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Adaptive Markov Chain Monte Carlo

Through Regeneration

Walter R. GILKS, Gareth O. ROBERTS, and Sujit K. SAHU

Markov chain Monte Carlo (MCMC) is used for evaluating expectations of functions of interest under a target distribution 7. This
is done by calculating averages over the sample path of a Markov chain having 7 as its stationary distribution. For computational
efficiency, the Markov chain should be rapidly mixing. This sometimes can be achieved only by careful design of the transition
kernel of the chain, on the basis of a detailed preliminary exploratory analysis of 7. An alternative approach might be to allow the
transition kernel to adapt whenever new features of 7 are encountered during the MCMC run. However, if such adaptation occurs
infinitely often, then the stationary distribution of the chain may be disturbed. We describe a framework, based on the concept of
Markov chain regeneration, which allows adaptation to occur infinitely often but does not disturb the stationary distribution of the

chain or the consistency of sample path averages.

KEY WORDS: Adaptive method; Bayesian inference; Gibbs sampling; Markov chain Monte Carlo; Metropolis—Hastings

algorithm; Mixing rate; Regeneration; Splitting.

1. INTRODUCTION

Markov chain Monte Carlo (MCMC) has had a profound
influence on Bayesian statistical analysis, enabling infer-
ence to be made with data and models previously considered
intractable. Non-Bayesian applications of MCMC have also
been developed. In all applications, the aim is to estimate
the expectation IE,[g] of functions of interest g(x) under a
target distribution . A Markov chain {Xj,...,Xy} with
stationary distribution 7 is run, and IE,[g] is estimated by
the delayed average,

M+N

Z 9(Xa), (1)

n=M+1

_ 1
gN = ==

where the first M iterations (the “burn-in”) are discarded.
If the chain is irreducible, then gy is a consistent estimator
of IE;[g] (see, e.g., Tierney 1994).

One practical difficulty in using gy as an estimator of
IE.[g] comes from the dependence within the sequence X,.
Approximating the series g(X,,) as a first order autoregres-
sive process with autocorrelation p, the variance of gy can
be written as

214y
N1-p’

var(gn) =

where o2 is the variance of g(X) under 7. Hence high pos-
itive autocorrelations will substantially reduce efficiency,
and we may be forced to use a large number of iterations
N to achieve adequate accuracy in gy. High autocorre-
lations result from a slow mixing Markov chain, that is,
Pr[X,, € B | X, € A] converges slowly to 7(B).

In many applications, mixing is rapid for untuned MCMC
methods such as the Gibbs sampler (Gelfand and Smith
1990, Geman and Geman 1984). This is demonstrated by
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the huge range of problems routinely handled by the Gibbs
sampling software BUGS (Spiegelhalter, Thomas, and Best
1996). However, in some applications of Gibbs sampling,
model re-parameterization may be necessary to achieve
rapid mixing (see for example, Gelfand, Sahu, and Carlin
1995). Usually, analytic intractability of the target distribu-
tion prevents determination of the best parameterization in
advance. Consequently it may be necessary to conduct pre-
liminary experiments to determine an acceptable parameter-
ization. Similarly, in the more general Metropolis—Hastings
(M-H) framework for MCMC (see Sec. 3), preliminary ex-
periments are often required to determine efficient proposal
distributions.

To avoid preliminary exploratory work, it is tempting
to use all or part of the history of the Markov chain to
dynamically construct improved parameterizations or pro-
posal distributions. For example, if the chain wanders into
the vicinity of a mode of « that it has not previously en-
countered, then an additional proposal distribution might
be constructed to generate candidate points near this mode.
However, allowing such adaptation to take place infinitely
often will in general disturb the stationary distribution of
the chain and the consistency of sample path averages (1).
The problem is that the process is no longer Markov, be-
cause IP [X,, | Xo, Xy,...,X,—1] # P[X, | X,—1], so the
consistency of (1) is no longer assured. Gelfand and Sahu
(1994) provided an example where infinite adaptation dis-
turbs the ergodicity of the chain, despite each participating
transition kernel having the same stationary distribution.
There are several remedies to this problem. The most ob-
vious would be to stop adapting after a prechosen iteration
or after a fixed number of adaptations, and commence the
burn-in after the last adaptation (Gelfand and Sahu 1994).
However, such strategies cannot guarantee that all the im-
portant features of 7 will be discovered during the adapta-
tion phase. We call this the pilot adaptation scheme (PAS).

Gilks and Roberts (1996) and Gilks, Roberts, and George
(1994) proposed methods of adaptive direction sampling
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(ADS) and adaptive Metropolis sampling (AMS), which aim
to gather information about 7 as the chain proceeds. The
adaptation involves a replicated state space, but in high-
dimensional problems, the replication may be prohibitively
large.

Here we propose a new strategy for adaptation, based on
the concept of Markov chain regeneration. For a discrete
state-space Markov chain, regeneration times are the itera-
tions at which the chain revisits a nominated state. For con-
tinuous state-space Markov chains, a technique for regener-
ation due to Nummelin (1984) can be used. This technique

has been applied to MCMC samplers by Mykland, Tierney, .

and Yu (1995) and Robert (1995); see also Section 2.1. Our
adaptive strategy is that at each regeneration time the tran-
sition kernel of the chain is modified, based on the history
of the chain. The modified transition kernel is constructed
such that 7 is retained as its stationary distribution. We
show that such adaptation can continue indefinitely without
affecting the consistency of (1). The method allows an in-
creasing amount of information from the chain’s history to
be used in constructing proposal distributions, unlike PAS,
ADS, and AMS. The extra computational burden required
for adaptation will in general be small.

Figure 1 illustrates the process of adaptation through re-
generation. At each regeneration time, shown in the figure
by vertical dotted lines, the variance o2 of the proposal dis-
tribution is adapted to improve mixing, based on the chain’s
output to that time. The mixing rate of the chain clearly in-
creases with each adaptation. This example is described in
more detail in Section 4.1.1.

Thus adaptation can occur at each regeneration time and
can be based on the entire history of the chain up to that
time. This gives immense freedom in modifying the tran-
sition mechanism for the chain. However, the practicality
of our methodology is currently limited by the available
technology for delivering regeneration times: as we show,
this is often difficult in high-dimensional problems. Nev-
ertheless, we regard our framework for adaptation as an
important theoretical advance, motivating further research
into techniques for regenerative simulation.

15
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Figure 1. Sample Path of x; for an Adaptive Random-Walk Sam-
pler in Five Dimensions, With Multivariate Normal Proposal Distribution
N5 (X, aiz Is) and Stationary Distribution N5 (0, I5). Regeneration times
are indicated by vertical dotted lines.
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The rest of the article is organized as follows. In Sec-
tion 2 we introduce the concept of regeneration and adapta-
tion at regeneration, and provide theoretical support. In Sec-
tion 3 we review the splitting techniques required for adap-
tation. We present four illustrations of adaptive MCMC in
Section 4, and provide some of the proofs from Sections 2
and 3 in the Appendix.

2. REGENERATION: A FRAMEWORK
FOR ADAPTATION

2.1 Regeneration and Splitting

Let {X,,: n=0,1,...} be an irreducible Markov chain
on a state space (E, £) with transition kernel P = P(x, dy)
and invariant distribution . Suppose that we can find a set
A € & with 7(A) > 0 such that X, 1, X, 42,... I8 con-
ditionally independent of X;,Xs,,...,X,, given X, € A.
Then A is called a proper atom for the Markov chain, and
whenever the chain enters A, the chain is said to regen-
erate. Regeneration times divide the chain into sections,
called tours, and the sample paths of tours are independent.
Such independence can be exploited for both theoretical
and practical purposes, as we demonstrate. For a discrete
state-space Markov chain, any individual state can be cho-
sen to represent A. However, in more general state spaces,
proper atoms will not usually exist. Nevertheless, regener-
ations might still be defined using a technique due to Num-
melin (1984), which we now describe.

Suppose that it is possible to find a function s*(x) <
1 and a probability measure v*(dy) such that w(s*) =
[ s*(x)m(dx) > 0 and

P(x,A) > s*(x)v*(A4) (2)
for all x € E and all A € £. Then we can write

P(x,dy) = s"(x)v*(dy) + (1 — s"(x))A(x, dy),

where
P(x,dy)—s" (x)v" (dy) .
A(x,dy) = { =5 () %f s*(x) <1 3)
v*(dy) if s*(x) =1.

The pair (s*,v*) is called an atom for the transition
kernel P.

We can now construct a Markov chain on an augmented
state space, as follows. Suppose that the chain is cur-
rently at X,,. First, generate a Bernoulli variable 5,11
with success probability s*(X,,). If S,4+1 = 1, then gen-
erate X,4+1 according to v*; otherwise, generate X, i
from A. Then (X,,,S,) forms a Markov chain called the
split chain, where the marginal sequence {X,, } is a Markov
chain with transition kernel P and stationary distribu-
tion 7.

The essential point in the foregoing construction is that
when 5,41 = 1, the transition mechanism »* is independent
of the current state X,,. Consequently, the augmented set
E x {1} is a proper atom for the Markov chain (X, S,),
and the times at which S,, = 1 are regeneration times for
the split chain.
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2.2 Retrospective Regeneration

The foregoing scheme for identifying regeneration times
is prospective; the regeneration indicator S, is sampled
before sampling X, ;1. In practice, however, it is often more
convenient and computationally efficient to determine re-
generation times retrospectively; that is, to sample S, .11
after sampling X,, ;1. In particular, this method does not
require the density v* to be normalized. The retrospective
method of regeneration is used in all of the examples in
Section 4.

We define a nonnormalized atom to be a pair (s, ) such
that for all sets A,

P(x,A4) 2 s(x)v(4) , )
where [, v(dy) need not be unity. Nonnormalized atoms
are of course equivalent to normalized atoms by the scal-
ing v*(dy) = v(dy)/ [ v(dz) and s*(x) = s(x) [ v(dz).
Assuming that the chain is at stationarity, the regeneration
probability is

o) = B, 500 [

E

v(dy).

In practice we try to choose s,v to maximize r, subject
to (4).

Nonnormalized atoms can be used to construct a split
chain as follows. Suppose that the chain is currently at
(X, Sp). First, generate X,, 1 according to P(X,,,.); then
sample S,,+1 from a Bernoulli distribution with retrospec-
tive success probability

8(Xp)v(dX 1)

A _
T (Xn>Xn+1) = P(Xn,an_H) .

(6)

This construction is probabilistically equivalent to that
given in Section 2.1. Details for splitting canonical MCMC
samplers are given in Section 3.

2.3 Adaptation Through Regeneration

In general, we will not know a good MCMC sampler de-
sign at the outset. We propose to modify the sampler on the
basis of the past sample path of the chain, as the simula-
tion proceeds. Such an adaptive process can be dangerous;
it is no longer Markov, so we lose the support of Markov
chain theory, which guarantees ergodicity. Even if the adap-
tive process exhibits some kind of stationary behavior, its
stationary measure may not be the target distribution 7.
However, by modifying the sampler only at regeneration
times, convergence of (1) to IE,[g] is preserved. Informally,
because regeneration tours are independent in the unadap-
tive case, information from one tour can be used freely to
construct dynamics for subsequent tours.

Our adaptive process is as follows. Let 77,75, ..
the regeneration times of the adaptive chain.

. denote

Iteration 1. Let P; denote the initial irreducible transi-
tion kernel P; having stationary distribution 7 and a nor-
malized atom (s7,v7). The first iteration is a regeneration;
set S; =1 and 71 = 1 and sample X; from vy.

(5)
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Iterationn+ 1. Suppose that after n iterations, the chain
is at X,,. Suppose that ¢ regenerations have occurred and
the current transition kernel is P;, with a normalized atom
(sf,v}). First, generate a Bernoulli variable S,,1; with suc-

cess probability s} (X,,).

» If S,41 = 1, a regeneration has occurred; set T; 1 =
n. We may now update the Markov chain dynamics to
produce a modified irreducible transition kernel P
with stationary distribution = and a normalized atom
(8741,¥71). We may determine Py 1, s}, in al-
most any way we feel appropriate, using the past sam-
ple path {Xy,...,X,}. Complete the iteration by sam-
pling X, from v}, ;.

» If S,4+1 =0, proceed as in the nonadaptive split chain,
sampling X,,; from the probability measure propor-
tional to

Pi(Xn, ) = 57 (Xn)vi (),

as in (3). An equivalent construction utilizing nonnor-
malized atoms is as follows. Suppose that the chain is
currently at X,,, with current transition kernel P; and
a nonnormalized atom (s;,v;). First sample y from
Pi(X,,"), then sample S,,+; from a Bernoulli distri-
bution with retrospective success probability

8i(Xn)vi(dy)

PXody) @

7'7‘;4 (Xm y) =

» If S,,+1 = 1, a regeneration has occurred; set T;,; =
n. Discard y, determine new dynamics P;y1, S;+1, Vy+1
using the past sample path, as above, and sample X, 11
from the probability measure proportional to v; 4.

o If Sn+1 = 0, set Xn+1 =Y.

Note that both of the foregoing methods involve sampling
from the measure v*. This is avoidable in the nonadaptive
methods for regenerative simulation described by Mykland
et al. (1995) and Robert (1995).

We now provide some theoretical support for our method.

2.4 Theoretical Results

For each ¢ > 1, (P}, s;,v;) depends on the history of the
process {Xi,...,X7,_1} before the ith regeneration. Let
Fi—1 denote the o algebra generated by {Xy,..., X7 _1}.
Let N; = T;+1 — T; denote the length of the sth tour.

Suppose that we wish to estimate [E,[g] = [ g(x)m(dx)
for some function of interest g. Let G; = ZZ:}_I 9(Xy)
and let Z; = G; — IE;[g] N;. From renewal theory, we have,

IE[Z; | Fi—1] = 0. Therefore, a natural estimator of IE[g] is

_ 2?21 Gi )
P Ni

We show that R,, is mean squared error (MSE) consistent
for IE;[g]. In general, the purpose of adapting (P;, s;, ;) to
Fi—1 will be to reduce tour lengths and improve the mixing
of P;. However, we do not assume that the adaptation will
achieve these aims. We only assume that by controlling the
variance of Z;, the adaptation will not make matters arbi-
trarily worse (see condition a of Theorem 2). Robert (1995)

R, (8)



1048

gave some results on consistency and also a central limit
theorem for the nonadaptive samplers.
Throughout, we denote weak convergence by = and con-

vergence in probability by £,

Theorem 1.  Assume that there exists a constant b; < oo
such that IE[Z2] < b2, for all 4. Then R,, is MSE consistent
for IE.[g].

Proof.  See the Appendix.

To establish a central limit theorem for R,, we make
assumptions concerning the limiting behavior of the adap-
tation.

Theorem 2. Assume the following:

a. There exists a constant by < oo such that IE [Z]"*
| Fi_1] < b2Te, for some & > 0 and for all i.

b. 1/nY " E[Z? | Fii] L V2, where V is an Fo
random variable with Pr[V > 0] = 1.

c. 1/nY", N, & C, where C is an F., random vari-
able.

Then the following holds:

—\/—‘H/E(Rn ~E,[g]) = N(0, 1). ©)

Proof.  See the Appendix.

It is important that we allow V and C to be random in the
foregoing. Effectively this allows the adaptation to achieve
better results on some occasions that on others, so that per-
haps after a good start, the algorithm would settle down to a
particularly efficient limiting algorithm. Theorem 2 does not
depend on achieving a good start, and allows the ultimate
efficiency of the algorithm to depend on early regeneration
tours.

As an example, consider a Gibbs sampler with varying
parameterization, adapting to reduce correlations between
components but in a way that the level of adaptation di-
minishes as the simulation proceeds, so that a limiting but
random parameterization exists. The asymptotic efficiency
of the algorithm thus is random, but Theorem 2 still holds.
Of course, Theorem 2 can still apply to adaptation that con-
tinues indefinitely.

We now show that

>z
(XN

is a consistent estimator of the conditional asymptotic vari-
ance, V?2/(nC?).

MSE(R,) =

Theorem 3.  Assume that there exists a constant b3 < oo
such that IE [Z} | F;_1] < b3, for all i. Further, with as-
sumptions b and ¢ of Theorem 2, as n — oo, the following
holds:

nMSE(R,) &

S
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Proof.  See the Appendix.

The regularity conditions in Theorems 1-3 will be hard
to check in most applications, and we have not attempted to
do this in the examples that follow. However, loosely inter-
preted, these conditions require only that successive adap-
tations do not make the mixing of the sampler arbitrarily
worse. The aim of the adaptation is of course to improve
mixing, so provided that this is done sensibly, the regularity
conditions generally will be satisfied. It is important, how-
ever, to guard against overzealous adaptation. For example,
if a short run of the sampler suggests a single mode in 7,
and if all proposal distributions are then focused on this
mode, then other major modes may go undetected.

3. SPLITTING MCMC SAMPLERS

The techniques of Nummelin (1984) can be used to split
the MCMC samplers (Mykland et al. 1995). This requires
calculating the transition kernel of the underlying Markov
chain. The Gibbs sampler transition kernel is analytically
intractable except for conjugate problems. However, clever
updating schemes for the Gibbs sampler depending on the
particular application can be used so that the splitting mech-_
anism does not require the calculation of the full transition
kernel. (See Mykland et al. 1995 for some illustrations.) In
the rest of this section we give details for the M-H algo-
rithm.

The most general form of the M-H algorithm is as fol-
lows. Let @ be a Markov transition kernel. We assume
that Q(x,dy) has a density ¢(x,y) with respect to a mea-
sure p(dy). Suppose that the chain is currently at a point
X,, = x. A candidate point y is sampled from the distribu-
tion Q(x, ), which is accepted with probability

7(y)q(y,x) , 1} ; (10)

a(x,y) = min { e o gy
that is, we set X,, 11 = y. Otherwise, y is discarded and we
set X, 41 = X.

Different choices of the proposal kernel Q(x,dy) give
different versions of the algorithm. The choice Q(x,dy) =
f(y)u(dy) defines the independence sampler. The Metropo-
lis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) ver-
sion of the algorithm is given by choosing ¢ to be sym-
metric; that is, ¢(x,y) = q(y,x). A special case of this is
the random-walk Metropolis algorithm, for which ¢(x,y) =
q(|]x — y|). We now present atoms for the independence
and random-walk samplers, as proposed by Mykland et al.
(1995). For simplicity of exposition, we present only the
simplest schemes; Mykland et al. (1995) provided a more
general treatment.

3.1 The Independence Sampler

To be effective, the independence proposal distribution,
f, should be similar to 7= but with heavier tails; a poor
choice for f can produce a nongeometrically ergodic chain
(Roberts and Tweedie 1996). In practice, a suitable f is not
usually known. This suggests using the adaptive strategy
outlined in Section 2.3 to adapt on f.
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The independence sampler is the easiest MCMC sampler
to split. For any ¢ > 0, set

s(x) Elnin{m, 1} (11a)
and
v(dy) = f(y) min { @ 1} p(dy) (11b)

in (4), where w(x) = w(x)/f(x). Mykland et al. suggested
setting ¢ to a central value of w(x). However, it may be
difficult to determine such a value for c in advance. Our
adaptive framework can be used to adapt splitting parame-
ters such as c at each regeneration time, using past values
of w(x), as described.

We can implement the adaptative strategy for the inde-
pendence sampler with the following pseudocode, which
describes the calculations for iteration n + 1, assuming
Lebesgue measure u. This algorithm uses the retrospec-
tive method of regeneration, as described in Section 2.2.
Note that the denominator of the retrospective regener-
ation probability r4(x,y) for the independence sampler
is f{y)min{[7(y)]/|7(x)], 1} dy. Substituting this, together
with equation (10), into equation (6) gives the formulas
for 4 used in the algorithm. We begin the iteration with
X, = X.

Sample y ~ f(y) // generates a candidate point
// Perform Metropolis-Hastings acceptance test:
Sample U; ~ U(0,1) // generates a Uniform r.v.
If U7 < min (1, ggg) { // (Provisionally) accept can-
didate, y:
// The retrospective regeneration probability (7) reduces
to:
If w(x) > c and w(y) > ¢, set 4 = max {c/w(x),
c/w(y)}
Else if w(x) < ¢ and w(y) < ¢
max {w(x)/c, w(y)/c}
Else set 74 =1
// Perform conditional regeneration test:
Sample Us ~ U(0, 1)
If U; < r4 { // Regeneration has occurred. Insert code
here
// to adapt on f(-), eg heavier tails. Also adapt on c:
Set ¢ = w(x)/2 // % is the mode of 7(x) discovered
so far
// Discard y and resample from new v using rejection
sampling:
Repeat { Sample y ~ f(y);
} Until Us < min{w(y)/c, 1}

set r4 =

Sample Us ~ U(0,1);
Set X,4+1 =y // finally accepts current candidate y
} Else { // Reject candidate y:

Set Xn_|_1 == Xn

}
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The foregoing provides a good scheme for identifying re-
generation times. However, independence samplers are not
usually used on their own, because of their potential for
nongeometric ergodicity; see Section 3.3.

3.2 The Random-Walk Sampler

To split the random-walk sampler, we first need to find
an atom (s,, ) for the transition kernel Q). One approach
is to choose a distinguished point X € E and a set D € &,
and define

_ e J40Y)

sq(x) = f{q(i, mE y € D} (12a)
and

ve(dy) = q(x,y)1(y € D)u(dy). (12b)
Then the pair

s(x) = 8¢(x) min {g, 1}

and

v(dy) = vq(dy) min {%, 1} (13)

provides a splitting for the Markov chain. In many appli-
cations @ is Gaussian, for which calculation of (sg,v,) is
easy. The choices of the implicit parameter x and the set
D need experimentation. We can set X at the mode of the
distribution discovered so far and update it at regeneration
points. Similarly, we can experiment with the set D and
update it adaptively. However, the practicality of this split-
ting is rather limited, as we illustrate with the following
result.

Theorem 4. Let w(x) = Ny, (0, I,,,), where x is m x 1,
N, denotes a multivariate normal distribution, and I,, is the
identity matrix of order m. Let x =0 and D = {y: y'y <
d}, where d > 0 is a scalar. Then, for the Metropolis algo-
rithm with proposal distribution ¢(x,y) = N, (x, kl,,) and
splitting as defined by (13),

max r(s,v) — 0 exponentially as m — oo,
>

where k is set at its asymptotic optimal value 2.38%/m (Gel-
man et al. 1996) and r(s, v) is the regeneration rate as given
in (5).

Proof.  See the Appendix.

Hence, although the method will work for low-
dimensional problems (see Sec. 4), for high-dimensional
problems this method will fail to identify regeneration
times. This problem is common in regenerative simula-
tion by splitting. Ideally, we would like to perform split-
ting based on the n-step transition kernel of the Markov
chain, where we allow n to vary (and probably increase)
with dimension. Unfortunately, it is generally analytically
intractable to perform n-step splitting for n > 1 (although
see Cowles and Rosenthal 1996 for a numerical alter-
native).
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3.3 Hybrid Samplers

Several proposal distributions can be used in a hybrid
sampler. At each iteration of the Markov chain, one of these
proposal distributions can be chosen according to some ran-
dom or systematic scheme (Tierney 1994). If regenerations
are easily achieved for the independence sampler but dif-
ficult to achieve for other proposal distributions, then we
can adapt any or all of the proposal distributions when-
ever a regeneration is obtained on an independence-sampler
step.

4. EXAMPLES
4.1 Random-Walk Metropolis Algorithms

The regenerative framework for adaptation provides a
method for tuning many designs of the MCMC sampler;
for example, updating schemes, blocking, and parameteri-
zation on-line. In this section we concentrate on adapting
the proposal distributions of M-H algorithms. The optimal
proposal distribution for any given target distribution is gen-
erally unknown, and ad-hoc tuning methods (based mostly
on PAS) are often performed. The examples here demon-
strate how such ad hoc methods can be replaced by more
attractive on-line adaptation.

For the random-walk algorithm, often the proposal den-
sity is of the form ¢(x,y) = N,,(x,0%1,,), where o is a
constant. Clearly, some values of o will give rise to bet-
ter mixing than others. Values of ¢ that are too small will
result in most candidates y being accepted, but the steps
|X 1 — X, | will be small. Values of ¢ which are too large
will result in large proposed moves |y — X,,|, most of which
will be rejected.

Gelman, Roberts, and Gilks (1996) considered the prob-
lem of choosing ¢ when the target distribution 7 has the
exchangeable form H;’ll 7(z;), where z; denotes the ith el-
ement of x. They show that for large m, the variance of gy
in (1) is minimized by choosing o such that 23.4% of candi-
dates are accepted overall. In general, there is no theoretical
optimal value of this acceptance rate. However, theoretical
results and empirical evidence suggest that for most cases
overall, 15%—50% of the proposed moves should be ac-
cepted for optimal performance, (see, e.g., Roberts 1996).
Besag, Green, Higdon, and Mengersen (1995, sec. 2.3.3)
also discussed such matters.

Thus the optimal scaling o might be determined empiri-
cally, through monitoring candidate acceptance rates in an
adaptive MCMC run. If the empirical acceptance rate dur-
ing the 4th tour is A;, then the scaling o1 for tour ¢ + 1
could be set as

lOg Oit1 = IOg o; + (IOglt(A,) — logit(a))/m, (14)
where « is the target acceptance rate. Thus if A; > a, then
the scaling o will be increased, which will reduce the ac-
ceptance rate during tour ¢+ 1. Similarly, if A; < a, then the
acceptance rate will be increased. Under (14), o; will not
converge to the optimum, but the theory of Section 2.4 does
not require this. Instead, o; will tend to oscillate around
the optimal scaling. Convergence of o; to its optimum
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could be easily achieved by replacing m in (14) by mi®
for some small 8 > 0. Other updating equations can also
be considered. However, (14) works well in the examples
here.

4.1.1 Example 1. We consider a five-dimensional
standard normal target distribution for the Metropolis algo-
rithm. The optimal acceptance rate is .275, with proposal
densities of the form ¢(x,y) = Ns(x,02I5) with the the
optimal value of ¢ as 1.10 (Gelman et al. 1996).

To implement adaptation, we use the regenerative scheme
described in Section 3.2, with x = 0 and D = {x: x'x < d},
setting d = 16. Note that in theory, any positive value of
d will work. It is tuned to produce an acceptable number
of regenerations and can be updated during the adaptation
phase. However, in this example we keep it fixed all of
the time. We set the initial scaling at o; = 10, and at
each regeneration we updated o; according to (14), with
a = .275.

The adaptive chain began with a very low acceptance
rate. The first adaptation resulted in a much smaller value
of o, which gave a better but still too low acceptance rate
of about .12. By the fifth adaptation, acceptance rates were
fairly close to optimal. This demonstrates that even with a
very inefficient starting proposal variance, we can adapt to
the optimal value quite easily, although of course a more
judicious choice of o; would have obviated the need for
adaptation in this case. Figure 1 shows the sample path
from the adaptive chain and clearly shows the acceleration
in mixing with the first few adaptations.

4.1.2 Example 2. We consider a dataset given by
Bates and Watts (1988, p. 307), modeled by Newton and
Raftery (1994) as follows. Response y; is modeled as

B2
1+ exp{—PB4(z: — Bs)}

where ¢; is assumed to be normally distributed with mean
0 and variance o2, The prior for o2 is taken as 7 (0?) o< o2
with a design invariant prior 7(8) o< [VTV|'/2 for g, where
V is an n x 4 matrix with elements [0E(y;|3)]/08;,i =
1,...,n5=1,...,4.

For this model we first integrate out ¢“ analytically.
Hence the target posterior distribution is four dimensional.
The full conditional distributions are not easy to sample
from, so we use the random-walk M-H algorithm. We take
the maximum likelihood estimate (MLE) to be the starting
point as well as the distinguished point 3 for splitting the
sampler. We take d = .95, again noting that this can be
adapted.

The proposal dispersion matrix is chosen to be .1 times a
diagonal matrix having the variances of the MLE’s along its
diagonal. The acceptance rate of the nonadaptive sampler
is about 54%. This acceptance rate is much higher than the
“optimal" rate of 27.9% proposed by Gelman et al. (1996)
for a simpler situation, so we use the adaptive sampler to
tune the scaling. At regeneration, we update each variance
of the proposal distribution using (14). The adaptive sam-
pler quickly adapts the proposal scalings to have acceptance

yi =01+ + e, i=1,2,...,n,

2
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rate near 28%, and ergodic averages behave substantially
better. Figure 2 plots the kernel density estimate of the rate
parameter (4.

4.2

4.2.1 Example 3. Here we give an illustration of how
the proposal distribution for the independence sampler can
be adapted. Our target distribution is a mixture of three
bivariate normal distributions:

.34><N2{0,Iz}+-33><N2{_<g)’(}9 f)}
+.33><N2{<§>,<_1_9 _i9>}'

The contours of this distribution are plotted in Figure 3. We
consider independence samplers with a normal proposal dis-
tribution with mean 0 and dispersion 2 x I,. (This is justified
on the grounds that preliminary investigation revealed only
one mode, and we take an overdispersed proposal density
around that mode.) We first consider a PAS with one adap-
tation. Based on the first 5,000 iterations, we calculate the
mean and dispersion of the target distribution and use those
as the parameters of the proposal distribution.

To implement the fully adaptive sampler, we follow the
details outlined in Section 3.1. Starting with the same ini-
tial proposal distribution, we adapt the mean and dispersion
at regeneration points. The independence chain produced
many regenerations, and we decided to adapt the param-
eters if the number of iterations from the last adaptation
exceeded a threshold value of 100 (primarily to avoid the
computations needed for possibly unnecessary adaptation).

The autocorrelation plots of the two schemes are given
in Figure 4. Clearly, the fully adaptive scheme provides
faster mixing than the PAS. We have also experimented
with other combinations of starting parameters and number
of iterations and burn-ins. In all cases the adaptive sampler
provided a better and faster reconstruction of the target dis-
tribution than the PAS. More ingenious adaptation schemes

Independence Samplers

density
0.4 0.6 08

0.2

0.0

rate parameter

Figure 2. Estimates of the Marginal Posterior Density for 4. —,
Represents the adaptive sampler; - - -, the nonadaptive sampler; ———,
the weighted likelihood bootstrap method of Raftery and Newton (1994).
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Figure 3. Contours of the Target Distribution of Section 4.2.1.

might also be tried here for better results. However, we have
not pursued those, as the simple adaptation scheme does a
substantially better job than the PAS.

4.2.2 Example 4. We consider a real data example
on age and length measurements on n = 27 dugongs (sea
cows). Carlin and Gelfand (1991) provided a Bayesian anal-
ysis of the dataset originally given by Ratkowsky (1983).
The length y; given the age z, for the ith individual is
assumed to follow the following nonlinear growth curve
model:

Yi ~ N(OZ - 16,)/:01’0_2),

where o, 3> 1,0<v<1l,andi=1,2,...,n.

Following the implementation of this problem in the
BUGS software (Speigelhalter et al. 1996), we assume that
7 = 0~2 follows a gamma prior with density proportional
to 7%~ e~ with ¢ = 1073, Flat priors are assumed for the
remaining parameters. We integrate out 7 analytically and
work with the resulting marginal density of a, 5, and v as
follows:

7T(O{, /8a7|ylay2) v yn)
n —a—n/2
o fon S e
i=1

We are interested in the marginal density of ~. The
marginal density can be found exactly by integrating out
a, (3, and 7 (in that order) from the full joint posterior den-
sity. We want to compare the performance of the MCMC
methods by reconstructing the marginal density using the
output of the MCMC samplers.

We attempt an independence sampler with a normal pro-
posal distribution with its mean at the MLE, 3, say of «, (3,
and - and a covariance matrix with all off-diagonal entries
0 and diagonal entries equal to the variance estimates of the
MLE. For the adaptive scheme, we first take ¢ to be w(3)/2
in the splitting construction presented in Section 3.1. At re-
generation points, we calculate the mean and covariance
matrix of the values sampled so far and use a normal distri-
bution with these updated parameters as the next proposal
distribution for the independence sampler. We also update
the parameter ¢ by replacing it with w(3)/2, evaluated at
the largest value of 7(3) discovered so far.



1052

(a)

1.0

0.8

0.6

04 ACF

0.2

([T

0 20 40 60 80
Lag

0.0

100

Journal of the American Statistical Association, September 1998

(b)
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Figure 4. AutoCorrelation Plots. (a) PAS scheme; (b) fully adaptive scheme.

To compare the adaptive schemes to the untuned meth-
ods, we also consider a random-walk sampler for this prob-
lem with the PAS. The starting proposal distribution is nor-
mal with the same covariance matrix as earlier. We update
this covariance matrix only once after a burn-in period of
5,000 iterations. We calculate an unbiased estimate of the
target covariance matrix based on the 5,000 sampled val-
ues, then replace the starting proposal variance matrix by
the foregoing estimate.

Figure 5 plots the marginal density of v from these two
schemes. The dotted curve is the result from 10,000 iterates
of the adaptive process after a burn-in period of 5,000 iter-
ations. The dashed curve is based on the same number of
iterations from the aforementioned PAS; the solid line is the
actual density. All densities are scaled to have maximum 1,

1.0

0.8

density
0.6

0.4

0.2

0.70 0.‘75 0.80 0.85 0.90 0.95 1.00
gamma

Figure 5. Marginal Posterior Density for v. ——, Exact density; - - -,
kernel density estimate from the output of the adaptive sampler; ———,
kernel density estimate from the output of the PAS.

and the two kernel density estimates are based on the same
value of the smoothing parameter. Figure 5 shows that the
adaptive scheme is better than the nonadaptive scheme in
approximating the true density. However, it may not be a
huge improvement over the nonadaptive scheme. This is
because this is a relatively simple problem for the MCMC
methods, and the BUGS software also produces similar es-
timates. However, the point of this example is that even for
simpler problems, the adaptive schemes that we propose
can improve the MCMC samplers. ‘

5. DISCUSSION

We have provided a theoretical framework for adapta-
tion in MCMC samplers based on regenerative simulation.
When a regeneration is obtained, proposal distributions can
be adapted on the basis of the output from the sampler ob-
tained so far. How these opportunities for adaptation are ex-
ploited depends on the application. For example, the scaling
of proposal distributions might be adjusted, or if multiple
modes in 7 are a problem, additional mode-hopping pro-
posal distributions might be introduced. The methodology
is very general and works well in low-dimensional prob-
lems, as we have illustrated.

In high dimensions, the practicality of our methodol-
ogy is limited by the practicality of regenerative simulation
itself; it is generally difficult to obtain frequent regenera-
tions in high dimensions. In particular, we have shown for
a simple but high-dimensional = that the splitting for the
random-walk sampler is inadequate. Thus we anticipate that
this splitting will be unlikely to work in more complex ap-
plications. This result does not apply to the independence
sampler; indeed, with f = 7w, we can regenerate at every
iteration. However, regeneration probabilities are bounded
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above by acceptance probabilities (10), and unless f is care-
fully tailored to m, acceptance probabilities may be quite
small in high dimensions. Nevertheless, with the available
regenerative technology, splitting the independence sampler
may be the most promising option, especially because re-
generations so obtained provide the opportunity to adapt
any or all of the proposal distributions in a hybrid sam-
pler, as discussed in Section 3.3. Perhaps splitting schemes
other than those described in Section 3, or indeed regen-
erative schemes other than Nummelin’s splitting strategy,
described in Section 2.1, might provide more opportunities
for adaptation. Further work in this area is needed.

APPENDIX: PROOFS

Proof of Theorem 1
First, note that E[Z,Z,] = 0 for ¢ # j, because IE[Z,|Fi-1]

= (. Then we see that,
>z
>N

Il

MSE(R,) = E[(Rn —

Le|(Ta)]

= %ZE[Z?]<IJ%/”—>O as  mn— oo.

E-[g)*] = E

To establish a limiting distribution for R,, we use the following
standard result, which we state without proof.

Lemma A.l1. Let X,,X,Y, be random variables such that
X,=X,and Y, £ y for some nonzero constant y. Then,
Xn X
Ya y

Proof of Central Limit Theorem 2

We first prove a uniform integrability condition. Letting I} j de-
note the indicator function,

E [Zzz Lz, 15evm) |_’F1_1]
< {]E [Zf‘*E | ]-'1_1]}[2/(2-!—6)]
X {Pr [lZzI > evn | -7:1'—1] }[s/(2+€)]
1
<t {z

2+[2e/(2+¢)] (

P

< b )—[6/(2-!—6)] ’

by the Holder, Markov and Jensen inequalities. Therefore, uncon-
ditionally we have

% Y E[Zz5e0m)] <6 (€

i=1

n)—[E/(2+E)] =0

as n — oo.

With this uniform integrability result and assumption b, a mar-
tingale central limit theorem (essentially taken from thm. 1.6 of
Basawa and Prakasa Rao, 1980, p.387) gives

vl—\/ﬁ S 7z = N2,
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Therefore, from Lemma A.1 and assumption ¢ of Theorem 2, we
have
1
1_Sz
_ v = N(0,1).

Cyn
SV R - Y
A% &ZN;

Ex[g])
Proof of Theorem 3

Let Y, = 27 ~E[Z] | F.-1]. Then we have E[Y,] = 0, the
{Y,} are uncorrelated, and, from the assumption on bs, var[¥;] <
b2, using Jensen’s inequality. So by the weak law (e.g., Durrett
1991, p. 29), we can prove n~' > Y, = 0. With assumption b of

Theorem 2, this gives n™* 3 22 5 V2, by Slutsky’s theorem. So
by Lemma A.1, we have

1ZZ2 -V

Gyxn)y? o

Before proving Theorem 4, we note the following general re-
sults.

nMSE(R,,) =

Lemma A.2. 1t is easy to use Lagrange optimization to verify

inf yTT'x = —VdVx'T—2x.

yeD

Suppose that g(x,y) is a normal density with mean x and dis-
persion matrix I'; that is,

= |2y~
X exp {— % (y —x)T 7}y — x)} . (A1)

q(x,y)

We can split the foregoing normal transition kernel (A.1) using
(13) and Lemma 2. Let the distinguished point X = 0 and the set
D be {y: y'y < d}, where d > 0 is a scalar.

Lemma A.3.

8q(x) = exp {— %X/I‘_lx — \/E\/X’I‘—%c}

The pair (sq,2q), where

and
ve(y) = q(0,y) 1(y € D),

provides a splitting for the transition density g(x,y) as given
in (A.1).

Proof of Theorem 4

It is easy to see that r(s,v) < K1 x K> where K1.=
and K; = [ug(dy). Choosing T' =

Er [s4(X)]
kI in Lemma A.3, we

have
K, = (ZW)_m/z/exp{ ;k x'x — ﬁf‘ - —xx} dx
k m/2
— -m/2
= (m (k—l—l)
1/2
X /exp{—%z'z— g (ICL—l—l) \/z’z} dz
k m/2 5

- (k+1) E[QXP{_ k(k+ 1) X’”H

and
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where x2, ~ x2 distribution with m df. Now we have

Ky = 27™/2{T(m/2)} ! /Od/kexp<—g> u™ 7 du,
2—m/2{r(m/2)}-1/0d/k exp(—g) (-Z—)m/z_l du

= 27"/ (m/2)} (g)m/z_l (1-eo(-5))

IN

IA

2~/ (P (m/2)} (%)W—l .

The foregoing expressions for K; and K yield

k(k+1)"™/2
< T )
e NP
X Ooum/z_l exp _v_, 4 Vay d™* du.
. 2 k(k+1)

The maximum of the foregoing integrand with respect to d will
be achieved at ud = k(k + 1)(m — 2). Therefore, we see that

r(s,v) <™k +1)""exp{2 — m}

x (m —2)™ 222 ™ (T(m/2)} 2% (A2)

Using Stirling’s approximation for gamma function, we can ap-
proximate the upper bound in (A.2) by

rm = k™2 (k+1) "' (m —2)7 "

Setting k = 2.382/m, it is easy to see that the theorem follows.

[Received March 1996. Revised March 1998.]
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