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Abstract 
Although genome-wide RNA expression analysis has become a routine tool in 
biomedical research, extracting biological insight from such information remains a major 

challenge. Here, we describe a powerful analytical method called Gene Set Enrichment 
Analysis (GSEA) for interpreting gene expression data. The method derives its power by 

focusing on gene sets – that is, groups of genes that share common biological function, 

chromosomal location or regulation. We demonstrate how GSEA yields insights into 
several cancer-related datasets, including leukemia and lung cancer. Notably, where 

single-gene analysis finds little similarity between two independent studies of patient 
survival in lung cancer, GSEA reveals many biological pathways in common.  

The GSEA method is embodied in a freely available software package, together with an 

initial database of 1325 biologically defined gene sets. 
 

1.  Introduction 

Genome-wide expression analysis using DNA microarrays has become a 
mainstay of genomics research (1, 2). The challenge no longer lies in obtaining gene 

expression profiles, but rather in interpreting the results to gain insights into biological 
mechanisms. 

 In a typical experiment, mRNA expression profiles are generated for thousands of 

genes from a collection of samples belonging to one of two classes—for example, tumors 
that are sensitive vs. resistant to a drug. The genes can be ordered in a ranked list L, 

according to their differential expression between the classes. The challenge is to extract 
meaning from this list. 

A common approach involves focusing on a handful of genes at the top and 

bottom of L (i.e., those showing the largest difference), to discern telltale biological clues. 
This approach has a few major limitations: 

 (i) After correcting for multiple hypotheses testing (MHT), no individual gene 
may meet the threshold for statistical significance, because the relevant biological 

differences are modest relative to the noise inherent to the microarray technology. 
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(ii) Alternatively, one may be left with a long list of statistically significant genes 

without any unifying biological theme. Interpretation can be daunting and ad hoc, being 
dependent on a biologist’s area of expertise. 

(iii) Single-gene analysis may miss important effects on pathways. Cellular 
processes often affect sets of genes acting in concert. An increase of 20% in all genes 

encoding members of a metabolic pathway may dramatically alter the flux through the 

pathway and may be more important than a 20-fold increase in a single gene. 
(iv) When different groups study the same biological system, the list of 

statistically significant genes from the two studies may show distressingly little overlap 
(3). 

 To overcome these analytical challenges, we recently developed a method called 

Gene Set Enrichment Analysis (GSEA) that evaluates microarray data at the level of gene 

sets. The gene sets are defined based on prior biological knowledge, e.g., published 

information about biochemical pathways or co-expression in previous experiments. The 

goal of GSEA is to determine whether members of a gene set S tend to occur toward the 
top (or bottom) of the list L, in which case the gene set is correlated with the phenotypic 

class distinction. 
We used a preliminary version of GSEA to analyze data from muscle biopsies 

from diabetics vs. healthy controls (4). The method revealed that genes involved in 

oxidative phosphorylation (OXPHOS) show reduced expression in diabetics, although the 
average decrease per gene is only 20%. The results from this study have been 

independently validated by other microarray studies (5) and by in vivo functional studies 
(6). 

 Given this success, we have developed GSEA into a robust technique for 

analyzing molecular profiling data. We studied its characteristics and performance and 
substantially revised and generalized the original method for broader applicability. 

 In this paper, we provide a full mathematical description of the GSEA 
methodology and illustrate its utility by applying it to several diverse biological 

problems. We have also created a software package, called GSEA-P and an initial 

inventory of gene sets (MSigDB), both of which are freely available. 
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2.  Overview of GSEA 
GSEA considers experiments with genome-wide expression profiles from samples 

belonging to two classes, labeled 1 or 2. Genes are ranked based on the correlation 

between their expression and the class distinction, using any suitable metric (Fig. 1A). 
Given an a priori defined set of genes S (e.g., genes encoding products in a 

metabolic pathway, located in the same cytogenetic band, or sharing the same GO 

category), the goal of GSEA is to determine whether the members of S are randomly 
distributed throughout L, or primarily found at the top or bottom. We expect that sets 

related to the phenotypic distinction will tend to show the latter distribution. 
There are three key elements of the GSEA method: 

 Step 1: Calculation of an enrichment score. We calculate an enrichment score 

(ES) that reflects the degree to which a set S is over-represented at the extremes (top or 
bottom) of the entire ranked list L. The score is calculated by walking down the list L, 

increasing a running-sum statistic when we encounter a gene in S and decreasing it when 

we encounter genes not in S. The magnitude of the increment depends on the correlation 
of the gene with the phenotype. The enrichment score is the maximum deviation from 

zero encountered in the random walk; it corresponds to a weighted Kolmogorov-
Smirnov-like statistic (7) (Fig. 1B). 

 Step 2: Estimation of significance level of ES. We estimate the statistical 

significance (nominal P-value) of the ES, using an empirical phenotype-based 
permutation test procedure that preserves the complex correlation structure of the gene 

expression data. Specifically, we permute the phenotype labels and re-compute the ES of 
the gene set for the permutated data; this generates a null distribution for the ES. The 

empirical, nominal P-value of the observed ES is then calculated relative to this null 

distribution. Importantly, the permutation of class labels preserves gene-gene correlations 
and thus provides a more biologically reasonable assessment of significance than would 

be obtained by permuting genes. 
Step 3: Adjustment for multiple hypothesis testing. When an entire database of 

gene sets is evaluated, we adjust the estimated significance level to account for multiple 

hypothesis testing (MHT). We first normalize the ES for each gene set to account for the 
size of the set, yielding a normalized enrichment score (NES). We then control the 
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proportion of false positives by calculating the false discovery rate (FDR) (8, 9) 

corresponding to each NES. The FDR is the estimated probability that a set with a given 
NES represents a false positive finding; it is computed by comparing the tails of the 

observed and null distributions for the NES. 
The details of the implementation are described in the Appendix and Supporting 

Information. 

We note that the GSEA method differs in several important ways from the 
preliminary version (see Supporting Information). In the original implementation, the 

running-sum statistic used equal weights at every step. However, we found that this 
yielded high scores for sets clustered near the middle of the ranked list (Fig. 2A); these 

sets do not represent biologically-relevant correlation with the phenotype. We addressed 

this by weighting the steps according to each gene’s correlation with phenotype. We 
noticed that the use of weighted steps could cause the distribution of observed ES scores 

to be asymmetric in cases where many more genes are correlated with one of the two 

phenotypes. We therefore estimate the significance levels by considering separately the 
positively- and negatively-scoring gene sets (see Appendix and Supporting Information 

Fig. SF1). 
Our preliminary implementation used a different approach, family-wise-error rate 

(FWER), to correct for MHT. The FWER is a conservative correction that seeks to ensure 

that the list of reported results does not include even a single false-positive gene set. This 
criterion turned out to be so conservative that many applications yielded no statistically 

significant results. Because our primary goal is to generate hypotheses, we chose to use 
the FDR to focus on controlling the probability that each reported result is a false 

positive. 

Based on our statistical analysis and empirical evaluation, GSEA shows broad 
applicability. It can detect subtle enrichment signals and it preserves our original results 

in (4), with the OXPHOS pathway significantly enriched in the normal samples (P = 
.008, FDR = .04). This methodology has been implemented in a software tool called 

GSEA-P. 

 
3. The leading-edge subset 
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Gene sets can be defined using a variety of methods, but not all the members of a 

gene set will typically participate in a biological process. Often it is useful to extract the 
core members of high scoring gene sets that contribute to the ES. We define the leading-

edge subset to be those genes in the gene set S that appear in the ranked list L at, or 
before, the point where the running sum reaches its maximum deviation from zero (Fig. 

1B). The leading-edge subset can be interpreted as the core of a gene set that accounts for 

the enrichment signal. 
Examination of the leading-edge subset can reveal a biologically important subset 

within a gene set as we show below in our analysis of P53 status in cancer cell lines. This 
is especially useful with manually curated gene sets, which may represent an 

amalgamation of interacting processes. We first observed this in our previous study (4) 

where we manually identified two high scoring sets, a curated pathway and a 
computationally derived cluster, which shared a large subset of genes later confirmed to 

be a key regulon altered in human diabetes. 

High scoring gene sets can be grouped on the basis of leading-edge subsets of 
genes that they share. Such groupings can reveal which of those gene sets correspond to 

the same biological processes and which represent distinct processes. 
 The GSEA-P software package includes tools for examining and clustering 

leading-edge subsets (Supporting Information). 

 
4. An initial catalog of human gene sets 

GSEA evaluates a query microarray dataset using a collection of gene sets. We 
therefore created an initial catalog of 1325 gene sets, which we call the Molecular 

Signature Database (MSigDB 1.0) (Table S1 and Supporting Information), consisting of 

four types of sets: 
Cytogenetic sets (C1, 319 gene sets). This catalog includes 24 sets, one for each of 

the 24 human chromosomes, and 295 sets corresponding to cytogenetic bands. These sets 
are helpful in identifying effects related to chromosomal deletions or amplifications, 

dosage compensation, epigenetic silencing and other regional effects. 

Functional sets (C2, 522 gene sets). This catalog includes 472 sets containing genes 
whose products are involved in specific metabolic and signaling pathways, as reported in 
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eight publicly available, manually curated databases, and 50 sets containing genes co-

regulated in response to genetic and chemical perturbations, as reported in various 
experimental papers. 

Regulatory-motif sets (C3, 57 gene sets). This catalog is based on our recent work 
reporting 57 commonly conserved regulatory motifs in the promoter regions of human 

genes (10), and makes it possible to link changes in a microarray experiment to a 

conserved, putative cis-regulatory element. 
Neighborhood sets (C4, 427 gene sets). This catalog consists of sets defined by 

expression neighborhoods centered on cancer-related genes. 
This database provides an initial collection of gene sets for use with GSEA and 

illustrates the types of gene sets that can be defined, including those based on prior 

knowledge or derived computationally. 
 
5. Applications of GSEA 

We explored the ability of GSEA to provide biologically meaningful insights in 
six examples for which considerable background information is available. 

 In each case, we searched for significantly associated gene sets from one or both 
of the subcatalogs C1 and C2 - above. Table 1 lists all gene sets with an FDR ≤ 0.25. 

Male vs. Female Lymphoblastoid Cells. As a simple test, we generated mRNA 

expression profiles from lymphoblastoid cell lines derived from 15 males and 17 females 
(unpublished) and sought to identify gene sets correlated with the distinctions 

‘male>female’ and ‘female>male’. 

 We first tested enrichment of cytogenetic gene sets (C1). For the male>female 
comparison, we would expect to find the gene sets on chromosome Y. Indeed, GSEA 

produced chromosome Y and the two Y bands with at least 15 genes (Yp11 and Yq11). 
For the female>male comparison, we would not expect to see enrichment for bands on 

chromosome X because most X-linked genes are subject to dosage compensation and 

thus not more highly expressed in females (11). 
 We next considered enrichment of functional gene sets (C2). The analysis yielded 

three biologically informative sets. One consists of genes escaping X inactivation 
(merged from two sources (12, 13) that largely overlap), discovering the expected 
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enrichment in female cells. Two additional sets consist of genes enriched in reproductive 

tissues (testis and uterus), which is notable inasmuch as mRNA expression was measured 
in lymphoblastoid cells. This result is not simply due to differential expression of genes 

on chromosomes X and Y, but remains significant when restricted to the autosomal genes 
within the sets (Supporting Information Table S3). 

p53 status in cancer cell lines. We next examined gene expression patterns from 

the NCI-60 collection of cancer cell lines. We sought to use these data to identify targets 
of the transcription factor p53, which regulates gene expression in response to various 

signals of cellular stress. The mutational status of the p53 gene has been reported for 50 
of the NCI60 cell lines, with 17 being classified as normal and 33 as carrying mutations 

in the gene (14). 

We first applied GSEA to identify functional gene sets (C2) correlated with p53 
status. The p53+>p53- analysis identified five sets whose expression is correlated with 

normal p53 function (Table 1). All are clearly related to p53 function. The sets are (i) a 

biologically annotated collection of genes encoding proteins in the p53-signaling pathway 
that causes cell-cycle arrest in response to DNA damage; (ii) a collection of downstream 

targets of p53 defined by experimental induction of a temperature-sensitive allele of p53 
in a lung cancer cell line; (iii) an annotated collection of genes induced by radiation, 

whose response is known to involve p53; (iv) an annotated collection of genes induced by 

hypoxia, which is known to act through a p53-mediated pathway distinct from the 
response pathway to DNA damage; and (v) an annotated collection of genes encoding 

heat-shock-protein signaling pathways that protect cells from death in response to various 
cellular stresses. 

 The complementary analysis (p53->p53+) identifies one significant gene set: genes 

involved in the Ras signaling pathway. Interestingly, two additional sets that fall just 
short of the significance threshold contain genes involved in the Ngf and Igf1 signaling 

pathways. To explore whether these three sets reflect a common biological function, we 
examined the leading-edge subset for each gene set (defined above). The leading-edge 

subsets consist of 16, 11 and 13 genes respectively, with each containing four genes 

encoding products involved in the MAP-kinase signaling sub-pathway (MAP2K1, RAF1, 
ELK1, PIK3CA) (Fig. 3). This shared subset in the GSEA signal of the Ras, Ngf and Igf1 
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signaling pathways points to up-regulation of this component of the  MAP-kinase 

pathway as a key distinction between the p53- and p53+ tumors. (We note that a full 
MAP-kinase pathway appears as the ninth set on the list.) 

 Acute leukemias. We next sought to study acute lymphoid leukemia (ALL) and 
acute myeloid leukemia (AML), by comparing gene expression profiles that we had 

previously obtained from 24 ALL patients and 24 AML patients (15). 

 We first applied GSEA to the cytogenetic gene sets (C1), with the expectation that 
chromosomal bands showing enrichment in one class would likely represent regions of 

frequent cytogenetic alteration in one of the two leukemias. The ALL>AML comparison 
yielded five gene sets (Table 1), which could represent frequent amplification in ALL or 

deletion in AML. Indeed, all five regions are readily interpreted in terms of current 

knowledge of leukemia. 
 The 5q31 band is consistent with the known cytogenetics of AML. Chromosome 

5q deletions are present in most AML patients, with the critical region having been 

localized to 5q31 (16). The 17q23 band is a site of known genetic rearrangements in 
myeloid malignancies (17). The 13q14 band, containing the RB locus, is frequently 

deleted in AML but rarely in ALL (18). Finally, the 6q21 band contains a site of common 
chromosomal fragility and is commonly deleted in hematologic malignancies (19). 

Interestingly, the remaining high-scoring band is 14q32. This band contains the 

immunoglobulin heavy chain locus, which includes over 100 genes expressed almost 
exclusively in the lymphoid lineage. The enrichment of 14q32 in ALL thus reflects 

tissue-specific expression in the lineage, rather than a chromosomal abnormality. 
The reciprocal analysis (AML>ALL) yielded no significantly enriched bands. 

This likely reflects the relative infrequency of deletions in ALL (20). The analyses with 

the cytogenetic gene sets thus show that GSEA is able to identify chromosomal 
aberrations common in particular cancer subtypes. 

Comparing two studies of lung cancer. A goal of GSEA is to provide a more 
robust way to compare independently derived gene expression data sets (possibly 

obtained with different platforms) and obtain more consistent results than single gene 

analysis. To test this, we re-analyzed data from two recent studies of lung cancer reported 
by our own group in Boston (21) and another group in Michigan (22). Our goal was not 
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to evaluate the results reported by the individual studies, but rather to examine whether 

common features between the data sets can be more effectively revealed by gene-set 
analysis rather than single-gene analysis. 

Both studies determined gene-expression profiles in tumor samples from patients 
with lung adenocarcinomas (n = 62 for Boston; n = 86 for Michigan) and provided 

clinical outcomes (classified here as ‘good’ or ‘poor’ outcome). We found that no genes 

in either study were strongly associated with outcome at a significance level of 5% after 
correcting for MHT. 

 From the perspective of individual genes, the data from the two studies show little 
in common. A traditional approach is to compare the genes most highly correlated with a 

phenotype. We defined the gene set SBoston to be the top 100 genes correlated with poor 

outcome in the Boston study and similarly SMichigan from the Michigan study. The overlap 
is distressingly small (12 genes in common) and is barely statistically significant using a 

permutation test (p = .012). When we added a Stanford study (23) involving 24 

adenocarcinomas, the three data sets share only one gene in common among the top 100 
genes correlated with poor outcome (Table S4 and Fig. SF2 Supporting Information). 

Moreover, no clear common themes emerge from the genes in the overlaps to provide 
biological insight. 

 We then explored whether GSEA would reveal greater similarity between the 

Boston and Michigan lung cancer data sets. We compared the gene set from one data set, 
SBoston, to the entire ranked gene list from the other. The set SBoston shows a strong 

significant enrichment in the Michigan data (NES = 1.90, p <0.001). Conversely, the 
poor outcome set SMichigan is enriched in the Boston data (NES = 2.13, p<0.001). GSEA is 

thus able to detect a strong common signal in the poor outcome data (Fig. SF3 Supporting 

Information). 
 Having found that GSEA is able to detect similarities between independently 

derived datasets, we then went on to see if GSEA could provide biological insight, by 
identifying important functional sets correlated with poor outcome in lung cancer. For 

this purpose, we performed GSEA on the Boston and Michigan data with the C2 catalog 

of functional gene sets. Given the relatively weak signals found by conventional single 
gene analysis in each study, it was not clear whether any significant gene sets would be 
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found by GSEA. Nonetheless, we identified a number of genes sets significantly 

correlated with poor outcome (FDR ≤ 0.25): 8 in the Boston data and 11 in the Michigan 
data (Table 1). (The Stanford data had no genes or gene sets significantly correlated with 

outcome; this is most likely due to the smaller number of samples and many missing 
values in the data.) 

 Moreover, there is a large overlap among the significantly enriched gene sets in 

the two studies. About half of the significant gene sets were shared between the two 
studies and an additional few, though not identical, were clearly related to the same 

biological process. Specifically, we find a set upregulated by telomerase (24), two 
different tRNA-synthesis-related sets, two different insulin-related sets, and two different 

p53-related sets. This makes a total of 5 out of 8 of the significant sets in Boston identical 

or related to 6 out of 11 in Michigan. 
To provide greater insight, we next extended the analysis to include sets beyond 

those that met the FDR ≤ 0.25 criterion. Specifically, we considered the top-scoring 20 

gene sets in each of the three studies (60 gene sets) and their corresponding leading-edge 
subsets in order to better understand the underlying biology in the poor outcome samples 

(Table S2 Supporting Information). Already in the Boston/Michigan overlap we saw 
evidence of telomerase and p-53 response as noted above. Telomerase activation is 

believed to be a key aspect of pathogenesis in lung adenocarcinoma and is well 

documented as prognostic of poor outcome in lung cancer. 
In all three studies two additional themes emerge around rapid cellular 

proliferation, and amino acid biosynthesis (Table S5 Supporting Information): 
(i) We see striking evidence in all three studies of the effects of rapid cell 

proliferation. These include sets related to Ras activation and the cell cycle as well as 

responses to hypoxia including angiogenesis, glycolysis, and carbohydrate metabolism. 
More than one third of the gene sets (23 of 60) are related to such processes. These 

responses have been observed in malignant tumor microenvironments where enhanced 
proliferation of tumor cells leads to low oxygen and glucose levels (25). The leading-

edge subsets of the associated significant gene sets include hypoxia-response genes such 

as HIF1A, VEGF, CRK, PXN, EIF2B1, EIF2B2, EIF2S2, FADD, NFKB1, RELA, 
GADD45A and also Ras/MAPK activation genes (HRAS, RAF1, MAP2K1). 
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(ii) We find strong evidence for the simultaneous presence of increased amino 

acid biosynthesis, mTor signaling, and up-regulation of a set of genes down-regulated by 
both amino acid deprivation and rapamycin treatment (26). Supporting this are 17 gene 

sets associated with amino acid and nucleotide metabolism, immune modulation and 

mTor signaling. Based on these results, one might speculate that rapamycin treatment 

might have an effect on this specific component of the poor outcome signal. We note 

there is evidence of the efficacy of rapamycin in inhibiting growth and metastatic 
progression of Non-Small Cell Lung Cancer in mice and human cell lines (27). 

Our analysis shows that we find much greater consistency across the three lung 
datasets and by using GSEA than single gene analysis. Moreover, we are better able to 

generate compelling hypotheses for further exploration. In particular, 40 of the 60 top 

scoring gene sets across these three studies give a consistent picture of underlying 
biological processes in poor outcome cases. 

 

6. GSEA-P software and MSigDB gene sets 
To facilitate the use of GSEA, we have developed resources that are freely 

available at (www.broad.mit.edu/GSEA). The site contains the GSEA-P software; the 
Molecular Signatures Database (MSigDB 1.0); and accompanying documentation. 

The software is available as (i) a platform-independent desktop application with a 

graphical user interface; (ii) programs in R and in Java that advanced users may 
incorporate into their own analyses or software environments; (iii) an analytic module in 

our GenePattern microarray analysis package (www.broad.mit.edu/genepattern) (iv) a 
future web-based GSEA server to allow users to run their own analysis directly on the 

website. A detailed example of the output format of GSEA is available on the site, as well 

as in Supporting Information. 
 

7. Use of GSEA in other settings 
We have focused above on the use of GSEA to analyze a ranked gene list 

reflecting differential expression between two classes, each represented by a large 

number of samples. However, the method can be applied to ranked gene lists arising in 
other settings. 
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Genes may be ranked based on the differences seen in a small data set, with too 

few samples to allow rigorous evaluation of significance levels by permuting the class 
labels. In these cases, a P-value can be estimated by permuting the genes, with the result 

that genes are randomly assigned to the sets while maintaining their size. This approach 
is not strictly accurate: because it ignores gene-gene correlations, it will overestimate the 

significance levels and may lead to false positives. Nonetheless, it can be useful for 

hypothesis generation. The GSEA-P software supports this option. 
Genes may also be ranked based on how well their expression correlates with a 

given target pattern (such as the expression pattern of a particular gene). In Lamb et al. 
(28), a GSEA-like procedure was used to demonstrate the enrichment of a set of targets 

of cyclin D1 list ranked by correlation with the profile of cyclin D1 in a compendium of 

tumor types. Again, approximate P-values can be estimated by permutation of genes. 
 
8. Discussion 
Traditional strategies for gene expression analysis have focused on identifying individual 
genes that exhibit differences between two states of interest. While useful, they fail to 

detect biological processes - such as metabolic pathways, transcriptional programs, and 
stress responses – that are distributed across an entire network of genes and subtle at the 

level of individual genes. 

We previously introduced GSEA to analyze such data at the level of gene sets. 
The method was initially used to discover metabolic pathways altered in human diabetes 

and was subsequently applied to discover processes involved in diffuse large B cell 
lymphoma (29), nutrient-sensing pathways involved in prostate cancer (30), and in 

comparing the expression profiles of mouse to those of humans (31). In the current paper, 

we have refined the original approach into a sensitive, robust analytical method and tool 
with much broader applicability along with a large database of gene sets. GSEA can 

clearly be applied to other large-scale datasets such as serum proteomics data, genotyping 
information, or metabolite profiles. 

 GSEA features a number of advantages when compared to single gene methods. 

First, it eases the interpretation of a large-scale experiment by identifying pathways and 
processes. Rather than focus on high scoring genes (which can be poorly annotated and 
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may not be reproducible), researchers can focus on gene sets. These tend to be more 

reproducible and more interpretable. Second, when the members of a gene set exhibit 
strong cross-correlation, GSEA can boost the signal to noise ratio and make it possible to 

detect modest changes in individual genes. Third, the leading-edge analysis can help 
define gene subsets to elucidate the results. 

Several other tools have recently been developed to analyze gene expression 

using pathway or ontology information, e.g.,  (32), (33), (34). Most determine whether a 
group of differentially expressed genes is enriched for a pathway or ontology term by 

using overlap statistics such as the cumulative hypergeometric distribution. We note that 
this approach is not able to detect the OXPHOS results discussed above (P = .08, FDR = 

.50). GSEA differs in two important regards. First, GSEA considers all the genes in an 

experiment, not only those above an arbitrary cutoff in terms of fold-change or 
significance. Second, GSEA assesses the significance by permuting the class labels; this 

preserves gene-gene correlations and thus provides a more accurate null model. 

 The real power of GSEA, however, lies in its flexibility. We have created an 
initial molecular signature database consisting of over 1000 gene sets. These include sets 

based on biological pathways, chromosomal location, upstream cis-motifs, responses to a 
drug treatment, or expression profiles in previously generated microarray datasets. 

Further sets can be created through genetic and chemical perturbation, computational 

analysis of genomic information, and additional biological annotation. In addition, GSEA 
itself could be used to refine manually curated pathways and sets by identifying the 

leading-edge sets that are shared across diverse experimental datasets. As such sets are 
added, tools such as GSEA will help link prior knowledge to newly generated data and 

thereby help uncover the collective behavior of genes in states of health and disease. 

 
8.  Appendix:  Mathematical Description of Methods 
 
Inputs to GSEA: 
   1. Expression dataset D with N genes and k samples. 
   2. Ranking procedure to produce Gene List L. Includes a correlation (or other ranking 

metric,) and a phenotype or profile of interest C. We use only one probe per gene to 
prevent over-estimation of the enrichment statistic (Supporting Information and Table 
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S6). 

   3. An exponent p to control the weight of the step. 

   4. Independently derived Gene Set S of NH genes (e.g., a pathway, a cytogenetic band, a 

GO category). In the analyses above, we used only genes sets with at least 15 members to 
focus on robust signals (78% of MSigDB) (Table S1). 

 
 
Enrichment Score ES(G): 
   1. Rank order the N genes in D to form L = {g1, … , gN} according to the correlation, 

r g
j( ) = rj , of their expression profiles with C using M. 

   2. Evaluate the fraction of genes in S (“hits”) weighted by their correlation and the 
fraction of genes not in S (“misses”) present up to a given position i in L. 

 

  

Phit( S ,i ) =
r

j

p

N
Rgj!S

j" i

#        where    
 

N
R
= r

j

p

gj!S

"  

 

    

   

Pmiss( S ,i ) =
1

N ! N
H( )gj"S

j# i

$  

 
The Enrichment Score (ES) is the maximum deviation from zero of Phit - Pmiss. For a 

randomly distributed S, ES(S) will be relatively small but if it is concentrated at the top or 

bottom of the list, or otherwise non-randomly distributed, then ES(S) will be 
correspondingly high. When p=0, this reduces to the standard Kolmogorov-Smirnov 

statistic; when p=1, we are weighting the genes in S by their correlation with C 

normalized by the sum of the correlations over all the genes in S. We set p=1 for the 

examples in this paper. 
 

Estimating Significance: 
We assess the significance of an observed ES by comparing it with the set of scores 

ESNULL computed with randomly assigned phenotypes. 

   1. Randomly assign the original phenotype labels to samples, reorder genes, re-compute 

ES(S). 
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   2. Repeat step 1 for 1000 permutations, and create a histogram of the corresponding 

enrichment scores ESNULL. 

   3. Estimate nominal P-value for S from ESNULL using the positive or negative portion of 

the distribution corresponding to the sign of the observed ES(S). 
 
Multiple Hypothesis Testing: 
   1. Determine ES(S) for each gene set in the collection or database. 
   2. For each S and 1000 fixed permutations π of the phenotype labels re-order the genes 

in L and determine ES(S, π). 
   3. Adjust for variation in gene set size: 

 Normalize the ES(S, π) and the observed ES(S), separately rescaling the positive 

and negative scores by dividing by the mean of the ES(S, π). This yields the normalized 
scores NES(S, π) and NES(S). (See Supporting Information.)  

   4. Compute False Discovery Rate (FDR).  Control the ratio of false positives to the total 

number of gene sets attaining a fixed level of significance. This is done separately for 
positive and negative NES(S) and NES(S, π)). 

Create a histogram of all NES(S, π) over all S and π.  Use this null distribution to 
compute an FDR q-value, for a given NES(S) =NES* !  0 . 

  
      % of all (S,π) with NES(S, π) !  0 whose NES(S, π)) !NES* 
      ---------------------------------------------------------------------------------------- , 
                        % of observed S with NES(S) !  0 whose NES(S) !  NES* 
 
and similarly if NES(S) = NES* !  0. 
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Main Paper Captions 
 
Figure 1. GSEA Overview. This figure illustrates the original GSEA method from (4). 
A) An expression dataset sorted by correlation with phenotype, the corresponding heat 
map, and the “gene tags”, i.e., location of genes from a set S within the sorted list. B) Plot 
of the running sum for S in the dataset including the location of the maximum enrichment 
score (ES) and the leading-edge subset. 
   
Figure 2. Enrichment Score Behavior. The behavior of the GSEA score using the 
original method (4) according to a gene set’s distribution on the ranked list. A) The 
distribution of 3 gene sets, from the C2 functional collection, in the list of genes in the 
Male/Female Lymphoblastoid cell line example ranked by their correlation with gender: 
S1, a set of Chromosome X inactivation genes; S2, a pathway describing vitamin c 
import into neurons; S3, related to chemokine receptors expressed by T helper cells. The 
figure shows plots of the running sum for the 3 gene sets: S1 is significantly enriched in 
females as expected; S2 is randomly distributed and scores poorly; S3 is not enriched at 
the top of the list but is non-random so scores well. Arrows show the location of the 
maximum enrichment score and the point where the correlation (signal to noise ratio) 
crosses zero. B) Comparison of the nominal p-values for S1, S2, S3 using the original and 
new method. The new method reduces the significance of sets like S3. 
 
Figure 3. Leading edge overlap for p53- study. This plot shows the ras, ngf, igf1 gene 
sets correlated with P53- clustered by their leading-edge subsets indicated in dark blue. A 
common subgroup of genes, apparent as a dark vertical stripe, consists of MAP2K1, 
PIK3CA, ELK1 and RAF1 and represents a subsection of the MAPK pathway. 
 
Table 1. Summary of GSEA results with FDR ≤ 0.25. For detailed results see Table S2 
in Supporting Information. 
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1 Supporting Tables and Figures (attached) 
 
Table Captions 
 
Table S1. MSigDB Collections. This table gives the number of gene sets in each 
collection, the numbers of sets that pass the size thresholds (min=15, max=500), and the 
final number of sets used in the examples in the main paper. 
 
Table S2. Summary of GSEA results. The top 20 scoring gene sets for all of the 
examples described in the paper. Entries in boldface correspond to sets with FDR ≤ 0.25. 
 
Table S3. Functional autosomal gene set enrichment with respect to gender. This 
table shows the GSEA results for the gender dataset using the functional collection C2 
after restricting the gene set membership to autosomal genes. 
 
Table S4. Single gene overlaps in lung studies. This table shows the pairwise overlap 
between the top 100 genes correlated with poor outcome in the Michigan, Boston, and 
Stanford datasets as depicted in Figure SF2. Pair wise overlap is determined using genes 
which appear on both studies’ technology platforms. Restricting to genes on all 3 
platforms would reduce the gene space by 50% in the Michigan study, and by 70% in the 
Boston and Stanford studies. 
 
Table S5. Functional overlaps of top 20 gene sets enriched in poor outcome in the 3 
lung cancer data sets. This table organizes the gene sets enriched in poor outcome in 
lung shown in Table S2 according to their pathway, process/context, and major biological 
response/theme. 
 
Table S6. Probe set to gene ID reduction. This table shows the distribution of probe 
sets per gene id in the 3 Affymetrix chip types used on the datasets in the paper. The data 
displayed is binned by the number of probes per gene. The majority of the over-
representation arises from 2 or 3 probes per gene. In our analyses we chose the 
maximally expressed probe as the single representative of the corresponding gene. 
 
Figure Captions 
 
Figure SF1. Asymmetry of GSEA results due to unbalanced global phenotype 
expression and gene set collection bias. A) Shows the GSEA observed and null 
distributions when a collection of random gene sets with the same number and size 
distribution as the functional C2 collection is run against the diabetes dataset from 
Mootha et al. 2003. Random sets have small biases (left) so that only a modest correction 
is made by the normalization procedure (right). The middle of the observed and null 
distributions coincide as they should. B) Here the actual C2 collection is run against the 
diabetes data set and we clearly see the bias in the observed distribution caused by 
unequal representation gene sets in the two phenotypes. Normalizing the positive and 
negative side of the distribution independently helps to ameliorate this bias. C) The 



8/3/05   page 3  
GSEASupportingText.072705ceh.doc 

Leukemia dataset (1) illustrates bias in the gene expression correlation profiles between 
the two phenotypes. On the ALL side there are more markers and they are more highly 
correlated markers (left). Again independent normalization of positive and negative 
scoring sets decreases this bias (right). 
 
Figure SF2. Single gene overlaps in lung cancer studies. This Venn diagram shows the 
pairwise and 3-way overlap between the top 100 genes correlated with poor outcome in 
the Michigan, Boston, and Stanford datasets. Pairwise overlap is determined using genes 
which appear on both studies’ technology platforms. 3-way overlap is the overlap of the 
pairwise overlaps. Restricting to genes on all 3 platforms would reduce the gene space by 
50% in the Michigan study, and by 70% in the Boston and Stanford studies. 
 
Figure SF3. Enrichment plots for poor outcome signatures across lung cancer studies. 
Enrichment plots for the SBoston and SMichigan signatures of poor outcome against the 
Michigan and Boston data sets respectively. Signatures are defined as those genes in the 
set of top 100 outcome markers that are also represented in the other study. The 
signatures are scored against data from genes represented in both studies. 
 
Figure SF4. Enrichment plots for the original and current GSEA methods for the set of 
genes upregulated by p53 in the p53 wild type phenotype. 
 
2 Datasets: description, preprocessing and normalization. 

2.1 Gene probe to gene symbol reduction  
 

In all data sets, for each sample the expression values of all probe set ids for a given 
gene were reduced to a single value by taking the maximum expression value. By 
this process, the 22,283 features on the U133A chip (diabetes and gender examples) 
were reduced by 30% to 15,060 features, the 12,625 features on the HGU95Av2 chip 
(p53, leukemia, & lung Boston) were reduced by 18% to 10,104 features and the 
7,129 features on HU6800 (lung Michigan) were reduced by 10% to 6,314 features 
(see Table S6). Probe set ids which have no known mapping to a gene symbol were 
left unchanged in the dataset (on average 10% of the probe sets on a chip). This 
probe reduction method is included in the GSEA-P Java package. 

2.2 Description of data sets. 

2.2.1 Gender Dataset. 

This dataset is unpublished (Paulovich et al.) The U133A CEL files were 
scaled using Broad Institute’s ResFileManager software. Different array 
intensities were normalized by choosing a linear fit to the median scan (all 
genes). No further preprocessing was done except for gene probe reduction 
as described in section 2.1 above. 
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2.2.2 P53 NCI-60 Dataset. 

The NCI 60 dataset was downloaded from the DTP website 
(http://dtp.nci.nih.gov/mtargets/download.html). No preprocessing was 
done except for gene probe reduction as described in section 2.1 above. 
 

2.2.3 Leukemia ALL/AML Dataset. 

The Leukemia dataset was downloaded from (1) 
(http://www.broad.mit.edu/cgi-
bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=63). No 
preprocessing was done except for gene probe reduction as described in 
section 2.1 above. 
 

2.2.4 Lung Cancer Datasets 

 
Michigan: The Beer et al. (2) dataset was downloaded from 
http://dot.ped.med.umich.edu:2000/ourimage/pub/Lung/index.html 
No further preprocessing was done except for gene probe reduction as 
described in section 2.1 above. 
 
Boston: The Bhattacharjee et al. (3) dataset was downloaded from 
http://www.broad.mit.edu/cgi-
bin/cancer/publications/pub_paper.cgi?mode=view&paper_id=62. We 
extracted those lung adenocarcinomas samples for which outcome 
information was provided. No further preprocessing was done except for 
gene probe reduction as described in section 2.1 above. 
 
Stanford: The Stanford dataset from Garber et al. (4) was downloaded 
from http://genome-www.stanford.edu/lung_cancer/adeno/data.shtml. 
Missing values were replaced by zeroes. No further preprocessing was 
done except for gene probe reduction as described in section 2.1 above. 

 
3 Additional detail on gene set collections. 
 

• Functional sets (C2, 522 gene sets). The sources for sets in the C2 collection are: 
 

1 BioCarta: http://www.biocarta.com/ 
2 Signaling pathway database: http://www.grt.kyushu-u.ac.jp/spad/menu.html 
3 Signaling gateway: http://www.signaling-gateway.org 
4 Signal transduction knowledge environment: http://stke.sciencemag.org/ 
5 Human protein reference database: http://www.hprd.org/ 
6 GenMAPP: http://www.genmapp.org/ 
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7 Gene ontology: http://www.geneontology.org/ 
8 Sigmal Aldrich pathways: 

http://www.sigmaaldrich.com/Area_of_Interest/Biochemicals/Enzyme_Explo
rer/Key_Resources.html 

9 Gene arrays, BioScience corporation: http://www.superarray.com 
10 Human cancer genome anatomy consortium: http://cgap.nci.nih.gov/ 

 
• Regulatory-motif sets (C3, 57 gene sets). This catalog is based on our recent 

work reporting 57 commonly conserved regulatory motifs in the promoter regions 
of human genes (5). Some of the sites correspond to known transcription-related 
factors (such as SP1 and p53), while others are newly described. For each 8-mer 
motif, we identified the set of human genes that contain at least one occurrence of 
the motif that is conserved in the orthologous location in the human, mouse, rat 
and dog genomes. These gene sets make it possible to link changes in a 
microarray experiment to a conserved, putative cis-regulatory element. 

 
• Neighborhood sets (C4, 427 gene sets). We curated a list of 380 cancer 

associated genes internally and from a published cancer gene database (6). We 
then defined neighborhoods around these genes in four large gene expression 
datasets: 

 
1) Novartis normal tissue compendium (7) 
2) Novartis carcinoma compendium (8) 
3) Global cancer map (9) 
4) An internal large compendium of gene expression datasets including    
    many of our in-house Affymetrix U95 cancer samples (1693 in all)  
    from a variety of cancer projects representing many different tissue  
    types, mainly primary tumors, such as prostate, breast, lung, lymphoma,  
    leukemia, etc. 

 
Using the profile of a given gene as a template, we ordered every other gene in 
the dataset by its Pearson correlation coefficient. We applied a cutoff of R ≥ 0.85 
to extract correlated genes. The calculation of neighborhoods is done 
independently in each compendium. In this way a given oncogene may have up to 
four "types" of neighborhoods according to the correlation present in each 
compendium. Neighborhoods with less than 25 genes at this threshold were 
omitted yielding the final 427 sets. 

 
4 Additional details on the GSEA method 
 
Here we elaborate on some aspects of the GSEA method that are more technical and were 
not described in great amount of detail in the main text due to space constraints. 
 
4.1 Calculation of an enrichment score. 
 
4.1.1 Setting of the enrichment weighting exponent p. In the examples described in the 
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text, and in many other examples not reported, we found that p=1 (weighting by the 
correlation) is a very reasonable choice that allows significant gene sets with less than 
perfect coherence, i.e., only a subset of genes in the set are coordinately expressed, to 
score well. In other less common specific circumstances one may want to use a different 
setting and for this reason the GSEA-P program accepts p as an input parameter. For 
example, if one is interested in penalizing sets for lack of coherence or to discover sets 
with any type of non-random distribution of tags, a value p<1 might be appropriate. On 
the other hand if one uses sets with large number of genes and only a small subset of 
those is expected to be coherent then one could consider using p>1. Our recommendation 
is to use p=1 and use other settings only if you are very experienced with the method and 
its behavior. 
 
4.1.2 Benefits of weighting by gene correlation.  
 
Most gene sets show some amount of coherent behavior but are far from being perfectly 
coherent. For example in Figure SF4 we show the enrichment plot for the set of genes up-
regulated by p53 in the p53 wild type phenotype. This set is one of those that is 
significantly enriched using the current GSEA method. However if we use the original 
constant weight GSEA analysis this set is not significant. This is a problem because we 
would expect such a set to be enriched for the p53 wild type phenotype. From the figure 
we can see that the 40 genes in the set are not uniformly coherent, but rather split into 
two co-expressed groups with some additional scatter. The use of equal weighting tends 
to over-penalize this lack of coherence and does not produce a significant ES for this 
gene set, even though a significant subset of its genes are near the top of the list.  
 
4.2 Multiple Hypothesis Testing. 
 
4.2.1 Adjusting for variation in gene set size. As described in the Appendix of the main 
text, when adjusting for variation in gene set size we normalize the ES(S, π) for a given S, 
separately rescaling the positive and negative scores by dividing by their mean value. 
This yields the normalized scores NES(S, π) and NES(S). 
This gene set size normalization procedure appropriately aligns the null distributions for 
different gene sets and is motivated by the asymptotic multiplicative scaling of the 
Kolmogorov-Smirnov distribution as a function of size (10). Here we will make a brief 
digression to elaborate on this subject. 
 
The analytic form of the Kolmogorov-Smirnov distribution scaling with gene set size can 
be derived from the expectation value of the approximated distribution function of the 
enrichment statistic: 
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where λ is the enrichment score, N is the number of genes in the gene list and NH the 
number of genes in the gene set. The number of terms required for the above series to 
converge depends on! . As !  approaches zero, more terms are required. From the 
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above equation, we can compute the following density function for the enrichment 
statistic 
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Notice the multiplicative scaling of the distribution with n, and for large gene lists (N >> 
NH ) with NH. 
The average enrichment score is simply the expectation (integral from λ = 0 to 1), with 
respect to the above density: 
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Where erf is the "error function" (integral of the normal distribution). 

 
The mean values of the null distribution of enrichment scores computed with this 
approximation are quite consistent with our actual empirical results when using GSEA 
unweighted enrichment scores (p=0). Therefore if we were only performing unweighted 
GSEA and permuting the genes we could analytically compute the normalization factor 
using the equation above. However our standard practice is to use weighting and to 
permute the phenotype labels, therefore this expression is not entirely accurate. 

 
For example when using GSEA weighted scores (p=1) the empirical mean values are 
about 5 times smaller. This expected reduction in “effective” gene set size is the direct 
effect of gene-gene correlations. Notice that these correlations are preserved by the 
phenotype label permutation and are also relevant when using the correlation profiles as 
part of the weighted GSEA enrichment score calculation. Despite the change in the mean, 
the shape of the distribution is still very much the same and multiplicative scaling works 
well empirically for the gene set size normalization. 
 
4.2.2 Computing significance using positive or negative sides of the observed and 
null bimodal ES distributions: As mentioned in the main text the use of a weighted 
enrichments score helps make the current GSEA method more sensitive and eliminates 
some of the limitations of the original GSEA method; however, it also makes more 
apparent any lack of symmetry in the distribution of observed ES values. This intrinsic 
asymmetry can be due to class specific biases either in the gene correlations or in the 
population of the gene set collection itself (Fig. SF1). Specifically, many more genes may 
be highly correlated with one phenotype, or the collection of gene sets may contain more 
that are related to one of the two phenotypes. On the other hand, constructing the null 
using random phenotype assignments tends to produce a more symmetric distribution that 
may not exactly coincide with the bulk, non-extreme part of the distribution of the 
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observed values. To address this, we determine significance and adjust for multiple 
hypotheses testing by independently using the positive and negative sides of the observed 
and null bimodal ES distributions. In this way the significance tests (nominal p-value, 
FWER and FDR) are single tail tests on the appropriate (positive/negative) side of the 
null distribution.  

 
4.2.3 Family Wise Error Rate (FWER). The use of the family-wise-error rate (FWER), 
which controls the probability of a false positive, to correct for MHT in the original 
GSEA method is overly conservative and often yields no statistically significant gene 
sets. For example the analysis results using the original GSEA method do not produce 
any significant set (FWER < 0.05) on either side in the Gender, Leukemia and p53 
examples. Nonetheless the GSEA-P program also computes the family wise error by 
creating a histogram of the maximum NES(S, π) over all S for each π using the positive or 
negative values corresponding to the sign of the observed NES(S). This null distribution 
is then used to compute an FWER p-value. 
 
5 Description of GSEA output. 
 
The output of the GSEA-P software includes a list of the gene sets sorted by their NES 
values along with their nominal and FWER p-values and their FDR q-values.  
 
The GSEA-P R and Java programs compute several additional statistics that may be 
useful to the advanced user: 
 

Tag %: The percentage of gene tags before (for positive ES) or after (for negative 
ES) the peak in the running enrichment score S. The larger the percentage, the 
more tags in the gene set contribute to the final enrichment score. 
 
Gene %: The percentage of genes in the gene list L before (for positive ES) or 
after (for negative ES) the peak in the running enrichment score, thus it gives an 
indication of where in the list the enrichment score is attained. 
 
Signal strength: The enrichment signal strength that combines the two previous 
statistics:  (Tag %) x (1 – Gene %) x (N / (N - Nh) , where N =  the number of 
genes in the list and Nh is the number of genes in the gene set. The larger this 
quantity the more enriched the gene set is as a whole. If the gene set is entirely 
within the first Nh positions in the list, then the signal strength is maximal or 1. If 
the gene set is spread throughout the list, then the signal strength decreases 
towards 0. 
 
FDR (median): An additional FDR q-value computed by using a median null 
distribution. These values are in general more optimistic than the standard FDR q-
values as the median null is a representative of the typical random permutation 
null rather than the extremes. For this reason, we do not recommend it for 
common use. However, the FDR median is sometimes useful as a binary indicator 
function (zero vs. non-zero). When it is zero, it indicates that for those extreme 
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NES values the observed scores are larger than the values obtained by at least half 
of the random permutations. One advantage of selecting gene sets in this manner 
(FDR median = 0) is that a predefined threshold is not required. In practice the 
gene sets selected in this way appear to be roughly the same as those for which 
the regular FDR is less than 0.25. For example in the Leukemia ALL/AML 
example the FDR median is zero for the 5 top scoring sets (4 of which have FDR 
< 0.25). 
 
glob.p.val: A global nominal p-value for each gene set’s NES estimated by the % 
of all (S, π) with NES(S, π) !NES(S). Theoretically, for a given level of 
significance (e.g., 0.05), this quantity measures whether the shift of the tail of the 
distribution of observed values is extreme enough to declare the observed 
distribution as different from the null. In principle it allows us to compute a 
quantitative measure of whether there is any enrichment in the dataset with 
respect to the given database of gene sets.  In practice this quantity behaves in a 
somewhat noisy way because of the sparseness in the tail of the observed 
distribution. 

 
• One set of global reports and plots. They include the scores and significance 

estimates for each gene set, the gene list correlation profile, the global observed 
and null densities and a heat map for the sorted dataset. 

 
• A variable number of specific gene set reports and plots (one for each gene set). 

These include a list of the members of the set and the leading-edge, a gene set 
running enrichment “mountain” plot, the gene set null distribution and a heat map 
for genes in the gene set. 

 
The format (columns) for the global result files is as follows. 

 
GS: Gene set name. 
SIZE: Number of genes in the set. 
SOURCE: Set definition or source. 
ES: Enrichment score. 
NES: Normalized (multiplicative rescaling) normalized enrichment score. 
NOM p-val: Nominal p-value (from the null distribution of the gene set). 
FDR q-val: False discovery rate q-values. 
FWER p-val: Family wise error rate p-values. 
Tag %: Percent of gene set before running enrichment peak. 
Gene %: Percent of gene list before running enrichment peak. 
Signal: Enrichment signal strength. 
FDR (median): FDR q-values from the median of the null distributions. 
glob.p.val: P-value using a global statistic (number of sets above the given set’s 
NES). 

 
The rows are sorted by the NES values (from maximum positive or negative NES to 
minimum). 
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The format (columns) for the individual gene set result files contains the following 
information for each gene in the set: 
 

PROBE_ID: The gene name or accession number in the dataset. 
SYMBOL: gene symbol from the gene annotation file. 
DESC: gene description (title) from the gene annotation file. 
LIST LOC: location of the gene in the sorted gene list. 
S2N: signal to noise ratio (correlation) of the gene in the gene list. 
RES: value of the running enrichment score at the gene location. 
CORE_ENRICHMENT: Yes or No variable specifying if the gene is in the 
leading-edge subset. 
 
The rows are sorted by the gene location in the gene list. 

 
6 Post GSEA analysis: leading-edge subset similarity, clustering, and assignment. 
 
In analyzing the top scoring gene sets resulting from GSEA we may wish to determine 
whether their GSEA signal derives from a common subset of genes. This tells us whether 
we should interpret the sets as representatives of independent processes, or if, in fact, 
they result from the same common mechanism. If we find that this subset of genes 
behaves similarly and coherently we may wish to treat it as a new gene set in one of our 
collections. 
 
In order to make the discovery of such common, overlapping signals with the leading-
edge subsets of high-scoring gene sets, we have created software that reads the GSEA 
results and creates several post-analysis reports and visualizations. The software performs 
the following three basic types of analyses: 
 

i) Creates a similarity matrix heat map that shows at a glance if two gene 
sets’ leading-edge subsets are highly overlapping. 

 
ii) Creates an assignment matrix of gene sets vs. leading-edge genes for each 

phenotype. This binary matrix shows explicitly the membership of each 
gene in each high-scoring gene set and the overlaps between the gene sets. 

 
iii) Performs a hierarchical clustering (using average linkage) and re-sorts the 

genes and gene sets in the assignment matrix according to their similarity 
to create clustered assignment matrices for each phenotype. This 
clustering helps to uncover common occurrences of the same leading-edge 
genes in several gene sets. 

 
As described in the paper we used this program to study the top scoring gene sets 
enriched in the p53 mutant cancer cell lines (see Figure 3).  
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This type of analysis helps in the interpretation of GSEA results and the identification of 
leading-edge overlaps between gene sets that are responsible for high enrichment scores. 
If applied systematically it can also provide a method for refining genes sets and creating 
new ones. 
 
7 Original GSEA method from Mootha et al. 2003. 
 
Here we described the original GSEA method as defined in Mootha et al. 2003. 
 

Step 1: Calculate enrichment. We set the constant step size of the walk, so that 
it begins and ends with 0, and the area under the running sum is fixed to account 
for variations in gene set size. We walk down the list L, incrementing the running 
sum statistic by 

 
N ! N

h
( ) N

h
when we encounter a gene in S and 

decrementing by 
 

N
h

N ! N
h

( ) if the gene is not in S, where N is the number of 

genes in the list L, and 
 
N

h
 is the number of genes in the gene set S. The 

maximum deviation from zero is the enrichment score (ES) for the gene set S, and 
corresponds to a standard Kolmogorov-Smirnov statistic (11). 
 
Step 2: Determine the significance of ES. We permuted the phenotype labels 
and re-computed the ES of a gene set to generate a null distribution of ES. Using 
this null we computed an empirical, nominal P-value for the observed ES. 
 
Step 3: Adjust for multiple hypothesis testing (MHT). When scoring multiple 
gene sets we constructed a null distribution to estimate the family-wise-error rate 
(FWER) by constructing a histogram of the maximum ES score achieved by any 
gene set for a given permutation of the phenotype labels. The FWER provides a 
very conservative correction, which controls the probability of even a single false 
positive. 
 

Notice that except for the normalization procedure (and the use of FDR instead of 
FWER) the current GSEA method with p=0 is quite similar to this original GSEA 
method. 
 
8 GSEA-P R program. 
 

The R scripts and data which produced the results and figures in this paper are 
available at www.broad.mit.edu/GSEA. 
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Table S1



GENE SET SOURCE ES NES NOM p-val FDR q-val
Dataset: Lymphoblast Cell Lines

Enriched in Males
chrY C1: Chromosome Y -0.78 -2.37 <0.001 <0.001
chrYp11 C1: Cytogenetic band -0.76 -2.14 <0.001 <0.001
chrYq11 C1: Cytogenetic band -0.89 -2.13 <0.001 <0.001
chr9q21 C1: Cytogenetic band -0.43 -1.53 0.035 0.630
chr6q24 C1:Cytogenetic band -0.53 -1.44 0.086 1.000
chr13q13 C1:Cytogenetic band -0.45 -1.40 0.090 1.000
chr11q22 C1:Cytogenetic band -0.44 -1.39 0.094 1.000
chr2q32 C1:Cytogenetic band -0.46 -1.33 0.139 1.000
chr1q24 C1:Cytogenetic band -0.39 -1.31 0.111 1.000
chr5p13 C1:Cytogenetic band -0.40 -1.31 0.150 1.000
chr5p15 C1:Cytogenetic band -0.37 -1.26 0.154 1.000
chr2q24 C1:Cytogenetic band -0.44 -1.26 0.238 1.000
chr21q22 C1:Cytogenetic band -0.31 -1.25 0.150 1.000
chr17p11 C1:Cytogenetic band -0.37 -1.24 0.172 1.000
chr21 C1: Chromosome Y -0.30 -1.24 0.164 1.000
chr8p12 C1: Cytogenetic band -0.37 -1.23 0.165 1.000
chr3p25 C1: Cytogenetic band -0.36 -1.23 0.201 1.000
chr9q34 C1: Cytogenetic band -0.30 -1.21 0.211 1.000
chr4q13 C1: Cytogenetic band -0.39 -1.20 0.245 1.000
chr7p21 C1: Cytogenetic band -0.41 -1.19 0.262 1.000

Testis expressed genes C2: Experimental GNF -0.61 -1.99 <0.001 0.012
Butanoate metabolism C2: GenMAPP -0.52 -1.56 0.035 1.000
nfkb reduced C2: Hinata et al 2003 -0.55 -1.46 0.068 1.000
lair pathway C2: BioCarta -0.47 -1.43 0.059 1.000
Kras upregulated (A549) C2: Cordero et al 2005 -0.35 -1.39 0.051 1.000
Androgen receptor target genes C2: Curated from NetAffx -0.37 -1.38 0.043 1.000
Androgen receptor target genes (mouse) C2: Manually curated -0.37 -1.38 0.043 1.000
shh pathway C2: BioCarta -0.49 -1.38 0.090 1.000
Wnt Ca2 cyclic GMP pathway C2: Signalling Transduction KE -0.48 -1.37 0.127 1.000
CD44 ligation upregulated genes C2: Hogerkorp et al 2003 -0.46 -1.35 0.107 1.000
Cancer related cell adhesion and motlity genes C2: Brentani 2003 -0.33 -1.32 0.103 1.000
gata3 pathway C2: BioCarta -0.42 -1.31 0.117 1.000
Epithelial-mesenchymal transition (EMT) down C2: Jechlinger et al 2003 -0.39 -1.30 0.151 1.000
Androgen and testosterone target genes C2: Curated from NetAffx -0.33 -1.28 0.100 1.000
Androgen genes C2: Netaffx -0.32 -1.21 0.170 1.000
cell adhesion C2: GO -0.30 -1.21 0.186 1.000
Inflammatory response pathway C2: BioCarta -0.38 -1.20 0.243 1.000
GPCRs class B secretin-like C2: GO -0.40 -1.20 0.241 1.000
Cell signal transduction C2: Signalling Transduction KE -0.33 -1.19 0.207 1.000
inflammatory pathway C2: BioCarta -0.38 -1.19 0.226 1.000

Enriched in Females
chrXp22 C1: Cytogenetic band 0.39 1.54 0.013 1.000
chr6q15 C1: Cytogenetic band 0.55 1.53 0.046 1.000
chr8q11 C1: Cytogenetic band 0.56 1.50 0.059 0.905
chr8p11 C1: Cytogenetic band 0.49 1.50 0.055 0.691
chr12q23 C1: Cytogenetic band 0.49 1.48 0.062 0.646
chr13q14 C1: Cytogenetic band 0.38 1.31 0.144 1.000
chrXq23 C1: Cytogenetic band 0.48 1.29 0.175 1.000
chr10q11 C1: Cytogenetic band 0.37 1.26 0.168 1.000
chr2q31 C1: Cytogenetic band 0.35 1.26 0.156 1.000
chr4q22 C1: Cytogenetic band 0.45 1.24 0.195 1.000
chrXp11 C1: Cytogenetic band 0.31 1.23 0.149 1.000
chr3q29 C1: Cytogenetic band 0.43 1.23 0.219 1.000
chr8p23 C1: Cytogenetic band 0.38 1.17 0.251 1.000
chr20p12 C1: Cytogenetic band 0.34 1.16 0.257 1.000
chr16p12 C1: Cytogenetic band 0.35 1.10 0.317 1.000
chr1p34 C1: Cytogenetic band 0.28 1.06 0.400 1.000
chr13q12 C1: Cytogenetic band 0.30 1.04 0.405 1.000
chr2q14 C1: Cytogenetic band 0.33 1.04 0.411 1.000
chr5q14 C1: Cytogenetic band 0.34 1.04 0.396 1.000
chr11p11 C1: Cytogenetic band 0.31 1.04 0.409 1.000
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X  inactivation genes C2: Willard et al 1999 & Disteche et al 2002 0.80 2.29 <0.001 <0.001
Female reproductive tissue expressed genes C2: Experimental GNF 0.48 1.89 0.013 0.045
Cell cycle arrest C2: GO 0.54 1.66 0.015 0.557
tel pathway C2: BioCarta 0.58 1.61 0.023 0.643
Insulin upregulated C2: Rome et al 2003 0.48 1.61 0.030 0.546
mRNA splicing C2: BioCarta 0.60 1.56 0.056 0.657
Proteasome degradation C2: BioCarta 0.64 1.52 0.095 0.776
Leucine deprivation downregulated genes C2: Peng et al 2002 0.54 1.52 0.109 0.717
Rapamycin downregulated genes C2: Peng et al 2002 0.52 1.50 0.127 0.699
Proteasome pathway C2: BioCarta 0.68 1.48 0.093 0.739
Dictyostelium discoideum cAMP chemotaxis pathway C2: Signalling Transduction KE 0.46 1.47 0.066 0.750
Glutamine deprivation downregulated genes C2: Peng et al 2002 0.48 1.44 0.166 0.832
mRNA processing C2: BioCarta 0.55 1.42 0.159 0.879
G1 and S phases C2: SigmaAldrich 0.51 1.37 0.121 1.000
rho pathway C2: BioCarta 0.45 1.36 0.152 1.000
mtor pathway C2: BioCarta 0.52 1.36 0.149 1.000
Cell cycle pathway C2: BioCarta 0.51 1.34 0.160 1.000
raccycd pathway C2: BioCarta 0.50 1.30 0.236 1.000
TCA tricarboxylic acid cycle C2: Manually Curated 0.61 1.29 0.234 1.000
ATP synthesis C2: GenMAPP 0.44 1.27 0.204 1.000

GENE SET SOURCE ES NES NOM p-val FDR q-val
Dataset: p53 status in NCI-60 Cell Lines

Enriched in p53 Mutant
Ras signaling pathway C2: BioCarta 0.60 1.89 0.002 0.171
ngf pathway C2: BioCarta 0.59 1.79 0.002 0.295
Upregulated by hoxa9 C2: Manually Curated 0.58 1.76 0.011 0.275
igf1 pathway C2: BioCarta 0.56 1.74 0.008 0.257
X  inactivation genes C2: Willard et al 1999 & Disteche et al 2002 0.61 1.65 0.035 0.487
egf pathway C2: BioCarta 0.48 1.60 0.024 0.609
insulin pathway C2: BioCarta 0.49 1.56 0.023 0.697
MAPK cascade C2: GO 0.49 1.55 0.016 0.648
BRCA upregulated C2: Welcsh_et_al_2002 0.46 1.55 0.036 0.599
wrk1, erk2, mapk pathway C2: Signalling Transduction KE 0.44 1.55 0.024 0.541
nfkb reduced C2: Hinata et al 2003 0.58 1.52 0.051 0.600
gcr pathway C2: BioCarta 0.50 1.50 0.053 0.635
pitx2 pathway C2: BioCarta 0.52 1.48 0.069 0.687
erk pathway C2: BioCarta 0.44 1.47 0.046 0.652
B cell receptor complexes SigmaAldrich 0.45 1.47 0.044 0.622
bcr pathway C2: BioCarta 0.43 1.46 0.035 0.609
pdgf pathway C2: BioCarta 0.45 1.45 0.075 0.606
Phosphoinositide 3 kinase pathway C2: Signalling Transduction KE 0.40 1.45 0.046 0.584
Proteasome pathway C2: BioCarta 0.55 1.45 0.121 0.561
fmlp pathway C2: BioCarta 0.38 1.40 0.063 0.710

Enriched in p53 Wild Type
Hypoxia and p53 in the Cardiovascular system C2: BioCarta -0.68 -2.21 <0.001 <0.001
Stress induction of HSP regulation C2: BioCarta -0.78 -2.20 <0.001 <0.001
p53 signaling pathway C2: BioCarta -0.75 -2.18 <0.001 <0.001
p53 upregulated genes C2: Kannan et al 2001 -0.60 -2.02 <0.001 0.013
Radiation sensitivity genes C2: BioCarta -0.57 -1.86 0.002 0.078
ck1 pathway C2: BioCarta -0.54 -1.64 0.027 0.495
inflammatory pathway C2: BioCarta -0.54 -1.62 0.029 0.477
no2il12 pathway C2: BioCarta -0.63 -1.62 0.041 0.434
GPCRs Class A Rhodopsin-like C2: GO -0.43 -1.55 0.040 0.608
bad pathway C2: BioCarta -0.47 -1.54 0.044 0.575
Cytokine pathway C2: BioCarta -0.54 -1.54 0.055 0.539
lair pathway C2: BioCarta -0.57 -1.53 0.048 0.510
p53 signalling C2: BioCarta -0.34 -1.52 0.013 0.513
Chemical pathway C2: BioCarta -0.46 -1.50 0.044 0.534
Glycerolipid_metabolism C2: GenMAPP -0.42 -1.48 0.048 0.567
Interleukin 4 pathway C2: Signalling Transduction KE -0.40 -1.39 0.076 0.848
Photosynthesis C2: GenMAPP -0.56 -1.39 0.164 0.814
nkt pathway C2: BioCarta -0.43 -1.38 0.124 0.798
Cell adhesion receptor activity C2: GO -0.40 -1.37 0.081 0.769
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Telomerase downregulated genes C2: Smith et al 2003 -0.34 -1.35 0.093 0.842

GENE SET SOURCE ES NES NOM p-val FDR q-val
Dataset: Acute Leukemias

Enriched in ALL
chr6q21 C1: Cytogenetic band 0.66 2.07 <0.001 0.011
chr5q31 C1: Cytogenetic band 0.50 1.91 <0.001 0.046
chr13q14 C1: Cytogenetic band 0.57 1.87 <0.001 0.057
chr14q32 C1: Cytogenetic band 0.47 1.81 0.006 0.082
chr17q23 C1: Cytogenetic band 0.53 1.81 0.017 0.071
chr1q42 C1: Cytogenetic band 0.49 1.61 0.057 0.355
chr6 C1: Chromosome 6 0.32 1.59 0.017 0.354
chr10q24 C1: Cytogenetic band 0.45 1.58 0.010 0.319
chr3q13 C1: Cytogenetic band 0.46 1.54 0.024 0.391
chr10p15 C1: Cytogenetic band 0.49 1.49 0.052 0.470
chr13 C1: Chromosome 13 0.34 1.47 0.039 0.492
chr6p21 C1: Cytogenetic band 0.35 1.46 0.092 0.483
chr6p22 C1: Cytogenetic band 0.37 1.44 0.100 0.504
chr4p16 C1: Cytogenetic band 0.38 1.43 0.075 0.512
chr14 C1: Chromosome 14 0.31 1.42 0.069 0.508
chr1q25 C1: Cytogenetic band 0.43 1.41 0.083 0.489
chr6q23 C1: Cytogenetic band 0.46 1.41 0.097 0.472
chr10q25 C1: Cytogenetic band 0.50 1.40 0.096 0.458
chr8p11 C1: Cytogenetic band 0.45 1.40 0.090 0.437
chr17q24 C1: Cytogenetic band 0.46 1.40 0.095 0.417

Enriched in AML
chr15q25 C1: Cytogenetic band -0.43 -1.47 0.042 1.000
chr1q24 C1: Cytogenetic band -0.42 -1.43 0.067 1.000
chr7q36 C1: Cytogenetic band -0.40 -1.29 0.189 1.000
chr17q25 C1: Cytogenetic band -0.31 -1.25 0.150 1.000
chr7q34 C1: Cytogenetic band -0.41 -1.23 0.208 1.000
chr19p13 C1: Cytogenetic band -0.28 -1.23 0.213 1.000
chr4q13 C1: Cytogenetic band -0.34 -1.22 0.200 1.000
chr15q22 C1: Cytogenetic band -0.38 -1.22 0.217 1.000
chr2q35 C1: Cytogenetic band -0.35 -1.22 0.220 1.000
chr16p11 C1: Cytogenetic band -0.36 -1.19 0.284 1.000
chr12p13 C1: Cytogenetic band -0.28 -1.15 0.254 1.000
chr20p11 C1: Cytogenetic band -0.37 -1.13 0.288 1.000
chr19q13 C1: Cytogenetic band -0.25 -1.11 0.324 1.000
chr1p36 C1: Cytogenetic band -0.24 -1.07 0.357 1.000
chr19 C1: Chromosome 19 -0.23 -1.07 0.376 1.000
chr11q24 C1: Cytogenetic band -0.32 -1.05 0.401 1.000
chr18p11 C1: Cytogenetic band -0.30 -1.04 0.394 1.000
chr2p13 C1: Cytogenetic band -0.30 -1.03 0.418 1.000
chr11q12 C1: Cytogenetic band -0.25 -0.99 0.475 1.000
chr15q26 C1: Cytogenetic band -0.30 -0.98 0.508 1.000

GENE SET SOURCE ES NES NOM p-val FDR q-val
Dataset: Lung Cancer Outcome, Boston Study

Top 20 Poor Outcome Gene Sets
Hypoxia and p53 in the Cardiovascular system C2: BioCarta -0.67 -2.03 0.000 0.050
Aminoacyl tRNA biosynthesis C2: GenMAPP -0.77 -1.88 0.008 0.144
Insulin upregulated genes C2: Rome et al 2003 -0.51 -1.86 0.002 0.118
tRNA synthetases C2: BioCarta -0.75 -1.80 0.010 0.157
Leucine deprivation downregulated genes C2: Peng et al 2002 -0.58 -1.78 0.026 0.144
Telomerase upregulated genes C2: Smith et al 2003 -0.44 -1.77 0.004 0.128
Glutamine deprivation downregulated genes C2: Peng et al 2002 -0.51 -1.74 0.024 0.146
Cell cycle checkpoint C2: GO -0.57 -1.67 0.013 0.216
Proteasome pathway C2: BioCarta -0.69 -1.63 0.052 0.262
Proteasome degradation C2: BioCarta -0.58 -1.56 0.079 0.360
Rapamycin downregulated genes C2: Peng et al 2002 -0.44 -1.51 0.087 0.450
p53 signalling C2: BioCarta -0.40 -1.47 0.035 0.526
Kras upregulated (A549) C2: Sweet-Cordero et al 2005 -0.42 -1.47 0.061 0.493
Epithelial-mesenchymal transition (EMT) C2: Jechlinger et al 2003 -0.45 -1.46 0.094 0.482
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Cell cycle (GO) C2: GO -0.45 -1.41 0.137 0.591
Starch and sucrose metabolism C2: GenMAPP -0.47 -1.40 0.112 0.570
Transport of vesicles C2: Brentani 2003 -0.45 -1.40 0.098 0.542
Glucose deprivation downregulated genes C2: Peng et al 2002 -0.37 -1.37 0.137 0.586
vegf pathway C2: BioCarta -0.45 -1.37 0.098 0.575
Glycolysis C2: Manually Curated -0.49 -1.36 0.146 0.549

GENE SET SOURCE ES NES NOM p-val FDR q-val
Dataset: Lung Cancer Outcome, Michigan Study

Top 20 Poor Outcome Gene Sets
Glycolysis Gluconeogenesis C2: GenMAPP -0.61 -2.13 <0.001 0.006
vegf pathway C2: BioCarta -0.67 -2.01 <0.001 0.028
Insulin upregulated genes C2: Rome et al 2003 -0.53 -1.88 0.004 0.147
Insulin signalling C2: BioCarta -0.41 -1.83 <0.001 0.170
Telomerase upregulated genes C2: Smith et al 2003 -0.50 -1.80 0.006 0.188
Glutamate metabolism C2: GenMAPP -0.62 -1.77 0.011 0.200
Ceramide pathway C2: BioCarta -0.57 -1.75 0.004 0.204
p53 signalling C2: BioCarta -0.44 -1.75 <0.001 0.179
tRNA synthetases C2: BioCarta -0.67 -1.70 0.025 0.225
Breast cancer estrogen signalling C2: GEArray -0.40 -1.68 0.008 0.250
Aminoacyl tRNA biosynthesis C2: GenMAPP -0.66 -1.68 0.024 0.229
raccycd pathway C2: BioCarta -0.53 -1.64 0.018 0.291
cxcr4 pathway C2: BioCarta -0.54 -1.63 0.008 0.284
mtor pathway C2: BioCarta -0.55 -1.59 0.042 0.338
bcl2 family and reg. network C2: GEArray -0.51 -1.59 0.044 0.329
Glucose metabolism C2: Manually Curated -0.53 -1.57 0.052 0.339
Transport of vesicles C2: Brentani 2003 -0.49 -1.55 0.056 0.381
sppa pathway C2: BioCarta -0.52 -1.52 0.048 0.424
Leucine deprivation downregulated genes C2: Peng et al 2002 -0.48 -1.52 0.104 0.417
Glycolysis C2: Manually Curated -0.56 -1.50 0.067 0.423

GENE SET SOURCE ES NES NOM p-val FDR q-val
Dataset: Lung Cancer Outcome, Stanford Study

Top 20 Poor Outcome Gene Sets
Pyrimidine metabolism C2: GenMAPP -0.49 -1.45 0.073 1.000
Purine metabolism C2: GenMAPP -0.40 -1.38 0.084 1.000
DNA repair C2: Brentani 2003 -0.47 -1.33 0.152 1.000
Kras upregulated (A549) C2: Sweet-Cordero et al 2005 -0.35 -1.26 0.140 1.000
Hox regulated genes C2: Manually Curated -0.38 -1.22 0.208 1.000
ER upregulated genes C2: Frasor et al 2004 -0.42 -1.22 0.233 1.000
Fatty acid metabolism C2: GenMAPP -0.37 -1.21 0.203 1.000
CD44 ligation upregulated genes C2: Hogerkorp et al 2003 -0.40 -1.15 0.299 1.000
Caspase pathway C2: BioCarta -0.39 -1.10 0.331 1.000
Androgen genes C2: Manually Curated -0.31 -1.10 0.311 1.000
Mitochondrial genes C2: Manually Curated -0.28 -1.07 0.402 1.000
Human mitocondrial C2: Manually Curated -0.29 -1.06 0.425 1.000
Cell cycle C2: Brentani 2003 -0.33 -1.05 0.421 1.000
Propanoate metabolism C2: GenMAPP -0.36 -1.03 0.432 1.000
Rapamycin downregulated genes C2: Peng et al 2002 -0.30 -1.02 0.448 1.000
Cell cycle (GO) C2: GO -0.34 -1.02 0.431 1.000
Valine leucine and isoleucine degradation C2: GenMAPP -0.37 -1.01 0.449 1.000
Mitochondrion (GO 0005739) C2: GO -0.28 -1.01 0.445 1.000
Electron transport C2: BioCarta -0.27 -0.98 0.470 1.000
Proteasome degradation C2: BioCarta -0.36 -0.97 0.497 1.000
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Table S3

Table S4



Gene Set Dataset(s) Rank(s) in List Pathway Process/Context Major Response/Theme

Telomerase upregulated genes Michigan, Boston 5, 6 Telomerase Telomerase Telomerase

Cell cycle (GO) Boston, Stanford 15, 16 Cell Proliferation Cell Proliferation rapid cell proliferation
Cell cycle checkpoint Boston 8 Cell Proliferation Cell Proliferation rapid cell proliferation
Cell cycle Stanford 13 Cell Proliferation Cell Proliferation rapid cell proliferation

vegf pathway Michigan, Boston 2, 19 vegf Signaling Angiogenesis rapid cell proliferation

Glycolysis Michigan, Boston 20, 20 Glycolisis Glycolysis rapid cell proliferation
Glycolysis Gluconeogenesis Michigan 1 Glycolysis Glycoyisis rapid cell proliferation

Glucose metabolism Michigan 16 Glucose Metabolism Carbohydrate Metabolism rapid cell proliferation
Glucose deprivation downregulated genes Boston 18 Glucose Metabolism Carbohydrate Metabolism rapid cell proliferation
Starch and sucrose metabolism Boston 16 Starch And Sucrose Metabolism Carbohydrate Metabolism rapid cell proliferation
Propanoate metabolism Stanford 14 Propanoate Metabolism Carbohydrate Metabolism rapid cell proliferation

Insulin upregulated genes Michigan, Boston 3, 3 Insulin Up Regulated Insulin Signaling rapid cell proliferation
Insulin signalling Michigan 4 Insulin Signaling Insulin Signaling rapid cell proliferation

Proteasome degradation Boston, Stanford 10, 20 Proteasome Degradation Protein Degradation rapid cell proliferation
Proteasome pathway Boston 9 Proteasome Pathway Protein Degradation rapid cell proliferation

Kras upregulated (A549) Boston, Stanford 13, 4 Ras Signaling Ras/MAPK Signaling rapid cell proliferation
raccycd pathway Michigan 12 Ras Signaling Ras/MAPK Signaling rapid cell proliferation

Ceramide pathway Michigan 7 Ceramide Signaling Ceramide Signaling rapid cell proliferation

Glutamine deprivation downregulated genes Boston 7 Glutamine Metabolism Amino Acid Metabolism Rapamycin/Biosynthesis
Leucine deprivation downregulated genes Michigan, Boston 19, 5 Leucine Starvation Down Regulated Amino Acid Metabolism Rapamycin/Biosynthesis
Glutamate metabolism Michigan 6 Glutamate Metabolism Amino Acid Metabolism Rapamycin/Biosynthesis
Valine leucine and isoleucine degradation Stanford 17 Valine, Isoleucine Degradation Amino Acid Metabolism Rapamycin/Biosynthesis
Aminoacyl tRNA biosynthesis Michigan, Boston 11, 2 tRNA Synthesis Amino Acid Metabolism Rapamycin/Biosynthesis
tRNA synthetases Michigan, Boston 9, 4 tRNA Synthesis Amino Acid Metabolism Rapamycin/Biosynthesis

Fatty acid metabolism Stanford 7 Fatif Acid Metabolism Fatif Acid Metabolism Rapamycin/Biosynthesis

Purine metabolism Stanford 2 Purine Metabolism Nucleotide Metabolism Rapamycin/Biosynthesis
Pyrimidine metabolism Stanford 1 Pyrimidine Metabolism Nucleotide Metabolism Rapamycin/Biosynthesis

CD44 ligation upregulated genes Stanford 8 Chemokine Signaling Immune Modulation Rapamycin/Biosynthesis
cxcr4 pathway Michigan 13 Chemokine Signaling Immune Modulation Rapamycin/Biosynthesis

mtor pathway Michigan 14 mTOR Signaling mTOR Signaling Rapamycin/Biosynthesis
Rapamycin downregulated genes Boston, Stanford 11, 15 mTOR Signaling mTOR Signaling Rapamycin/Biosynthesis

Androgen genes Stanford 10 Androgen Androgen Signaling --



DNA repair Stanford 3 DNA Repair DNA Repair --

Breast cancer estrogen signalling Michigan 10 Estrogen Signaling Estrogen Signaling --
ER upregulated genes  Stanford 6 Estrogen Signaling Estrogen Signaling --

Hox regulated genes Stanford 5 Hox Associated Genes Hox Signaling --

sppa pathway Michigan 18 Signaling Pathway in Platelet Activation Platelet Activation --

Transport of vesicles Michigan,Boston 17,17 Vesicles Transport Vesicles Transport --

Hypoxia and p53 in the Cardiovascular system Boston 1 P53 Signaling in Hypoxia Apoptosis --
p53 signalling Michigan, Boston 8, 12 P53 Signaling Apoptosis --
Caspase pathway Stanford 9 Caspase Cascade Apoptosis --

Epithelial-mesenchymal transition (EMT) Boston 14 EM transition Cell Migration/Metastesis --

Mitochondrion (GO 0005739) Stanford 18 Mitochondrial Cell Respiration --
Mitochondrial genes Stanford 11 Mitochondrial Cell Respiration --
Human mitocondrial Stanford 12 Mitochondrial Cell Respiration --
Electron transport Stanford 19 electron transport Cell Respiration --

bcl2 family and reg. network Michigan 15 BCL2 Signaling BCL2 Signaling --
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