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Abstract In this chapter we characterize the role of b, which is the constant in
the standard form of the solution provided by the Support Vector Ma-
chine technique f(x) =

� `
i=1 αiK(x,xi) + b, which is a special case of

Regularization Machines. In the process, we describe properties of Re-
producing Kernel Hilbert Spaces induced by different classes of kernels.
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Introduction

Support Vector Machines (SVMs), originally introduced by Vapnik
[Vapnik, 1995] in the context of Statistical Learning Theory, can be
shown to be a special case of a regularization approach [Tikhonov and
Arsenin, 1977] to the ill-posed problem of regression or classification
from sparse and finite data [Evgeniou et al, 2000, Wahba, 1990]. The
derivation of [Evgeniou et al, 2000, Girosi et al, 1990] makes it clear
that SVMs and a large body of different learning and approximation
techniques, known as Regularization Networks (RNs) [Girosi et al, 1995],
can be obtained from the same general principles. Note that in the past
[Evgeniou et al, 2000, Girosi et al, 1995] we have used the term RN
to indicate the networks arising from regularization techniques, mainly
involving the (classical) quadratic loss function. In this paper we use
the term RN exclusively for the subset of regularization machines (RM)
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techniques that involve a quadratic loss functions and call Regularization
Machines the broader set of techniques (see equation 1.1 later) that
includes SVMs and RNs as special cases.

The aim of this chapter1 is to clarify the role of b, the constant term
in the solution to the learning problem obtained in the standard deriva-
tion of SVMs due to Vapnik [Vapnik, 1995] and found also in some
RNs. These issues might have some impact for a) exploring the theoret-
ical connection between SVMs, RNs, and other techniques (see [Girosi,
1998] for some of the difficulties arising in the connection between SVMs
for regression and a special version of Basis Pursuit Denoising) and b)
for developing efficient algorithms for SVMs. In the process, we will
characterize properties of a Reproducing Kernel Hilbert Space (RKHS)
induced by positive definite and conditionally positive definite kernels.

This chapter is organized as follows: we motivate this study in section
1, present our analysis in section 2, and then list remarks and conclu-
sions. Throughout the chapter we assume some familiarity with both
SVMs and RNs as presented in [Evgeniou et al, 2000].

1. Motivation

Given ` training pairs {(x1, y1), ..., (x`, y`)} a regularized solution –
that we call a Regularization Machine – to the learning problem is found
by minimizing the following functional for fixed λ

I[f ] =
1

`

∑̀

i=1

V (yi, f(xi)) + λ‖f‖2K (1.1)

corresponding to the minimization of the empirical loss – the first term
– under capacity control – the second term. The choice of the loss func-
tion V determines the learning scheme. In classical (quadratic) Regu-
larization Networks: V (yi, f(xi)) = (yi−f(xi))

2, in SVM Classification:
V (yi, f(xi)) = |1 − yif(xi)|+ where |x|+ = max{x, 0}, and in SVM Re-
gression: V (yi, f(xi)) = |yi − f(xi)|ε where |x|ε ≡ max{0, |x| − ε} is
called ε-insensitive loss.
The term ‖f‖K is the norm of the function f in the RKHS induced by a
positive definite kernel K [Aronszajn, 1950, Wahba, 1990]. It has been
known for some time (see [Girosi and Poggio, 1990] and for an unusually
elegant proof [Schölkopf et al, 2001]) that the minimizer of I[f ] for rather
general V (·) and in particular for RNs [Wahba, 1990, Girosi et al, 1995]
and SVMs [Vapnik, 1998, Girosi, 1998, Evgeniou et al, 2000, Lin et al,
2000] belongs to the RKHS induced by K and can be written as

1Besides entering the Guinness Book of World Records for the shortest title.
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f(x) =
∑̀

i=1

αiK(x,xi)

for some coefficients αi which depend on the ` examples and on λ. In the
original formulation of SVMs due to Vapnik, the minimizer is actually
written as

f(x) =
∑̀

i=1

αiK(x,xi) + b (1.2)

with − 1
2λ` ≤ αi ≤ 1

2λ` and

∑̀

i=1

αi = 0. (1.3)

The offset parameter b is estimated (like the coefficients αi) from the
` examples. From the dual formulation of the optimization problem of
SVMs (see for example [Vapnik, 1995]), it can be seen that the equal-
ity constraint (1.3) is induced2 by the form of the solution assumed in
equation (1.2).

The case of standard RNs (quadratic V ) is well known (see [Wahba,
1990] or [Girosi and Poggio, 1990]). If the kernel is a positive def-
inite function (i.e., in the case of Gaussian Radial Basis Functions)
one chooses the solution in the linear span of the RKHS written as
f(x) =

∑`
i=1 αiK(x,xi) without any constraint on the αi. If the ker-

nel is a conditionally positive definite function of order 1 (i.e., in the
case of piecewise linear splines) a constant term, b, is added to the

solution which becomes f(x) =
∑`

i=1 αiK(x,xi) + b, subject to the
same constraint (1.3). As shown in [Evgeniou et al, 2000] the solution

f(x) =
∑`

i=1 αiK(x,xi) + b with the constant b (and the equality con-
straint in (1.3)) can be used also in the case of a positive definite kernel
K3

This chapter is devoted to answering the following questions: When
should b be used? Is there a choice of using or not using b? What does
the choice mean? Are the answers different for RNs and SVMs? How
does this relate to properties of the kernel K?

2This property of b was not discussed in [Vapnik, 1995].
3This choice – rather than the usual one without b – effectively corresponds to a different
(semi)norm and to a different RKHS. Equation (4.10) in [Evgeniou et al, 2000] is incorrect and
should be replaced with (K′+lλI)α+1b = (K+lλI)α+1b = y. The key equation (4.12) and
the conclusions are however correct. This error (noticed by Steve Smale) propogates throught
several other equations in [Evgeniou et al, 2000] rendering them incorrect and confusing: λ
should be replaced by λl in Equations (4.3, 4.6, 4.19).
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2. Analysis

2.1 Definitions

First we define (conditional) positive definiteness of kernels. More
properties of shift invariant kernels, K(x, y) = K(x − y), can be found
in [Schoenberg, 1998, Berg et al, 1984, Micchelli, 1986].

Let X be some set, for example a subset of IRd or IRd itself. A kernel
is a symmetric function K : X ×X → IR.

Definition 2.1

A kernel K(t, s) is positive definite (pd) if
∑n

i,j=1 cicjK(ti, tj) ≥ 0 for
any n ∈ IN and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ IR.

An equivalent definition could be given in terms of positive semidefi-
niteness of the matrix Kij = K(ti, tj). A pd kernel is strictly positive
definite if for any distinct vectors t1, ..., tn ∈ X the above inequality
holds strictly when the ci are not all zero (in that case the matrix Kij

is positive definite and not just positive semidefinite).

Definition 2.2

A kernel K(t, s) is conditionally positive definite (cpd) of order 1 if∑n
i,j=1 cicjK(ti, tj) ≥ 0 for any n ∈ IN and choice of t1, ..., tn ∈ X

and c1, ..., cn ∈ IR subject to the constraint
∑n

i=1 ci = 0. It is strictly
conditionally positive definite if

∑n
i,j=1 cicjK(ti, tj) > 0.

2.2 Integral operators

We consider the integral operator LK on L2(X, ν) defined by∫

X
K(x,x′)f(x′)dν(x′) = g(x) (1.4)

where X is a compact subset of IRn and ν a Borel measure. We assume
K to be continuous. Thus the integral operator is compact [Cucker and
Smale, 2001]. Note that K pd (definition 2.1) is equivalent [Mercer,
1909] to LK positive that is∫

X
K(t, s)f(t)f(s)dν(t)dν(s) ≥ 0 (1.5)

for all f ∈ L2(X, ν).

2.3 Mercer’s theorem

The key tool in our analysis is the result published by Mercer in 1909
[Mercer, 1909, Courant and Hilbert, 1962].

Theorem 2.1 A symmetric, pd kernel K : X × X → IR, with X a
compact subset of IRn has the expansion
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K(x,x′) =
∞∑

q=1

µqφq(x)φq(x
′) (1.6)

where the convergence is in L2(X, ν). If the measure ν on X is non-
degenerate in the sense that open sets have positive measure everywhere,
then the convergence is absolute and uniform and the φ(x) are continuous
on X (see [Cucker and Smale, 2001] and Smale, pers. comm.). The φq
are the orthonormal eigenfunctions of the integral equation∫

X
K(x,x′)φ(x)dν(x) = µφ(x′). (1.7)

Using Mercer’s theorem we distinguish three cases, depending on the
properties of the kernel.

1 Strictly positive case: the kernel is strictly pd and all eigenvalues
(note that there are an infinite number of eigenvalues) of the inte-
gral operator LK are strictly positive.

2 Degenerate case: the kernel K(t, s) positive definite but only a
finite number of eigenvalues of the integral operator LK are strictly
positive, the rest being zero (see [Courant and Hilbert, 1962]).

3 Conditionally strictly positive case: the kernel K(t, s) is condition-
ally positive definite and all the eigenvalues of the integral operator
LK are positive with only a finite number being non-positive. No-
tice that for cpd kernels, the kernel K can be made into a positive
definite kernel K ′ by subtracting the terms µqφq(x)φq(x

′) belong-
ing to negative eigenvalues [Courant and Hilbert, 1962].

2.4 Reproducing Kernel Hilbert Spaces

The RKHS induced by K is equivalent (see [Cucker and Smale, 2001])
to the Hilbert space of the functions spanned by Φ = {φ1(x), ...},

f(x) =
∞∑

i=1

cqφq(x),

equipped with the scalar product < f, g >=
∑∞

i=1
cqdq
µq

where f(x) =∑∞
i=1 cqφq(x) and g(x) =

∑∞
i=1 dqφq(x), and finite norm in the RKHS

‖f‖2K =
∑∞

q=1 c
2
q/µq, where the sums for the norm and scalar products

are over terms with nonzero µq. Note that it is possible to prove directly
that the RKHS is independent of the measure ν (assumed positive ev-
erywhere), as observed by Smale and Cucker (though the φ(x) and the
µq in equation (1.7) are not).
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2.5 Density of a RKHS

We characterize density properties of a RKHS. In particular, we ask
under which condition is a RKHS dense in L2(X, ν) or C(X)4. The
answer below was developed starting from separate observations by Zhou
[personal communication], Girosi [personal communication] and Smale
[personal communication]. (In the following we assume ν to be the
Lebesgue measure.) The following statements follow for the three cases
above:

1 in the strictly positive case the RKHS is infinite dimensional and
dense in L2(X, ν). It is also dense in C(X) with the topology of
uniform convergence (Zhou, in preparation).

2 in the degenerate case the RKHS is finite dimensional and not
dense in L2(X, ν); the null space of the operator LK is infinite
dimensional.

3 in the conditionally strictly positive case the RKHS associated with
K ′ is infinite dimensional and the null space of the operator LK
is finite dimensional. The RKHS is not dense in L2(X, ν) but
when completed with a finite number of polynomials of appropriate
degree can be made to be dense in L2(X, ν) and in C(X).

2.6 Regularization Networks (including SVMs)
for regression:

In regression, given sparse data it is natural and desirable to be able to
approximate the unknown function under the most general conditions,
such as all functions in L2(X, ν). From this perspective we look at
possible solutions of (1.1) for the three cases above.

1 Strictly positive case: in this case the solution

f(x) =
∑̀

i=1

αiK(x,xi) (1.8)

is dense in L2(X, ν) and in C(X): b is not needed. Note that
this is a different kind of SVM from the one originally proposed
by Vapnik, even if Vapnik’s loss functions are used. However, the
solution with b that Vapnik originally proposed, is also valid since
a positive definite kernel K is also cpd. It is easy to check (see the
following cpd case) that using the solution with b is equivalent to
using the cpd kernel K ′(x,y) = K−µ1φ1(x)φ1(y) in the stabilizer

4C(X) is dense in L2(X, ν)
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term of equation (1.1) with a solution f(x) =
∑`

i=1 α
′
iK
′(x,xi)+b.

Somewhat surprisingly, it follows that

f(x) =
∑̀

i=1

α′iK
′(x,xi) + b =

∑̀

i=1

α′iK(x,xi) + b. (1.9)

Thus, in this case, both solutions (1.8) and (1.9) are dense in
L2(X, ν). Notice that they correspond, respectively, to the mini-
mizers of following functionals, each one using a different prior on
the function space

I[f ] =
1

`

∑̀

i=1

V (yi, f(xi)) + λ‖f‖2K

I[f ] =
1

`

∑̀

i=1

V (yi, f(xi)) + λ‖f‖2K′ .

In the RN case with quadratic V (·) the minimization of the two dif-
ferent I[f ] yields the linear equations (see [Evgeniou et al, 2000]):
(K+`λI)α = y and (K+`λI)α′+1b = y subject to 1α = 0. Thus
in the standard RN case it is possible to compute one solution from
the other since α−α′ = (K + `λI)−11b. In the SVM case the two
different solutions correspond to the minima of two different QP
problems and the relation between α and (α′, b) cannot be given
in closed form.

2 Degenerate case: in this case the regularization solution is not
dense in L2(X) with or without the addition of a polynomial of
finite degree. In other words, with a finite dimensional kernel it is
in general impossible to approximate arbitrarily well a continuous
function on a bounded interval. This is the case for polynomial
kernels of the form K(x,y) = (x ·y+1)n often used in SVMs. The
use of b here is therefore even more arbitrary (or more dependent
on prior knowledge about the specific problem), since it does not
restore density.

3 Conditionally strictly positive case: in this case 5 the solution

f(x) =
∑̀

i=1

αiK(x,xi) + b =
∑̀

i=1

αiKpd(x,xi) + b

is dense in L2(X, ν) and also on C(X) when the b term is included.
We define the pd kernel Kpd = K−µ0φ1φ1 where −µ0φ1φ1 is a pos-
itive constant (we assume here, since we are dealing with cpd ker-
nels of degree 1, that φ1(x)φ1(x′) corresponds to a constant). The

5For simplicity we consider in the following cpd kernels of order 1 only.
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stabilizer term in I[f ] is then formally interpreted (compare [Aron-

szajn, 1950]) as ‖f‖2K =
∑∞

q=2
c2q
µq

, that is as ‖f‖2K = ‖f‖2Kpd =

‖PKpdf‖2Kpd, where PKpd projects f into the RKHS induced by Kpd

(see [Wahba, 1990]). To obtain solutions that are dense in L2(X, ν)
we consider solutions of the form f(x) =

∑∞
q=2 cqφq(x) + b. These

are functions in the RKHS induced by the pd kernel Kpd com-
pleted with the constants (which are not in the RKHS). Tak-
ing derivatives of I[f ] with respect to the coefficients cq and b
and setting them equal to zero (following [Girosi, 1998]) we get

cq = µq
∑`

i=1 αiφq(xi) where αi = 1
λV
′(yi − f(xi)), subject to the

constraint
∑̀

i=1

αi = 0. (1.10)

Therefore the minimizer of I[f ] is

f(x) =
∞∑

q=2

cqφq(x) + b =
∑̀

i=1

αi

∞∑

q=2

µqφq(xi)φq(x) + b

=
∑̀

i=1

αiKpd(x,xi) + b =
∑̀

i=1

αiK(x,xi) + b

where we have used expansion 1.6 and, in the last step, constraint
1.10. By interpreting V ′(·) in a generalized sense, the proof is valid
for a broad class of V (·) (see [Girosi et al, 1990]) and for the non-
differentiable V (·) used by SVM regression and classification see
appendix B.2 of [Girosi, 1998]. Thus cpd kernels can be used not
only for standard RNs but also for SVMs6. In both cases the term
b is needed in the solution in order to approximate functions in
L2(X, ν) or C(X).

3. Regression and Classification: b or not b?

Let us consider here only the strictly positive case for K. In regression
the general solution does not have a b term. However, it is possible to use
a positive definite K and the constant b. The latter choice is effectively
the choice of a different kernel and a different feature space relative to
the initial K used in the standard solution without b: the constant fea-
ture ”disappears” from the RKHS norm and therefore is not “penalized”.

6This extension – well known for regularization since at least a decade – was correctly sug-
gested in [Smola et al, 1998] in an otherwise confusing paper.
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This choice may be reasonable but only when specific prior information
is available about the problem. For instance, there may be regression
problems in which shifts of f by a constant should not be penalized. This
is especially true for the binary classification framework originally con-
sidered by Vapnik. Only the sign of the function f found by the SVM is
used for classification. A constant b plays therefore the role of a thresh-
old; using a solution of the form f(x) =

∑`
i=1 αiK(x,xi) + b, without

penalizing b in the stabilizer, corresponds to the reasonable assump-
tion that there is no privileged value – such as 0 – for the classification
threshold.
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