabilistic 
inference algorithm can be developed for belief networks. Knowing that the 
problem is NP-hard is useful because it directs research away from the quest 
for a general, efficient algorithm, and toward the design of good special-case, 
average-case, and approximation algorithms. 

In the remainder of this paper, we first briefly review the belief-network 
representation and the kinds of probabilistic inference that typically are 
performed using belief networks. Then, we show that probabilistic inference 
using belief networks is NP-hard, and we extend this result in several ways. 
Finally, we conclude with a discussion of the significance of this result for 
future research on the design of probabilistic inference algorithms for belief 
networks. 

2. Belief Networks 

A belief network consists of a graphical structure that is augmented by a set of 
probabilities. The graphical structure is a directed, acyclic graph in which 
nodes represent domain variables. Without loss of generality, we will assume 
that the nodes represent propositional variables with values of either true (T) 
or false (F). Prior probabilities are assigned to source nodes, and conditional 
probabilities are associated with arcs. In particular, for each source node xg 
(i.e., a node without any incoming arcs), there is a prior probability function 
P(xg); for each node x~ with one or more direct predecessors ~-~, there is a 
conditional probability function P(x~l~r~). We assume that probability func- 
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tions are represented in the form of explicit function tables, although this 
assumption is by no means necessary for the proof in Section 4. We shall 
represent a general belief network as (V, A, P),  where V is the set of variables 
(i.e., vertices or nodes). A the set of arcs between variables, and P the set of 
probabilities. Figure 1 contains a belief-network structure corresponding to a 
problem that is discussed in detail in Section 4. 

Belief networks are capable of representing the probabilities over any 
discrete sample space, such that the probability of any sample point in that 
space can be computed from the probabilities in the belief network. The key 
feature of belief networks is their explicit representation of the conditional 
independence among events. A belief network represents a full joint-probabili- 
ty space over the n event variables in the network. In particular, investigators 
have shown [21, 29] that the joint probability of some particular instantiation 1 
of all n variables in a belief network can be calculated as follows: 

P ( X ~ , .  . . , X , )  = ~I  P ( X i  I 7ri). (1) 
i - 1  

Therefore, the joint probability of any instantiation of all the variables in a 
belief network can be computed as the product of only n probabilities. We can 
recover the complete joint-probability space from the belief-network repre- 
sentation by calculating the joint probabilities that result from every possible 
instantiation of the n variables in the network. Instead of our having to 
represent explicitly all 2" probabilities in the joint-probability space, the 
conditional independencies expressed among the variables in a belief network 
require only that we represent P(xi[  7ri) for each node x~; this representation 
may require a total of many fewer than 2" probabilities. In addition, algorithms 
have been developed that often do not require the explicit reconstruction of 
the underlying joint-probability space to perform probabilistic inference 
[17, 20,291. 

= component 

clause-satisfaction-testing 
component 

overall-satisfaction-testing 
( t~) .~.~( component 

Fig. 1. A belief-network structure. The probabilities in this belief network are defined in Section 4; 
the annotations on the right of the figure also are explained there. 

1 The term instantiated variable is used to denote a variable that has a known, assigned value. 
For example, an instantiated propositional variable would have an assigned value of either true (T) 
or false (F). 
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Although an arc from a node x to a node y frequently is used to express that 
x causes y, this interpretation of arcs in belief networks is not the only one 
possible. For example,  y may be only correlated with x, but not caused by x. 
Thus, although belief networks are able to represent causal relationships, they 
are not restricted to such causal interpretations. In this regard, belief networks 
can be viewed as a representat ion for probabilistic rule-based systems. 

In summary,  belief networks allow an explicit graphical representat ion of the 
probabilistic conditional dependencies and independencies among variables 
that may represent events, states, objects,  propositions, or other entities. 
Generally,  a belief network greatly reduces the number  of probabilities that 
must be assessed and stored (relative to the full joint-probabili ty space). 

3. Probabilistic Inference 

The phrase probabilistic inference using belief networks typically has been used 
to mean the calculation of P(Sj [$2), where S 1 is either a single instantiated 
variable or a conjunction of instantiated variables, and S 2 is a conjunction of 
instantiated variables. A simple form of probabilistic inference results when 
both S 1 and S 2 are single instantiated variables. For example,  in the context of 
the belief network in Fig. 1, we might request the calculation of P(u 2 = T I Y = 
T). More commonly,  S 2 can be a conjunction of instantiated var iables- -as  for 
example,  P(u 2 = T] Y =  T ^ u 4 = F). A more general form of probabilistic 
inference exists when S~ and S 2 can be propositions in propositional logic 
[8, 19]. An example of inference using a probabilistic proposit ion is the 
calculation of P(Cj = T v C~ = F l Y  = T). The most restricted form of prob- 
abilistic inference results when there is no explicit conditioning information and 
the task is to determine P(Y = T) for some propositional variable Y; the other 
forms of probabilistic inference described in this section are generalizations of 
the computat ion of P ( Y =  T). It is this restricted form of inference that we 
shall call probabilistic inference in the remainder  of this paper.  By proving that 
computing P ( Y =  T) is NP-hard we will prove that the other more general 
forms of probabilistic inference are NP-hard as well. 

4. Proving that the Problem Is NP-Hard 

To prove that a problem Q '  is NP-hard,  it is sufficient to t ransform a known 
NP-complete  problem Q to Q '  and to show that this t ransformation can be 
done efficiently (i.e.,  in time that is polynomial in the size of Q).  In this paper ,  
we shall transform a well-known NP-complete  problem,  called 3-Satisfiability 
(3SAT) [5, 10], to a Decision-problem version of Probabilistic Inference using 
Belief NETworks (PIBNETD). The transformation from the PIBNETD decision 
problem to the probabilistic inference problem, called simply PIBNET, will then 
be straightforward. Thus, we will show that PIBNET is NP-hard. 

There are numerous other ways that we could prove that PIBNET is NP-hard. 
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In particular, different known NP-comple te  problems can be reduced to 
PIBNET. As an example,  consider the s - t  network reliability problem.  Here  a 
network consists of a graph in which edges are assigned a probabili ty of failure. 
The problem is to determine the probabili ty that there is a path of unfailed 
edges in the graph between two nodes s and t. Rosenthal  has shown this 
problem to be NP-hard for undirected networks [27]. More pert inent  to 
PIBNET, Provan and Ball have shown the s - t  network reliability problem to be 
NP-hard for directed, acyclic graphs [25]. It is possible to reduce the s - t  
network reliability problem for directed, acyclic graphs to the PIBNET problem. 
In this paper ,  however,  we shall use a reduction f rom 3SAT, because this 
strategy yields a very simple proof  and demonstra tes  that PIBNET is NP-hard 
even for belief networks that are significantly restricted topologically. Rosen- 
thai has applied a related reduction using the general satisfiability problem to 
show that solving fault trees is NP-hard [26]. Finally, by using 3SAT to prove 
that PIBNET is NP-hard,  we can readily derive additional complexity results on 
belief-network inference, as discussed in Section 5. 

4.1. The definition of 3SAT 

The 3SAT problem involves a collection C = {c~, c 2 , . . . ,  Cm} of clauses on a 
finite set U of n Boolean variables. If  u is a variable in U, then u and --1 u are 
literals over  U. The literal u is true if and only if the variable u is true (T).  The 
literal --1 u is true if and only if the variable u if false (F). Each clause c i 
contains a disjunction of three literals over  U, for example,  (7  u 2 v u 6 v --7 us). 
The clause in this example will be satisfied (i .e. ,  true) unless u 2 = T, u 6 = F, 
and u 8 = T. A collection C of  clauses over  U is satisfiable if and only if there 
exists some truth assignment for U that simultaneously satisfies all the clauses 
in C. The 3SAT decision problem involves determining whether  there is a truth 
assignment for U that satisfies all the clauses in C. 

For example,  consider an instance of 3SAT in which U = {u~, u 2, u3, u4} and 

c = { ( u ,  v v u l  v "2 v v  u3 v u , , ) } .  

One satisfying truth assignment is given by ul = T, //2 = F, u 3 = F, and u 4 = T. 
Thus, the decision problem has the answer "yes"  for this example.  This 
example will be called 3SATex. 

4.2. Transforming 3SAT to PIBNETD 

We now transform 3SAT to PIBNETD. PIBNETD is a decision problem that 
determines,  for some variable Y in a given belief network,  whether  P ( Y =  
T) > 0. PIBNETD returns "yes"  if P ( Y  = T) > 0; it returns " n o "  otherwise. 

Let U = {ul,  u 2 , . . .  , un} and C =  {cl ,  c 2 , . . .  , Cm} be any instance of 3SAT. 
We must construct a belief network BN containing variable Y such that 
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P ( Y  = T) > 0 if and only if C is satisfiable. BN will consist of several compo- 
nents, including those that set the truth values of U and those that test whether 
C is satisfied given a particular truth-value setting of U. In this construction, 
the terms vertex, node, and variable will be used interchangeably. All variables 
will be propositional. 

There is a truth-setting component (V t, pt) that probabilistically instantiates 
the values of each of the variables in U. In particular, 

and 
v t=v ,  

p t =  { P(u, = T ) =  ½, e(u  2 = T) = ½, . . . , e (u .  = T ) =  1}.  

The truth-setting component for example 3SATex is shown in Fig. 1, with nodes 
represented by circles. 

For each clause c /E  C, 1 ~< j ~< m, there is a clause-satisfaction-testing sub- 
component (V~, A~, P~) that tests whether a given instantiation of the pari- 

s ables in U satisfies clause cj in C. The components of (V~, A j ,  P~) are defined 
as follows: 

v ; :  cj} , 

where w I is the variable corresponding to the first literal in clause cj. Similarly, 
2 3 wj and wj are the variables corresponding to the second and third literals in cj, 

respectively; for instance, in example 3SATex , clause c 2 = (7 u 1 v 7 u 2 v u3), 
and therefore w~ = Ul, w~ = u2, and w~ = u 3. The variable Cj represents the 
truth value of clause cj. 

s Aj : {(w~, q ) ,  (w~, Cj), (w~, q ) } ,  

P~ = { P( Cj = TI %)}, 
where ~'c represents the conjunction of the three variables w I w~ wj 3 of j ' , 
clause cj and 

1, if gj(rrc) = T ,  
P ( C j = T ] ~ ' c ) =  0, i f g i ( ~ )  F ,  

where gj(Trc) is the truth function for clause cj. 
For example, for clause c 3 in the 3SATex example, there is a corresponding 

s s subcomponent (V~, A3, P3), where 

s 
V 3  = { • 2 ,  u 3 ,  u 4 ,  C 3 }  , 
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A; = {(u 2, Ca), (u 3, C3), (u4, C3)},  

P~ = {P(C3 = T I uz = F, u~ = T, U 4 = F )  = 0 ,  

P(C3 = T I u:  = T, u 3 = T, U 4 = T) = 1 ,  

P ( C  3 = T [  u 2 = T ,  u 3 = T, u 4 = F) = 1 ,  

P(C3 = T I U 2 = T, u 3 = F, U 4 = T) = 1 ,  

P ( C  3 = T I u 2 = T, u 3 = F, u 4 = F) = 1 , 

P(C3 = T I//2 = F, U 3 = T, U 4 = T) = 1 ,  

P(C3 = T I  u2 = F, u3 = F ,  u4 = T )  = 1 ,  

P ( C  3 = T[/'/2 = F, u 3 = F, u 4 = F) = 1}. 

The clause-satisfaction-testing component  (V s, A s, P~) is composed of the 
union of the clause-satisfaction-testing subcomponents  corresponding to each 
clause cj. In particular, 

V~ C_3 ~ AS ~J ~ p~ Cj s = v j ,  = A j ,  = P j .  
j = l  j = l  j = l  

The belief-network substructure for the clause-satisfaction-testing component  
for example 3 S A T e x  is shown in Fig. 1. 

Finally, there is an overall-satisfaction-testing componen t  (V  °, A °, po) ,  which 
tests whether  all the m clauses in C are satisfied. In particular, there is an arc 
from each variable Cj to a variable Y. Fur thermore ,  a probabili ty P ( Y =  
T I C1, C a . . . . .  C m) is defined as a component  of the belief network,  such that 
P ( Y = T I C 1 ,  C 2 , . . . , C m ) = I  if and only if C 1 = T ,  C 2 = T  . . . . .  C m = T ;  
otherwise, P ( Y  = T I C 1, C 2, . . . , Cm) = O. 

Figure 1 demonstra tes  that we can achieve the same result of conjunctively 
linking each variable Cj to Y by using a set of intermediate dummy variables 
designed as D k. Each dummy variable has the value T with probabili ty 1, if 
each of its parents has the value T; otherwise, it has the value T with 
probabili ty 0. The variable Y is related to its parents in the same conjunctive 
manner  as are the dummy nodes. In essence, numerous  small component  
AND-gates can be used to construct a large AND-gate linking each Cj to Y. For  
the case of using dummy variables to link each Cj to Y, the construction of 
(V o, A o, po)  is informally defined as follows. Set V ° contains the dummy 
nodes,  the node Y, and the nodes C 1, C a , . . . ,  C m. Set A ° contains the arcs 
between nodes in V °, as exemplified in Fig. 1. Finally, po contains the 
conjunctive probabil i ty functions just described. 

The construction using dummy variables is important  for two reasons. First, 
it allows us to construct the belief network corresponding to a 3SAT problem 
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using only small probabili ty tables. This construction allows the NP-hardness 
result to apply to the restricted case of belief networks constructed using only 
tables, and not closed-form functions. Second, the dummy-variable  construc- 
tion renders the indegree of any node in the belief network to be less than 4. 
Thus, the NP-hardness result will apply to belief networks with an indegree 
restricted to be less than 4. 

We complete the construction of the PIBNETD belief network BN by setting 
BN = (V, A, P) ,  where 

V = V t U V s U V ° , 

A = A S 0 A ° , 

p = p t  U P~ U po . 

The construction of a belief network corresponding to an instance of 3SAT 
can be accomplished in time polynomial in the size of the 3SAT problem. In 
particular, the construction of the truth-setting component  is O(n) ,  the con- 
struction of the clause-satisfaction-testing component  is O(m),  and the con- 
struction of the overall-satisfaction-testing component  is O(m).  All that re- 
mains to be shown is that clause set C is satisfiable if and only if P(Y = T) > 0. 

Define U~ to be the a th  instantiation of the variables in U, where for 
1 ~< i ~< n, if the ith digit ( f rom the right) of the binary representat ion of a is 1, 
then u i = T; and, if the ith digit of the binary representat ion of a is 0, then 
u i = F. For instance, in the 3SATex example,  U 5 represents the instantiation 
u 4 = F, u 3 = T, u 2 = F, and u I = T, because the binary representat ion of 5 is 
0101. U s denotes a truth assignment to the variables in U that satisfies all the 
clauses in C. C s denotes the set of instantiated variables that results from 
assigning the value T to each variable Cj, 1 ~<j~< m. C a denotes the /3th 
instantiation of the Cj variables, and is defined analogously to U~. 

By the construction of BN and the definition of belief networks, 

2 n 1 2 m -  I 

P ( Y = T ) =  ~', ~ P(Y=TIC~)P(C~IU~)P(U~). (2) 
a = 0  / 3 - 0  

Suppose C is satisfiable. In this case, one term of the sum in equation (2) is 
P(Y = T] Cs)P(C~] U~)P(Us), and thus 

P(Y = T) 1> P(Y = T IC~)P(Csl U,)P(U~). (3) 

From the construction of BN, P(Y = T] Cs) = 1 and P(Us) = (½)". It remains to 
show that P(C S I Us) > 0. Based on the conditional independencies expressed in 
the representat ion of BN, the probabili ty P(Cs]U~) can be expanded as 
follows: 
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P(Cs I Us) = P(C1 = T I w~, w~, w3~) - . .  P(C., = T I w~, w~, w~) ,  
(4) 

3 where herel we :use w~, w~, and wj to represent the instantiation of the 
variables w j ,  w j ,  and w j,  respectively, as designated by U S. Because U S 
represents a satisfying truth assignment for C, it also must represent a 
satisfying truth assignment for each clause cj in C. Therefore, by the construc- 
tion of BN, 

P ( q = T ] w ~ , w ~ , w ~ ) = l ,  l ~ < j ~ < m .  

Thus, P(C S I Us) = 1, and therefore, P(Y = T) > 0. 
Conversely, suppose that C is not satisfiable. Then, for every truth assign- 

ment U----> {T, F}, there is at least one clause cj that is not satisfied. Thus, by 
the construction of BN, for every instantiation of U~, there is at least one 

1 2 3 variable Cj for which P(C i = T ] w j ,  wj,  w j ) =  0. Therefore, P(C s l U g ) =  0 for 
all U~; this implies that the only possible positive terms in the sum of (2) must 
exist when C, ~ C  S. However, when C , ~ C s ,  the term P ( Y = T  I C~)=O. 
Therefore, from (2), P ( Y - - T )  --0. Thus, we have shown that any instance of 
3SAT can be transformed to PIBNETD. This result implies that PIBNETD is 
NP-hard. 

In addition, PIBNETD is in the class NP because an instantiation of all the 
variables in a belief-network (including some designated variable assignment 
Y = T) can serve as an efficient certificate for the PIBNET decision problem 
(i.e., as sufficient evidence to verify that P(Y--  T) > 0 in polynomial time), as 
indicated by (1). Thus, because PIBNETD is both NP-hard and in NP, it is 
NP-complete. Futhermore, PIBNETD is NP-complete in the strong sense [10] 
because all the numbers in the problem can be assigned a fixed precision. 

Recall that PIBNET is a computational version of PIBNETD. That is, PIBNET 
produces a numerical answer corresponding to the probability P(Y = T), rather 
than merely determining whether this probability is greater than 0. It is clear 
that PIBNETD can be readily transformed to PIBNET by simply having PIBNET 
return "yes" if P(Y  = T ) >  0, and "no"  otherwise. Thus, PIBNET is NP-hard. 

5. Additional Complexity Results 

In this section, the results of Section 4 are used as a framework for developing 
several additional complexity results. 

The use of 3SAT to prove that PIBNET is NP-hard has several advantages. 
3SAT generically transforms to a belief-network problem that has a relatively 
restricted network topology. Therefore, the computational complexity of 
PIBNET clearly does not depend on the complexity of inference using arbitrarily 
compiex belief-network topologies. For example, consider the composition of 
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the truth-setting component  and clause-satisfaction-testing component  of PIB- 
NETD. This portion of PIBNETD defines a bipartite belief network that can be 
used as one type of restricted diagnostic system model, where each node u s 
corresponds to a disease and each node Cj corresponds to an item of evidence. 
The definition of conditional probability often is applied as follows to calculate 
the probability of a disease ui given a set of evidence variables 
{CI, C2 . . . .  , Cm} that are each instantiated to a particular value: 

P(u s = T l C l ,  C 2 . . . . .  Cm) = 
P(C1, C2 . . . . .  Cm I US = T)P(u~ = T) 

P(C,, C2 . . . . .  C,,,) 
(5) 

Therefore,  determining the value of P(C 1, C2 , . . . ,  Cm) is of key importance 
to determining the posterior probability of each u i. Recall that C s is the set of 
instantiated variables that results from instantiating each Cj in 
{C1, (2;2,..., Cm} to the value T. Inferring the value of P(Cs) using a bipartite 
belief-network representation answers the PIBNETD decision problem, and 
therefore this inference task is NP-hard. Additionally, in [7] we show that 
computing P(ui = T ] C  1, C 2 . . . . .  Cm) using a bipartite belief network is NP- 
hard, even if (1) each item of evidence Cj has at most three disease pre- 
decessors, and (2) the conditional probability of each item of evidence given its 
disease predecessors is described by a noisy OR-gate model [21, p. 184]. 

In addition to its structural simplicity, 3SAT is a problem that has been 
studied extensively, and restricted versions of 3SAT have been proved NP- 
complete. These restrictions can be used to derive direct corresponding 
restrictions for probabilistic inference using belief networks. For example, 
PLANAR 3SAT [18] can be used to show that inferring P(Cs) in a bipartite belief 
network is NP-hard, even if the bipartite belief network is restricted to be a 
planar graph. Another  known restriction states that 3SAT remains NP-hard 
when, for each u s in U, there are at most 5 clauses in C that contain either 
u i = T or u s = F [10, p. 259]. This restriction implies that the nodes in the 
clause-satisfaction-testing component  of the corresponding PIBNET problem 
need only to have an outdegree of at most 5. Figure 1 indicates that the 
clause-satisfaction-testing component  of PIBNET determines the maximum out- 
degree and indegree of nodes in a PIBNET network. Thus, PIBNET remains 
NP-hard when the outdegree of any node is at most 5 and the indegree is at 
most 3. Similarly, the problem of inferring P(C~) in a bipartite belief network 
remains NP-hard when the outdegree is at most 5 and the indegree is at most 3. 

6. Discussion 

Probabilistic inference using certain restricted types of belief networks can be 
performed efficiently. For example, there are known algorithms that can 
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perform probabilistic inference using singly connected networks in time that is 
linear as a function of the size of the belief network [20]. Probabilistic 
inference using multiply connected networks with all variables instantiated to 
specific values also requires only time linear in the size of the network. This 
fact is apparent from equation (1), which demonstrates that only n products 
are needed to calculate a particular instantiation of the n variables in any belief 
network. However, inference using multiply connected networks containing 
uninstantiated variables appears to be much more computationally difficult. 
Currently, there are several algorithms for performing probabilistic inference 
using multiply connected networks [17,20, 29]. All of them have a time 
complexity that, in the worst case, is exponential as a function of the number 
of uninstantiated variables in the network. 

This paper has shown that probabilistic inference using general belief 
networks is NP-hard. In particular, probabilistic inference using multiply 
connected belief networks with uninstantiated variables is NP-hard. Knowing 
that a problem is NP-hard is important, because it suggests that any attempt at 
a general, exact, efficient solution is unlikely to be successful. Thus, attempts 
to develop such an algorithm should be given very low priority. 

Unfortunately, the representations of many complex, real-world domains, 
such as medicine [24], seem generally to require large multiply connected 
networks; furthermore, probabilistic inference using these networks typically 
involves many uninstantiated variables--for example, the intermediate 
pathophysiological states in medical belief networks. This situation suggests 
that we should use different strategies, besides seeking a general, exact 
algorithm, in attempting to achieve computationally tractable probabilistic 
inference in such complex domains. Alternative strategies include average- 
case, special-case, and approximation algorithms. We shall briefly discuss some 
current research directions in developing approximation and special-case 
methods. 

Approximation algorithms produce an inexact, bounded solution, but 
guarantee that the exact solution is within those error bounds. For example, 
algorithms have been developed that bound a probability of the form P(xl z), 
where x is an instantiated variable and Z is a set of instantiated variables 
[6, 14, 23]. The bounds are tightened incrementally as computation proceeds. 
The question is then whether such absolute bounds can be made sufficiently 
tight in an acceptable amount of time for the probability inference problems in 
the domain. Researchers are just beginning to address this important empirical 
question for certain domains, such as medicine. 

A related method uses Monte Carlo simulation techniques to produce a 
point-valued probability estimate, plus a standard error of that estimate [13]. 
As more computation time is expended, the standard error decreases. In this 
case, the error bound is statistical, rather than absolute. Although Monte Carlo 
simulation methods appear promising, current algorithms have extremely slow 
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convergence properties in some cases [4], and thus are not always practical to 
u s e .  

Special-case algorithms are capable of efficient probabilistic inference for 
special types of belief networks. For instance, as already mentioned, there are 
linear-time algorithms for probabilistic inference using singly connected net- 
works. A second example is an algorithm that is able to perform probabilistic 
inference efficiently on many multiply connected networks that contain small 
clusters of nodes [17]. Such techniques take advantage of the decomposability 
of certain networks into node clusters. Similar techniques have been used to 
solve some types of fault-tree problems [26] and network reliability problems 
[27]. Decomposability is a powerful technique in solving many kinds of 
network problems; we may be able to exploit it further in developing new 
special-case belief-network inference algorithms. Belief networks that contain 
restricted classes of probability functions or values also may be amenable to 
efficient inference. Researchers are beginning to investigate the detailed classes 
of belief networks for which current special-case inference algorithms are 
computationally tractable. 
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