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Abstract. We consider basic ergodicity properties of adaptive MCMC algorithms under
minimal assumptions, using coupling constructions. We prove convergence in distribution
and a weak law of large numbers. We also give counter-examples to demonstrate that the
assumptions we make are not redundant.

1. Introduction.

Markov chain Monte Carlo (MCMC) algorithms are a widely used method of approx-

imately sampling from complicated probability distributions. However, a wide variety of

different MCMC algorithms are available, and it is often necessary to tune the scaling and

other parameters before the algorithm will converge efficiently.

It is tempting to automate and improve this tuning through the use of adaptive MCMC

algorithms, which attempt to “learn” the best parameter values while they run. In this

paper, we consider the extent to which ergodicity and stationarity of the specified target

distribution are preserved under adaptation.

Adaptive MCMC methods using regeneration times and other complicated construc-

tions have been proposed by Gilks et al. (1998), Brockwell and Kadane (2005), and else-

where. On the other hand, related adaptive schemes can often fail to preserve stationarity

of the target distribution (see e.g. Proposition 4 below). This leads to the question of what

conditions on natural (non-regenerative) adaptive MCMC algorithms guarantee that the

stationarity of π(·) will be preserved.
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A significant step in this direction was made by Haario et al. (2001). They proposed

an Adaptive Metropolis algorithm which attempts to optimise the proposal distribution of

a Metropolis algorithm to be approximately (2.38)2Σ / d, where d is the dimension, and Σ

is the d× d covariance matrix of the d coordinates under stationarity. (Such a proposal is

optimal in certain settings according to the results of Roberts et al., 1997; see also Roberts

and Rosenthal, 2001, and Bédard, 2006.) They do so by estimating Σ from the empirical

distribution of the Markov chain output so far, thus adapting the estimate of Σ while the

algorithm runs (but less and less as time goes on). They prove that a particular version

of this algorithm (which involves adding a small multiple of the identity matrix to each

proposal covariance) correctly converges in distribution to the target π(·).

It was observed by Andrieu and Robert (2002) that the algorithm of Haario et al.

(2001) can be viewed as a version of the Robbins-Monro stochastic control algorithm

(Robbins and Monro, 1951). The results of Haario et al. were then generalised by Atchadé

and Rosenthal (2005) and Andrieu and Moulines (2003), proving convergence of more

general adaptive MCMC algorithms. (Andrieu and Moulines, 2003, also prove a central

limit theorem result.) Those two papers removed many restrictions and limitations of the

Haario et al. result, but at the expense of requiring other technical hypotheses which may

be difficult to verify in practice.

In this paper, we present somewhat simpler conditions, which still ensure ergodicity

and stationarity of the specified target distribution. After introducing our notation and

terminology (Section 2), and considering some special cases (Section 3), we present a

running example (Section 4) which illustrates adaptive MCMC’s potential pitfalls. We

then use a bivariate coupling construction to prove the validity of adaptive MCMC in

uniform (Section 5) and non-uniform (Section 6) settings. We make connections to drift

conditions (Section 7) and recurrence properties (Section 8), and prove a weak law of

large numbers (Section 9), before presenting some general discussion of adaptive MCMC

(Section 10).
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2. Preliminaries.

We let π(·) be a fixed “target” probability distribution, on a state space X with σ-

algebra F . The goal of MCMC is to approximately sample from π(·) through the use of

Markov chains, particularly when π(·) is too complicated and high-dimensional to facilitate

more direct sampling.

We let {Pγ}γ∈Y be a collection of Markov chain kernels on X , each of which has π(·)

as a stationary distribution: (π Pγ)(·) = π(·).

Assuming Pγ is φ-irreducible and aperiodic (which it usually will be), this implies (see

e.g. Meyn and Tweedie, 1993) that Pγ be ergodic for π(·), i.e. that for all x, limn→∞ ‖Pn
γ (x, ·)−

π(·)‖ = 0, where ‖µ(·)−ν(·)‖ = supA∈F |µ(A)−ν(A)| is the usual total variation distance.

That is, Pγ represents a “valid” MCMC algorithm, i.e. defines a Markov chain which will

converge in distribution to the target π(·). So, if we keep γ fixed, then the Markov chain

algorithm described by Pγ will eventually converge to π(·).

However, some choices of γ may lead to far less efficient algorithms than others, and

it may be difficult to know in advance which choices of γ are preferable. To deal with this,

adaptive MCMC proposes that at each time n we let the choice of γ be given by a Y-valued

random variable Γn, updated according to specified rules.

Formally, for n = 0, 1, 2, . . ., we have a X -valued random variable Xn representing

the state of the algorithm at time n, and a Y-valued random variable Γn representing the

choice of kernel to be used when updating from Xn to Xn+1. We let

Gn = σ(X0, . . . , Xn,Γ0, . . . ,Γn)

be the filtration generated by {(Xn,Γn)}. Thus,

P[Xn+1 ∈ B |Xn = x,Γn = γ,Gn−1] = Pγ(x,B) , x ∈ X , γ ∈ Y, B ∈ F , (1)

while the conditional distribution of Γn+1 given Gn is to be specified by the particular

adaptive algorithm being used. We let

A(n)((x, γ), B) = P[Xn ∈ B |X0 = x,Γ0 = γ] , B ∈ F
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record the conditional probabilities for Xn for the adaptive algorithm, given the initial

conditions X0 = x and Γ0 = γ. Note that A(n) 6=
∏n−1

i=0 PΓi , since A(n) represents the

unconditional distribution of the algorithm, equivalent to integrating over the distributions

of Γ1, . . . ,Γn−1.

Finally, we let

T (x, γ, n) = ‖A(n)((x, γ), ·)− π(·)‖ ≡ sup
B∈F

|A(n)((x, γ), B)− π(B)|

denote the total variation distance between the distribution of our adaptive algorithm at

time n, and the target distribution π(·). Call the adaptive algorithm ergodic if limn→∞ T (x, γ, n) =

0 for all x ∈ X and γ ∈ Y. We can then ask, will the adaptive chain necessarily be ergodic?

Since each Pγ converges to π(·), one might expect that our adaptive algorithm does too.

However, we shall see below (Section 4) that this is not always the case.

3. Some Special Cases.

Adaptive MCMC, in the sense that we have defined it above, includes as special cases

a number of previously considered schemes, including most obviously:

• Traditional MCMC: Γn ≡ 1 for all n.

• Systematic-scan hybrid algorithm: (Γn) = (1, 2, . . . , d, 1, 2, . . . , d, 1, 2, . . .), where e.g.

Pi moves only the ith coordinate.

• Random-scan hybrid algorithm: {Γn} are i.i.d. ∼ Uniform{1, 2, . . . , d}.

In this section, we make some observations about these and other special cases, to provide

context for the more general results to come.

To begin, call an adaptive MCMC algorithm an independent adaptation if for all n,

Γn is independent of Xn. (This includes the traditional and hybrid cases described above.)

For independent adaptations, stationarity of π(·) is guaranteed:

Proposition 1. Consider an independent adaptation algorithm A(n)((x, γ), ·), where π(·)

is stationary for each Pγ(x, ·). Then π(·) is also stationary for A(n)((x, γ), ·), i.e.∫
x∈X

P[Xn+1 ∈ B |Xn = x,Gn−1] π(dx) = π(B) , B ∈ F .
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Proof. Using (1), and the independence of Γn and Xn, and the stationarity of π(·) for

Pγ , we have: ∫
x∈X

P[Xn+1 ∈ B |Xn = x,Gn−1]π(dx)

=
∫

x∈X

∫
γ∈Y

P[Xn+1 ∈ B |Xn = x,Γn = γ,Gn−1]P[Γn ∈ dγ |Xn = x,Gn−1]π(dx)

=
∫

x∈X

∫
γ∈Y

Pγ(x,B)P[Γn ∈ dγ | Gn−1]π(dx)

=
∫

γ∈Y
P[Γn ∈ dγ | Gn−1]

∫
x∈X

Pγ(x, B) π(dx)

= 1 · π(B) = π(B) .

On the other hand, it is well known that even for independent adaptations, irreducibil-

ity may be destroyed:

Example 2. Let X = {1, 2, 3, 4}, with π{1} = π{2} = π{3} = 2/7, and π{4} = 1/7. Let

P1(1, {2}) = P1(3, {1}) = P1(4, {3}) = 1, and P1(2, {3}) = P1(2, {4}) = 1/2. Similarly,

let P2(2, {1}) = P2(3, {2}) = P2(4, {3}) = 1, and P2(1, {3}) = P2(1, {4}) = 1/2. Then

it is easily checked that each of P1 and P2 are irreducible and aperiodic, with stationary

distribution π(·). On the other hand, (P1P2)(1, {1}) = 1, so when beginning in state 1, the

systematic-scan adaptive chain P1P2 alternates between states 1 and 2 but never reaches

the state 3. Hence, this adaptive algorithm fails to be irreducible, and also T (x, γ, n) 6→ 0

as n →∞, even though each individual Pi is ergodic.

Another special case of adaptive MCMC is to introduce some stopping time τ with

P(τ < ∞) = 1, such that no adaptations are done after time τ , i.e. such that Γn = Γτ

whenever n ≥ τ . This scheme, which we refer to as finite adaptation, has been proposed

by e.g. Pasarica and Gelman (2003) and E. Moulines (personal communication). It is

analogous to the common MCMC practice of using a number initial “trial” Markov chain

runs with different tunings, to determine good parameter values, and then using a final

MCMC run with fixed parameters to accomplish the sampling. Finite sampling schemes

always preserve asymptotic convergence:
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Proposition 3. Consider a finite adaptation MCMC algorithm, in which each individual

Pγ is ergodic, i.e., limn→∞ ‖Pn
γ (x, ·)− π(·)‖ = 0 for all γ ∈ Y and x ∈ X . Then the finite

adaptation MCMC algorithm is also ergodic.

Proof. Let d(x, γ, n) = ‖Pn
γ (x, ·) − π(·)‖. It follows from the assumptions that

limn→∞ d(x, γ, n) = 0 for all x ∈ X and γ ∈ Y. Hence, conditional on Xτ and Γτ ,

limn→∞ d(Xτ ,Γτ , n) = 0. The result follows from integrating over the distributions of Xτ

and Γτ , and using the Bounded Convergence Theorem.

Both finite and independent adaptive chains represent “safe” methods of implement-

ing adaptation, in the sense that they provide some adaptation without destroying the

stationarity of π(·). However, of greater interest are dependent, infinite adaptations, i.e.

adaptations which continue to modify the Γn, by continuing to learn based on the values

of Xn. In such cases, typically the pair sequence {(Xn,Γn)}∞n=0 is Markovian, in which

case we call the algorithm a Markovian adaptation, but no assumptions about independent

or finite adaptations can be made. This leads to the question of when such adaptations

preserve the stationarity of π(·), and the asymptotic distributional convergence of the

algorithm.

4. Running Example.

To illustrate the limitations of adaptive MCMC, and the application of our theorems,

we present the following running example. This example was discussed in Atchadé and

Rosenthal (2005); an animated Java applet version is also available (Rosenthal, 2004).

Let K ≥ 4 be an integer, and let X = {1, 2, . . . ,K}. Let π{2} = b > 0 be very small,

and π{1} = a > 0, and π{3} = π{4} = . . . = π{K} = (1−a− b)/(K−2) > 0. Let Y = N.

For γ ∈ Y, let Pγ be the kernel corresponding to a random-walk Metropolis algorithm for

π(·), with proposal distribution

Qγ(x, ·) = Uniform{x− γ, x− γ + 1, . . . , x− 1, x + 1, x + 2, . . . , x + γ} ,

i.e. uniform on all the integers within γ of x, aside from x itself. The kernel Pγ then

proceeds, given Xn and Γn, by first choosing a proposal state Yn+1 ∼ QΓn
(Xn, ·). With
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probability min[1, π(Yn+1)
/

π(Xn)] it then accepts this proposal by setting Xn+1 = Yn+1.

Otherwise, with probability 1−min[1, π(Yn+1)
/

π(Xn)], it rejects this proposal by setting

Xn+1 = Xn. (If Yn+1 6∈ X , then the proposal is always rejected; this corresponds to setting

π(y) = 0 for y 6∈ X .)

We define the adaptive scheme as follows. Begin with Γ0 = 1 (say). Let M ∈ N∪{∞}

and let p : N → [0, 1]. For n = 0, 1, 2, . . ., given Xn and Γn, if the next proposal is accepted

(i.e., if Xn+1 6= Xn) and Γn < M , then with probability p(n) let Γn+1 = Γn +1, otherwise

let Γn+1 = Γn. Otherwise, if the next proposal is rejected (i.e., if Xn+1 = Xn) and Γn > 1,

then with probability p(n) let Γn = Γn−1 − 1, otherwise let Γn+1 = Γn. In words, with

probability p(n), we increase γ (to a maximum of M) each time a proposal is accepted,

and decrease γ (to a minimum of 1) each time a proposal is rejected.

We record a few specific versions of this scheme:

• The “original running example” has M = ∞ and p(n) ≡ 1, i.e. it modifies Γn in every

iteration except when Γn = 1 and the next proposal is rejected.

• The “singly-modified running example” has M = ∞ but arbitrary p(n).

• The “doubly-modified running example” has M < ∞ and arbitrary p(n).

• The “One-Two” version has M = 2 and p(n) ≡ 1.

The intuition for these schemes is that accepted proposals indicate there may be room

for γ to grow, while rejected proposals indicate γ may be too large. Indeed, this scheme is

somewhat analogous to the Adaptive Metropolis algorithm of Haario et al. (2001), in that

it attempts to search for an optimal proposal scaling to obtain a reasonable acceptance rate

(not too close to either 0 or 1). However, and perhaps surprisingly, this simple adaptive

scheme can completely destroy convergence to π(·):

Example 4. Let ε > 0, and consider One-Two version with K = 4, a = ε, and b = ε3.

Then it is easily verified that there is c > 0 such that P[X3 = Γ3 = 1 |X0 = x,Γ0 = γ] ≥ c ε

for all x ∈ X and γ ∈ Y, i.e. the algorithm has O(ε) probability of reaching the configuration

{x = γ = 1}. On the other hand, P[X1 = Γ1 = 1 |X0 = Γ0 = 1] = 1 − ε2/2, i.e. the

algorithm has just O(ε2) probability of leaving the configuration {x = γ = 1} once it is
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there. This probabilistic asymmetry implies that limε↘0 limn→∞P[Xn = Γn = 1] = 1.

Hence,

lim
ε↘0

lim
n→∞

T (x, γ, n) ≥ lim
ε↘0

(1− π{1}) = lim
ε↘0

(1− ε) = 1 .

In particular, for any δ > 0, there is ε > 0 with limn→∞ T (x, γ, n) ≥ 1−δ, so the algorithm

does not converge at all.

Hence, for this running example, ergodicity of the adaptive algorithm does not hold.

On the other hand, below we shall prove some theorems giving sufficient conditions to

ensure ergodicity. Along the way, we shall prove (Corollary 7) that the doubly-modified

running example is ergodic, provided p(n) → 0. We shall then prove (Corollary 16) that

the singly-modified running example is also ergodic, again provided that p(n) → 0.

5. Uniformly Converging Case.

Our next result requires that the convergence to π(·) of the various Pγ kernels all be

uniformly bounded (though we shall relax this condition in Section 6). It also requires that

the amount of adapting diminishes as n →∞, which can be achieved either by modifying

the parameters by smaller and smaller amounts (as in the Adaptive Metropolis algorithm

of Haario et al., 2001), or by doing the adaptations with smaller and smaller probability (as

in our singly-modified running example, above, with adaptation probabilities p(n) → 0).

In either case, it is still permitted to have an infinite total amount of adaptation (e.g., to

have
∑

n p(n) = ∞ in our example, or to have
∑

n Dn = ∞ in the theorem below). In

particular, there is no requirement that the Γn converge.

Theorem 5. Consider an adaptive MCMC algorithm, on a state space X , with adaptation

index Y, so π(·) is stationary for each kernel Pγ for γ ∈ Y. Assume that:

(a) [Simultaneous Uniform Ergodicity] For all ε > 0, there is N = N(ε) ∈ N such

that ‖PN
γ (x, ·)− π(·)‖ ≤ ε for all x ∈ X and γ ∈ Y; and

(b) [Diminishing Adaptation] limn→∞Dn = 0 in probability, where

Dn = supx∈X ‖PΓn+1(x, ·)− PΓn(x, ·)‖ is a Gn+1-measurable random variable

(depending on the random values Γn and Γn+1).

Then the adaptive algorithm is ergodic.
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Proof. Let ε > 0. Choose N = N(ε) as in condition (a). Then let Hn = {Dn ≥ ε/N2},

and use condition (b) to choose n∗ = n∗(ε) ∈ N large enough so that

P(Hn) ≤ ε/N , n ≥ n∗ . (2)

To continue, fix a “target time” K ≥ n∗+N . We shall construct a coupling which depends

on the target time K (cf. Roberts and Rosenthal, 2002), to prove that L(XK) ≈ π(·).

Define the event E =
⋂n+N

i=n+1 Hc
i . It follows from (2) that for n ≥ n∗, we have P(E) ≥

1−ε. By the triangle inequality and induction, on the event E we have supx∈X ‖PΓn+k
(x, ·)−

PΓn
(x, ·)‖ < ε/N for all k ≤ N , and in particular

‖PΓK−N
(x, ·)− PΓm

(x, ·)‖ < ε/N on E , x ∈ X , K −N ≤ m ≤ K . (3)

To construct the coupling, first construct the original adaptive chain {Xn} together

with its adaptation sequence {Γn}, starting with X0 = x and Γ0 = γ. We claim that

on E, we can construct a second chain {X ′
n}K

n=K−N such that X ′
K−N = XK−N , and

X ′
n ∼ PΓK−N

(X ′
n−1, ·) for K − N + 1 ≤ n ≤ K, and P[X ′

i = Xi for K − N ≤ i ≤ m] ≥

1− [m− (K −N)] ε/N for K −N ≤ m ≤ K.

Indeed, the claim is trivially true for m = K − N . Suppose it is true for some

value m. Then conditional on Gm and the event that X ′
i = Xi for K − N ≤ i ≤ m,

we have Xm+1 ∼ PΓm
(Xm, ·) and X ′

m+1 ∼ PΓK−N
(Xm, ·). It follows from (3) that the

conditional distributions of Xm+1 and X ′
m+1 are within ε/N of each other. Hence, by e.g.

Roberts and Rosenthal (2004, Proposition 3(g)), we can ensure that X ′
m+1 = Xm+1 with

probability ≥ 1− ε/N . It follows that P[X ′
i = Xi for K−N ≤ i ≤ m+1] ≥ P[X ′

i = Xi for

K−N ≤ i ≤ m] (1−ε/N) ≥
(
1− [m−(K−N)] ε/N

)
(1−ε/N) ≥ 1− [m+1−(K−N)] ε/N .

The claim thus follows by induction.

In particular, this shows that on E, P[X ′
K = XK ] ≥ 1− (K − (K −N))ε/N = 1− ε.

That is, P[X ′
K 6= XK , E] < ε.

On the other hand, conditioning on XK−N and using condition (a), we have ‖PN
ΓK−N

(XK−N , ·)−

π(·)‖ < ε. Integrating over the distribution of XK−N gives that ‖L(X ′
K) − π(·)‖ < ε. It

follows (again from e.g. Roberts and Rosenthal, 2004, Proposition 3(g)) that we can con-

struct Z ∼ π(·) such that P[X ′
K 6= Z] < ε. Furthermore, we can construct all of {Xn},
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{X ′
n}, and Z jointly on a common probability space, by first constructing {Xn} and {X ′

n}

as above, and then constructing Z conditional on {Xn} and {X ′
n} from any conditional

distribution satisfying that Z ∼ π(·) and P[X ′
K 6= Z] < ε. (This joint construction can

always be achieved, though it may require enlarging the underlying probability space; see

e.g. Fristedt and Gray, 1997, p. 430.)

We then have

P[XK 6= Z] ≤ P[XK 6= X ′
K , E] + P[X ′

K 6= Z, E] + P[Ec] < ε + ε + ε = 3 ε .

Hence, ‖L(XK)− π(·)‖ < 3 ε, i.e. T (x, γ, K) < 3 ε. Since K ≥ n∗ + N was arbitrary, this

means that T (x, γ, K) ≤ 3ε for all sufficiently large K. Hence, limK→∞ T (x, γ, K) = 0.

Even with the uniformity assumption (a), Theorem 5 still applies in many situations,

as the following corollaries show. We begin with the case where X and Y are finite:

Corollary 6. Suppose an adaptive MCMC algorithm satisfies Diminishing Adaptation,

and also that each Pγ is ergodic for π(·) (i.e., limn→∞ ‖Pn
γ (x, ·)− π(·)‖ = 0 for all x ∈ X

and γ ∈ Y). Suppose further that X and Y are finite. Then the adaptive algorithm is

ergodic.

Proof. Let ε > 0. By assumption, for each x ∈ X and γ ∈ Y, there is N(x, γ, ε)

such that ‖PN(x,γ,ε)
γ (x, ·)− π(·)‖ ≤ ε. Letting N(ε) = maxx∈X , γ∈Y N(x, γ, ε), we see that

condition (a) of Theorem 5 is satisfied. The result follows.

We can apply the above corollary to one version of our running example:

Corollary 7. The doubly-modified running example (presented in Section 4 above) is

ergodic provided that the adaptation probabilities p(n) satisfy limn→∞ p(n) = 0.

Proof. In that example, each Pγ is π-irreducible and aperiodic, and hence ergodic for

π(·). Furthermore, both X and Y are finite. Also, Diminishing Adaptation holds since

‖PΓn+1(x, ·)− PΓn(x, ·)‖ ≤ p(n) → 0. Hence, the result follows from Corollary 6.
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Often, X and Y will not be finite. However, under compactness and continuity as-

sumptions, similar reasoning applies:

Corollary 8. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adaptation

property, and also that each Pγ is ergodic for π(·). Suppose further that X ×Y is compact

in some topology, with respect to which the mapping (x, γ) 7→ T (x, γ, n) is continuous for

each fixed n ∈ N. Then the adaptive algorithm is ergodic.

Proof. Fix ε > 0. For n ∈ N, let Wn ⊆ X × Y be the set of all pairs (x, γ) such that

‖Pn
γ (x, ·)− π(·)‖ < ε. Since each Pγ is ergodic, this means that every pair (x, γ) is in Wn

for all sufficiently large n. In particular,
⋃

nWn = X × Y.

On the other hand, by continuity, each Wn is an open set. Thus, by compact-

ness, there is a finite set {n1, . . . , nr} such that Wn1 ∪ . . . ∪ Wnr = X × Y. Letting

N = N(ε) = max[n1, . . . , nr], we see that condition (a) of Theorem 5 is satisfied. The

result follows.

In applying Corollary 8, the following lemma is sometimes useful:

Lemma 9. Suppose the mapping (x, γ) 7→ Pγ(x, ·) is continuous with respect to a product

metric space topology, meaning that for each x ∈ X , γ ∈ Y, and ε > 0, there is δ =

δ(x, γ, ε) > 0 such that ‖Pγ′(x′, ·) − Pγ(x, ·)‖ < ε for all x′ ∈ X and γ′ ∈ Y satisfying

dist(x′, x) + dist(γ′, γ) < δ (for some distance metrics on X and Y). Then for each n ∈ N,

the mapping (x, γ) 7→ T (x, γ, n) is continuous.

Proof. Given x ∈ X , γ ∈ Y, n ∈ N, and ε > 0, find δ > 0 with ‖Pγ′(x′, ·)−Pγ(x, ·)‖ < ε/n

whenever dist(x′, x)+dist(γ′, γ) < δ. Then given x′ and γ′ with dist(x′, x)+dist(γ′, γ) < δ,

as in the proof of Theorem 5 we can construct X ′
n and Xn with X ′

n ∼ Pn
γ′(x

′, ·) and

Xn ∼ Pn
γ (x, ·), such that P[X ′

n = Xn] ≥ 1− ε. Hence, ‖L(X ′
n)−L(Xn)‖ < ε. The triangle

inequality then implies that ‖L(X ′
n)−π(·)‖ and ‖L(Xn)−π(·)‖ are within ε of each other,

thus giving the result.
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The required continuity conditions follow if the transition kernels have bounded den-

sities with continuous dependencies:

Corollary 10. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adap-

tation property, and also that each Pγ is ergodic for π(·). Suppose further that for each

γ ∈ Y, Pγ(x, dz) = fγ(x, z) λ(dz) has a density fγ(x, ·) with respect to some finite refer-

ence measure λ(·) on X . Finally, suppose the fγ(x, z) are uniformly bounded, and that

for each fixed z ∈ X , the mapping (x, γ) 7→ fγ(x, z) is continuous with respect to some

product metric space topology, with respect to which X ×Y is compact. Then the adaptive

algorithm is ergodic.

Proof. We have (e.g. Roberts and Rosenthal, 2004, Proposition 3(f)) that

‖Pγ′(x′, ·)− Pγ(x, ·)‖ =
1
2

∫
X

[M(y)−m(y)]λ(dy) , (4)

where M(y) = max[fγ(x, y), fγ′(x′, y)] and m(y) = min[fγ(x, y), fγ′(x′, y)]. By continuity

of the mapping (x, γ) 7→ fγ(x, y), and the finiteness of λ(·), it follows from the Bounded

Convergence Theorem that the mapping (x, γ) 7→ Pγ(x, ·) is continuous. The result then

follows by applying Lemma 9 to Corollary 8.

Metropolis-Hastings algorithms do not have densities (since they have positive prob-

ability of rejecting the proposal and not moving). In particular, the expression in (4) does

not diminish to 0 as x′ approaches x. However, if the proposal kernels have densities, then

a similar result still holds:

Corollary 11. Suppose an adaptive MCMC algorithm satisfies the Diminishing Adap-

tation property, and also that each Pγ is ergodic for π(·). Suppose further that for each

γ ∈ Y, Pγ represents a Metropolis-Hastings algorithm with proposal kernel Qγ(x, dy) =

fγ(x, y) λ(dy) having a density fγ(x, ·) with respect to some finite reference measure λ(·)

on X , with corresponding density g for π(·) so that π(dy) = g(y) λ(dy). Finally, sup-

pose that the fγ(x, y) are uniformly bounded, and for each fixed y ∈ X , the mapping

(x, γ) 7→ fγ(x, y) is continuous with respect to some product metric space topology, with

respect to which X × Y is compact. Then the adaptive algorithm is ergodic.
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Proof. In this case, the probability of accepting a proposal from x is given by:

aγ(x) =
∫
X

min
[
1,

g(y) fγ(y, x)
g(x) fγ(x, y)

]
fγ(x, y)λ(dy) ,

which is a jointly continuous function of (x, γ) ∈ X × Y by the Bounded Convergence

Theorem. We decompose Pγ(x, ·) as:

Pγ(x, dz) = [1− aγ(x)] δx(dz) + pγ(x, z) λ(dz)

where pγ(x, z) is jointly continuous in x and γ. Iterating this, we can write the n-step

transition law as:

Pn
γ (x, dz) = [1− aγ(x)]n δx(dz) + pn

γ (x, z) λ(dz)

for appropriate jointly continuous pn
γ (x, z).

We can assume without loss of generality that aγ(x) = 1 whenever λ{x} > 0, i.e.

that δx(·) and π(·) are orthogonal measures. (Indeed, if λ{x} > 0, then we can modify

the proposal densities so as to include [1− aγ(x)] δx(dz) as part of pγ(x, z) λ(dz).) It then

follows that:

‖Pn
γ (x, ·)− π(·)‖ = [1− aγ(x)]n +

1
2

∫
X
|pn(x, z)− g(z)|λ(dz) .

This quantity is jointly continuous in x and γ, again by the Bounded Convergence Theo-

rem. Moreover, by ergodicity, it converges to zero as n →∞ for each fixed x and γ. Hence,

by compactness, the convergence is uniform in x and γ, i.e. condition (a) of Theorem 5 is

satisfied. The result follows.

Remark. The strong conditions imposed in Corollary 10 and Corollary 11 can of course

be relaxed using more specialised arguments in specific examples.

We now consider the Adaptive Metropolis algorithm of Haario et al. (2001). In that

algorithm, it is assumed that X ⊆ Rd is compact, with finite reference measure λ(·) given

by Lebesgue measure restricted to X . Also, the proposal kernels are multivariate normal,
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of the form Qγ(x, ·) = MV N(x, γ) where γ is a non-negative-definite d× d matrix. This

ensures that each Pγ is ergodic for π(·), and that the density mappings (x, γ) 7→ fγ(x, y) are

continuous and bounded. Furthermore, the specific details of their algorithm (including

that X is bounded, and that ε Id is added to each empirical covariance matrix at each

iteration of the algorithm) ensure (their eqn. (14)) that there are c1, c2 > 0 such that

c1 Id ≤ γ ≤ c2 Id (i.e., both γ − c1 Id and c2 Id − γ are non-negative-definite) for all γ,

which implies that we can take Y (and hence also X × Y) to be compact. Corollary 11

therefore implies:

Corollary 12. The Adaptive Metropolis algorithm of Haario et al. (2001) is ergodic.

This provides an alternative analysis to the mixingale approach of Haario et al. (2001).

Haario et al. actually prove a law of large numbers for their algorithm (for bounded func-

tionals), which we consider in Section 9 below.

Remark. For the Adaptive Metropolis algorithm, Haario et al. (2001) in fact show

(their Corollary 3) that the covariance matrices stabilise, i.e. there is γ∗ ∈ Y such that

Γn → γ∗ with probability 1. On the other hand, Theorem 5 and its corollaries (aside from

Corollary 12) apply even in cases where {Γn} has infinite oscillation.

6. Non-Uniformly Converging Case.

In this section, we relax the uniform convergence rate condition (a) of Theorem 5.

Indeed, an examination of the proof of Theorem 5 shows that condition (a) was used only

to ensure that PN
ΓK−N

(XK−N , ·) was close to π(·). This suggests that we can generalise to

the case where PN
ΓK−N

(XK−N , ·) is “usually” close to π(·). To proceed, for ε > 0, define

the “ε convergence time function” Mε : X × Y → N by

Mε(x, γ) = inf{n ≥ 1 : ‖Pn
γ (x, ·)− π(·)‖ ≤ ε} .

If each individual Pγ is ergodic, then Mε(x, γ) < ∞.

14



Theorem 13. Consider an adaptive MCMC algorithm with Diminishing Adaptation

(i.e., limn→∞ supx∈X ‖PΓn+1(x, ·)−PΓn(x, ·)‖ = 0 in probability). Let x∗ ∈ X and γ∗ ∈ Y.

Then limn→∞ T (x∗, γ∗, n) = 0 provided that for all ε > 0, the sequence {Mε(Xn,Γn)}∞n=0

is bounded in probability given X0 = x∗ and Γ0 = γ∗, i.e. for all δ > 0, there is N ∈ N

such that P[Mε(Xn,Γn) ≤ N |X0 = x∗,Γ0 = γ∗] ≥ 1− δ for all n ∈ N.

Proof. From the proof of Theorem 5, we conclude that for all ε > 0 there is n∗ ∈ N

such that for all N ∈ N and all K ≥ n∗+ N , we can simultaneously construct the original

chain {Xn}, and Z ∼ π(·), such that (writing G0 for {X0 = x∗, Γ0 = γ∗})

T (x∗, γ∗, n) < 3 ε + P
[
Mε(Xn,Γn) > N | G0

]
.

Find m ∈ N such that P[Mε(Xn,Γn) > m | G0] ≤ ε for all n ∈ N. Then setting N = m,

we conclude that

T (x∗, γ∗,K) ≤ 3 ε + ε = 4 ε , K ≥ n∗ + m .

The result follows.

We shall use the following two easily-verified lemmas. The first follows by induction,

the second by Markov’s inequality.

Lemma 14. Let {en}∞n=0 be a sequence of real numbers. Suppose en+1 ≤ λ en+b for some

0 ≤ λ < 1 and 0 ≤ b < ∞, for all n = 0, 1, 2, 3, . . .. Then supn en ≤ max[e0, b/(1− λ)].

Lemma 15. Let {Wn}∞n=0 be a sequence of non-negative random variables. If supn E(Wn) <

∞, then {Wn} is bounded in probability.

We can then prove:

Corollary 16. The singly-modified running example (presented in Section 4) is ergodic

provided that the adaptation probabilities p(n) satisfy limn→∞ p(n) = 0.
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Proof. Let V (γ) = exp(γ). Then it is easily verified (since the probability of accepting

from proposal Qγ(x, ·) is always ≤ K/2γ) that E[V (Γn+1) |Γn = γ] ≤ λ V (γ) + b1C(γ)

where λ = 2/e, C = {γ ∈ Y : γ ≤ γ∗}, γ∗ = K(e2 − 1)/2, and b = (1 − λ)γ∗ + 1. Hence,

E[V (Γn+1)] ≤ λE[V (Γn)]+b. It follows from Lemma 14 that supn E[V (Γn)] ≤ b/(1−λ) <

∞. Since γ ≤ V (γ), supn E[Γn] < ∞, so {Γn} is bounded in probability by Lemma 15.

But since each set {(x, γ) : x ∈ X , γ ≤ G} is finite, and since each individual Mε(x, γ) is

finite, it follows that {Mε(Xn,Γn)} is also bounded in probability, for each ε > 0. The

result then follows from Theorem 13.

7. Connections to Drift and Minorisation Conditions.

The quantity Mε(x, γ) is rather abstract. It can be made somewhat more concrete

using the theory of quantitative convergence rate bounds (e.g. Meyn and Tweedie, 1994;

Rosenthal, 1995, 2002; Roberts and Tweedie, 1999; Baxendale, 2005). For example, The-

orem 2.3 of Meyn and Tweedie (1994) implies the following:

Proposition 17. Consider a Markov chain kernel P on a state space (X ,F) with station-

ary probability distribution π(·). Suppose there is C ∈ F , V : X → [1,∞), δ > 0, λ < 1,

and b < ∞, such that supC V = v < ∞, and

(i) [strongly aperiodic minorisation condition] there exists a probability measure ν(·) on C

with P (x, ·) ≥ δ ν(·) for all x ∈ C; and

(ii) [geometric drift condition] PV ≤ λ V + b1C , i.e. (PV )(x) ≤ λ V (x) + b1C(x) for all

x ∈ X (where (PV )(x) = E[V (X1) |X0 = x]).

Then there are K < ∞ and ρ < 1, depending only on the constants δ, λ, b, and v, such

that ‖Pn
γ (x, ·)− π(·)‖ ≤ K V (x) ρn for all γ ∈ Y.

To make use of this Proposition, we consider a notion related to the simultaneous

geometrically ergodicity studied by Roberts, Rosenthal, and Schwartz (1998). Say a family

{Pγ}γ∈Y of Markov chain kernels is simultaneously strongly aperiodically geometrically

ergodic if there is C ∈ F , V : X → [1,∞), δ > 0, λ < 1, and b < ∞, such that

supC V = v < ∞, and

(i) for each γ ∈ Y, there exists a probability measure νγ(·) on C with Pγ(x, ·) ≥ δ νγ(·) for
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all x ∈ C; and

(ii) (Pγ)V ≤ λ V + b1C .

We then have:

Theorem 18. Consider an adaptive MCMC algorithm with Diminishing Adaptation, such

that the family {Pγ}γ∈Y is simultaneously strongly aperiodically geometrically ergodic with

E[V (X0)] < ∞. Then the adaptive algorithm is ergodic.

Proof. By Theorem 13 and Lemma 15 and Proposition 17, it suffices to show that

supn E[V (Xn)] < ∞. Now, we have by assumption that (Pγ)V ≤ λ V + b1C for all γ ∈ Y,

so E[V (Xn+1) |Xn = x, Γn = γ] ≤ λ V (x) + b. Integrating over the distribution of Γn,

we conclude that E[V (Xn+1) |Xn = x] ≤ λ V (x) + b. Hence, from the double-expectation

formula, E[V (Xn+1)] ≤ λE[V (Xn)] + b. Then, from Lemma 14,

supn E[V (Xn)] ≤ max
[
E[V (X0)], b/(1− λ)

]
< ∞.

Remark. In Theorem 18, the strong aperiodicity condition νγ(C) = 1 can be dropped

if infx6∈C V (x) > 2b/(1− λ) (Rosenthal, 1995).

The results of Meyn and Tweedie (1994) and Rosenthal (1995) give geometric quanti-

tative bounds on convergence, which is quite a strong property. For present purposes, all

that is required is that M(x, γ) ≤ V (x) a(n) where a(n) → 0 (at any rate), uniformly in

γ. So, the hypotheses of Theorem 18 are overly strong in this sense.

To weaken these hypotheses, we consider polynomial ergodicity. While some results

about polynomial ergodicity (e.g. Jarner and Roberts, 2002; Fort and Moulines, 2003)

do not provide explicit quantitative convergence bounds, Theorems 3 and 4 of the paper

of Fort and Moulines (2000) do. To make use of their result, call a family {Pγ}γ∈Y of

Markov chain kernels simultaneously polynomially ergodic if each Pγ is π-irreducible with

stationary distribution π(·), and there is C ∈ F and m ∈ N and δ > 0 and probability

measures νγ(·) on X such that π(C) > 0, and Pm
γ (x, ·) ≥ δ νγ(·) for all x ∈ C and

γ ∈ Y, and there is q ∈ N and measurable functions V0, V1, . . . , Vk : X → (0,∞), such

that for k = 0, 1, . . . , q − 1, there are 0 < αk < 1, bk < ∞, and ck > 0 such that:
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(PγVk+1)(x) ≤ Vk+1(x) − Vk(x) + bk 1C(x) for x ∈ X and γ ∈ Y; Vk(x) ≥ ck for x ∈ X ;

Vk(x)−bk ≥ αk Vk(x) for x ∈ X \C; and supC Vq < ∞ and π(V β
q ) < ∞ for some 0 < β ≤ 1.

These conditions are rather technical, however they are weaker than assuming geometric

ergodicity. Analogous to Theorem 18, we then have the following:

Theorem 19. Consider an adaptive MCMC algorithm with Diminishing Adaptation,

such that the family {Pγ}γ∈Y is simultaneously polynomially ergodic. Then the adaptive

algorithm is ergodic.

Continuing in this direction, we note that Theorem 13.0.1 of Meyn and Tweedie

(1993) indicates that to merely prove convergence (as opposed to geometric convergence),

it suffices to have an even weaker drift condition of the form PV ≤ V −1+b1C . So, perhaps

it suffices for the validity of adaptive MCMC algorithms that such drift conditions hold

uniformly for all Pγ . Unfortunately, the available results (e.g. Meyn and Tweedie, 1993)

appear not to provide any explicit quantitative bounds on convergence. Furthermore,

conditional on failing to couple, the sequence {Eγ [V (Xn)]} may not remain bounded in

probability even for a fixed chain Pγ (see e.g. Pemantle and Rosenthal, 1998), which

necessitates the additional assumption that the sequence {V (Xn)} remains bounded in

probability for the adaptive chain. We have not yet been able to draw any firm conclusions

based only on these weakest drift conditions, so we state this as an open problem:

Open Problem 20. Consider an adaptive MCMC algorithm with Diminishing Adapta-

tion, with C ∈ F , V : X → [1,∞), δ > 0, and b < ∞, with supC V = v < ∞, and:

(i) for each γ ∈ Y, there exists a probability measure νγ(·) on C with Pγ(x, ·) ≥ δ νγ(·) for

all x ∈ C; and

(ii) PγV ≤ V − 1 + b1C for all γ ∈ Y.

Suppose further that the sequence {V (Xn)}∞n=0 is bounded in probability, given X0 = x∗

and Γ0 = γ∗. Does this imply that limn→∞ T (x∗, γ∗, n) = 0?

18



8. Relation to Recurrence.

The above results indicate that an adaptive MCMC algorithm with Diminishing Adap-

tation is ergodic provided that it is “recurrent in probability” in some sense. This leads to

the following recurrence-related open problem:

Open Problem 21. Consider an adaptive MCMC algorithm with Diminishing Adap-

tation. Let x∗ ∈ X and γ∗ ∈ Y. Suppose that for all ε > 0, there is m ∈ N such that

P[Mε(Xn,Γn) < m i.o. |X0 = x∗,Γ0 = γ∗] = 1 (where “i.o.” means “infinitely often”, i.e.

for an infinite number of n ∈ N). Does this imply that limn→∞ T (x∗, γ∗, n) = 0?

It may be possible to approach Open Problem 21 along similar lines to the proof of

Theorem 13. The difficulty is that, even if Mε(Xn,Γn) < m infinitely often, this does not

control the probability that Mε(Xn,Γn) < m for a specific time like n = K − N . Thus,

while we can approximately couple Xn to π(·) for infinitely many times n, it is not clear

that we can accomplish this at a particular time n = K. (This is related to the notion of

faithfulness of couplings; see Rosenthal, 1997 and Häggström, 2001.)

Related to recurrence, we also have the following.

Example 22. (“Stairway to Heaven”) Let X = {(i, j) ∈ N ×N : i = j or i = j + 1}

be an infinite staircase, with target distribution given by π(i, j) ∝ j−2. Given a state x,

write h for the (left or right) horizontal neighbour of x, v for the (up or down) vertical

neighbour of x, hv for the vertical neighbour of the horizontal neighbour of x, and vh for

the horizontal neighbour of the vertical neighbour of x. [Special case: if x = (1, 1), then

take v = (1, 1).]

The adaptive space is Y = {0, 1}, consisting of the following two “exclusive Metropolis

within Gibbs” algorithms specifying both where to move and how to adapt, from the

current state x = Xn and current adaptation parameter γ = Γn:

γ = 0: Let α = min[1, π(hv) / π(h)]. With probability α move to hv (and leave Γn+1 =

0), otherwise move to h (and set Γn+1 = 1). [Intuitive description: First move

to horizontal neighbour h. Then, propose moving from h to hv; accept proposal

with probability α.]
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γ = 1: Let α = min[1, π(v) / π(x)]. With probability α move to vh (and leave Γn+1 = 1),

otherwise move to h (and set Γn+1 = 0). [Intuitive description: First propose

moving to vertical neighbour v; accept proposal with probability α. Either way,

then move to current horizontal neighbour.]

It is easily checked that both P0 and P1 preserve stationarity of π(·), and are irreducible

and aperiodic.

On the other hand, if the chain is at Xn = (i, i), and Γn = 0, then

P[Xn+1 6= (i + 1, i + 1)] = 1− π((i + 1, i + 1)) / π((i + 1, i))

= 1− i2/(i + 1)2 = 1− i2/(i2 + 2i + 1) = (2i + 1)/(i2 + 2i + 1) � 2/i .

Furthermore, even if the chain rejects, so Xn+1 = (i + 1, i), then also Γn+1 = 1, and the

chain will then attempt to move up on the next step, thus continuing its voyage up the

staircase. In other words, the only way the voyage up the staircase can be reversed is if the

chain rejects on two consecutive steps, which has probability � 2/i2. Since
∑

i 2/i2 < ∞, it

follows from the Borel-Cantelli Lemma (e.g. Rosenthal, 2000, Theorem 3.4.2) that P[X(1)
n

is non-decreasing] > 0. Hence, P[limn→∞X
(1)
n = ∞] > 0, i.e. there is positive probability

that the chain will climb the infinite stairway (in search for “all that glitters is gold”)

without ever rejecting. Furthermore, even if the chain does reject twice in succession,

then it will decrease to (1, 1) and then begin its attempted climb again. We conclude that

P[limm→∞X
(1)
m = ∞] = 1, i.e. the chain is transient.

Remark. In the above example, one possible drift function for the γ = 0 algorithm is

given by V (i, i) = 4i and V (i+1, i) = i. For γ = 1, one possible drift function is V (i, i) = i

and V (i + 1, i) = 4i. However, simultaneous drift conditions cannot be found.
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9. Laws of Large Numbers.

When MCMC is used in practice, often entire sequences X1, X2, . . . , Xn of Markov

chain output are combined together to form averages of the form 1
n

∑n
i=1 g(Xi) to estimate

the mean π(g) =
∫

g(x) π(dx) of a function g : X → R. To justify such approximations,

we require laws of large numbers for ergodic averages of the form:∑n
i=1 g(Xi)

n
→ π(g)

either in probability or almost surely, for suitably regular functions g. For traditional

MCMC algorithms this topic is well-studied, see e.g. Tierney (1994) and Meyn and Tweedie

(1993). For adaptive MCMC, this topic is dealt with in some detail in other papers in the

literature, under somewhat stronger assumptions than those used here (see in particular

Andrieu and Moulines, 2003).

In this section, we consider the extent to which laws of large numbers hold for adaptive

MCMC under weaker assumptions. We shall concentrate on the simultaneous uniform

ergodicity case, as in Theorem 5 above.

Theorem 23. [Weak Law of Large Numbers] Consider an adaptive MCMC algorithm.

Suppose that conditions (a) and (b) of Theorem 5 hold. Let g : X → R be a bounded

measurable function. Then for any starting values x ∈ X and γ ∈ Y, conditional on X0 = x

and Γ0 = γ we have ∑n
i=1 g(Xi)

n
→ π(g)

in probability as n →∞.

Proof. Assume without loss of generality that π(g) = 0. Let a = supx∈X |g(x)| < ∞.

Write Eγ,x for expectations with respect to the Markov chain kernel Pγ when started from

X0 = x, and write Pγ,x for the corresponding probabilities. Write E and P (without

subscripts) for expectations and probabilities with respect to the adaptive chain.

The usual law of large numbers for Markov chains (see e.g. Tierney, 1994) implies that

for each fixed x ∈ X and γ ∈ Y, limn→∞Eγ,x

∣∣ 1
n

∑n
i=1 g(Xi)

∣∣ → π(g) = 0. Condition (a)

implies that this convergence can be bounded uniformly over choices of x and γ, i.e. given
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ε > 0 we can find an integer N such that

Eγ,x

(∣∣∣∣∣
∑N

i=1 g(Xi)
N

∣∣∣∣∣
)

< ε , x ∈ X , γ ∈ Y .

In terms of this N , we use condition (b) to find n∗ ∈ N satisfying (2). The coupling

argument in the proof of Theorem 5 then implies that on the event E defined there (which

has probability ≥ 1− ε), for all n ≥ n∗, the adaptive chain sequence Xn+1, . . . , Xn+N can

be coupled with probability ≥ 1− ε with a corresponding sequence arising from the fixed

Markov chain PΓn
. In other words, since |g| ≤ a,

E

(
1
N

∣∣∣∣∣
n+N∑

i=n+1

g(Xi)

∣∣∣∣∣ ∣∣∣ Gn

)
≤ EΓn,Xn

(∣∣∣∣∣
∑N

i=1 g(Xi)
N

∣∣∣∣∣
)

+a ε+aP(Ec) ≤ (1+2a) ε . (5)

Now consider any integer T sufficiently large that

max
[
an∗

T
,
aN

T

]
≤ ε . (6)

Then (writing brc for the greatest integer not exceeding r) we have:

∣∣∣∣∣ 1T
T∑

i=1

g(Xi)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

n∗∑
i=1

g(Xi)

∣∣∣∣∣+
∣∣∣∣∣∣∣

1
bT−n∗

N c

bT−n∗
N c∑

j=1

1
N

N∑
k=1

g(Xn∗+(j−1)N+k)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
1
T

T∑
n∗+bT−n∗

N cN+1

g(Xi)

∣∣∣∣∣∣∣ . (7)

By (6), the first and last terms on the right-hand side of (7) are each ≤ ε. By (5), the

middle term is an average of terms each of which has absolute expectation ≤ (1 + 2a)ε.

Hence, taking expectations and using the triangle inequality, we have that

E

(∣∣∣∣∣T−1
T∑

i=1

g(Xi)

∣∣∣∣∣
)

≤ ε + (1 + 2a)ε + ε = ε(3 + 2a) .

Markov’s inequality then gives that

P

(∣∣∣∣∣T−1
T∑

i=1

g(Xi)

∣∣∣∣∣ ≥ ε1/2

)
≤ ε1/2(3 + 2a) .
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Since this holds for all sufficiently large T , and ε > 0 was arbitrary, the result follows.

On the other hand, a strong law does not hold under the conditions of Theorem 5:

Example 24. We begin with the “One-Two” version of the Running Example used in

Example 4, with the parameters a and b chosen so that limn→∞P[Xn = 1] = p for some

p > π{1}. Let {Ik}∞k=0 be a sequence of independent binary variables, with P[Ik = 1] = 1/k

and P[Ik = 0] = 1− 1/k.

Consider the following new adaptation scheme. Set Γ0 = Γ1 = Γ2 = 1 (say). Then

for each iteration n ≥ 3, find k ∈ N with 2k2
+ 1 ≤ n ≤ 2(k+1)2 . If Ik = 1 then at time n

we proceed according to the One-Two adaptation scheme (i.e., set Γn = 2 if the previous

proposal was accepted, otherwise set Γn = 1). If Ik = 0 then we simply set Γn = 1

(regardless of whether the previous proposal was accepted or rejected).

This scheme ensures that the probability of adaptation at any particular iteration

n goes to 0 as n → ∞, so that condition (b) of Theorem 5 is satisfied. Also, since X

and Y are finite, and each Pγ is irreducible and aperiodic, condition (a) of Theorem 5 is

satisfied. On the other hand, with probability 1, there will still be an infinite number of k

with Ik = 1, say Ik1 = Ik2 = . . . = 1, so the fully adaptive strategy will still be adopted

infinitely often.

Now, as k →∞, we have that

1
2k2

2k2∑
i=1

1(Xi = 1) ≈ 1
2k2 − 2(k−1)2

2k2∑
i=2(k−1)2+1

1(Xi = 1) .

It follows that along the subsequence {2(ki)
2},

lim
i→∞

1
2(ki)2

2(ki)
2∑

i=1

1(Xi = 1) = p > π{1} .

Hence, limn→∞
1
n

∑n
i=1 1(Xi = 1) 6= π{1}, i.e. a strong law of large numbers fails for the

function g(x) = 1(x = 1).
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10. Discussion.

This paper has investigated the validity of adaptive MCMC algorithms. We empha-

sised (Example 4) that natural-seeming adaptive schemes may destroy convergence. On

the other hand, we showed (Theorems 5 and 13) that under the assumption of Diminish-

ing Adaptation, together with some sort of near-uniform control of the convergence rates,

adaptive MCMC can be shown to be ergodic. We also provided (Theorem 23) a weak law

of large numbers for bounded functions in this general setting.

This leads to the question of what adaptations should be used in practice. We believe

the most natural and useful adaptive MCMC scheme proposed to date is the Adaptive

Metropolis algorithm of Haario et al. (2001) discussed earlier. We have performed simu-

lations on variations of this algorithm (by means of a Cholesky Decomposition), and have

found its performance to be quite promising and worthy of further investigation.

Now, algorithms which adapt acceptance probabilities are clearly limited by the crude-

ness of such a global criterion. More ambitious schemes might involve adapting acceptance

probabilities in different ways in different parts of the state space. For example, a proposal

distribution might be of the form Yn+1 ∼ N(x, σ2
x), where σ2

x is a function of the current

state x involving unknown parameters, e.g. σ2
x = ea(1+|x|)b. The parameters (e.g. a and b)

can then be modified adaptively based on the chain’s previous output, provided only that

Diminishing Adaption and “convergence time bounded in probability” properties hold. We

have done some simulations with this scheme for simple one-dimensional target distribu-

tions, and found it to be very promising; we are currently considering higher-dimensional

analogues.

Another simple adaptation scheme is to simultaneously run two chains {Xn} and

{X ′
n}, and have the chain {Xn} adapt its values of {Γn} based on information learned not

from {Xn} itself, but rather from {X ′
n}. If the updates of {X ′

n} are made independently of

the values of {Xn}, then the {Γn} will also be chosen independently of the {Xn}, so that

{Xn} will preserve stationary by Proposition 1. This represents a sort of generalisation of

the traditional scheme of first doing a “trial run” to tune the parameters, and then basing

inferences on a non-adaptive main run after the parameters are tuned. In this case, the

“trial run” {X ′
n} continues simultaneously with the “main run” {Xn}, and the main run
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continues to tune itself – independently of its own chain values – as it proceeds.

Ongoing work is currently investigating these and related ideas. We look forward

to continuing these investigations, and to seeing many significant advances in adaptive

MCMC methodology in the years ahead.
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