# SOME INEQUALITIES FOR REVERSIBLE MARKOV CHAINS 

DAVID J. ALDOUS

## 1. Introduction

One of the most important results about finite ergodic Markov chains is the convergence of transition probabilities to the stationary distribution. The object of this paper is to investigate relations between the time taken to approach stationarity and certain properties of mean hitting times. Our main result, Theorem 5, shows that for reversible chains the following (informally stated) properties are equivalent.
(i) Convergence to stationarity is rapid.
(ii) Mean hitting times on single states are nearly uniform in the initial state.
(iii) Mean hitting times on a set $A$ of states can be bounded in terms of the stationary measure of $A$.
Theorem 6 gives weaker results for general (that is, non-reversible) chains.
Let $X_{i}$ be an ergodic Markov chain in continuous time, with finite state space $I=\{i, j, k, \ldots\}$. Let $Q=\left(q_{i, j}\right)$ be the matrix of transition rates, let $p_{i, j}(t) \equiv p_{t}(i, j)$ be the transition probabilities, and let $\pi$ be the stationary distribution. The total variation distance between distributions on $I$ is

$$
\begin{equation*}
\|\mu-\lambda\|=\frac{1}{2} \sum\left|\mu_{j}-\lambda_{j}\right|=\sup _{A}|\mu(A)-\lambda(A)| . \tag{1}
\end{equation*}
$$

Because $I$ is finite, the classical result on convergence to stationarity implies that

$$
\begin{equation*}
\left\|p_{t}(i, \cdot)-\pi(\cdot)\right\| \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{2}
\end{equation*}
$$

Recall that $X_{t}$ is called reversible if

$$
\begin{equation*}
\pi_{i} p_{i, j}(t)=\pi_{j} p_{j, i}(t), \quad i, j \in I, \quad t \geqslant 0 \tag{3}
\end{equation*}
$$

Because $I$ is finite, this is equivalent to

$$
\pi_{i} q_{i, j}=\pi_{j} q_{j, i}, \quad i, j \in I
$$

See $[7,8]$ for discussions of reversibility.
We now formalise properties (i)-(iii) by defining several parameters. Let

$$
\tau_{1}=\min \left\{t:\left\|p_{t}(i, \cdot)-\pi(\cdot)\right\| \leqslant(2 e)^{-1} \text { for all } i\right\}<\infty \quad \text { by }(2)
$$

This research was supported in part by N.S.F. Grant MCS 80-02698.

Thus $\tau_{1}$ measures the time until the transition probabilities are close in total variation to the stationary distribution: the constant $(2 e)^{-1}$ has no special significance beyond algebraic convenience. Another way to measure the time taken to approach stationarity is to consider stopping times for which the stopped chain has exactly stationary distribution, and this suggests defining $\tau_{2}=\max \alpha_{i}$, where
(4) $\quad \alpha_{i}=\inf \left\{E_{i} T_{i}: T_{i}\right.$ a stopping time such that $P_{i}\left(X_{T_{i}}=j\right)=\pi(j)$ for all $\left.j\right\}$.

It is not quite obvious that such stopping times exist; a construction is given later.
The next parameters formalise the properties (ii) and (iii). We define

$$
\tau_{3}=\max _{i, k} \sum_{j} \pi_{j}\left|E_{i} H_{j}-E_{k} H_{j}\right|, \quad \tau_{4}=\max _{i, A} \pi(A) E_{i} H_{A}
$$

Here $H_{A}=\inf \left\{t: X_{t} \in A\right\}$ is the first hitting time on a subset $A$ of $I$. We can now state our main result.

5 Theorem. There exist universal constants $C_{r, s}$ such that $\tau_{r} \leqslant C_{r, s} \tau_{s}$, $1 \leqslant r, s \leqslant 4$, for every reversible chain.

The significance of Theorem 5 is qualitative-if one $\tau$ is small then so are the others, and so properties (i)-(iii) are equivalent. Universal inequalities seem rather novel in Markov chain theory, but have been the subject of intensive research in martingale theory [4].

Theorem 5 extends partially to non-reversible chains. Let $\pi_{\min }=\min \pi_{i}$.
6 Theorem. There exist universal constants $K_{1}, K_{2}, K_{3}$ such that for every chain

$$
\begin{gathered}
\tau_{2} \leqslant K_{1} \tau_{1}\left(1+\log \left(1 / \pi_{\min }\right)\right), \quad \tau_{4} \leqslant \tau_{3} \leqslant K_{2} \tau_{2} \\
\tau_{2} \leqslant K_{3} \tau_{4}\left(1+\log \left(1 / \pi_{\min }\right)\right)
\end{gathered}
$$

Examples 45 and 46 will show that the log terms cannot be omitted, and that there is no similar upper bound for $\tau_{1}$ in terms of the other parameters.

Theorems 5 and 6 remain valid for positive-recurrent chains on a countable state space; though here the parameters may be infinite. The condition $\tau_{1}<\infty$ is equivalent to

$$
\sup _{i} \sum_{j}\left|p_{i, j}(t)-\pi_{j}\right| \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

which is often called "strong ergodicity" [6] or "uniform ergodicity" [5] in the literature. So Theorem 5 shows that for a reversible chain each of the conditions $\tau_{r}<\infty$ is necessary and sufficient for this property. A general necessary and sufficient condition is that [6]

$$
\sup _{i} E_{i} H_{j}<\infty \quad \text { for some (respectively all) } j
$$

But Example 48 will show there is no universal inequality relating $\tau_{1}$ to $\sup E_{i} H_{j}$.
A classical way to analyse the transition probabilities of reversible chains is via
the spectral representation [7]

$$
\begin{equation*}
p_{i, j}(t)=\pi_{j}+\left(\frac{\pi_{j}}{\pi_{i}}\right)^{1 / 2} \sum_{r=1}^{N} u_{i}^{(r)} u_{j}^{(r)} e^{-t / \beta} r, \quad t \geqslant 0, \tag{7}
\end{equation*}
$$

where $0<\beta_{1} \leqslant \beta_{2} \leqslant \ldots \leqslant \beta_{N}$ and the $u_{i}^{(r)}$ are real numbers such that $\pi_{j}+\sum_{r}\left\{u_{j}^{(r)}\right\}^{2}=1$ for each $j$. So asymptotically $p_{i, j}(t) \approx \pi_{j}+\left(\frac{\pi_{j}}{\pi_{i}}\right)^{1 / 2} u_{i} u_{j} e^{-t / \beta}$, where $u_{i}=u_{i}^{(N)}$ and $\beta=\beta_{N}$. Thus $\beta$ determines the asymptotic rate of convergence to stationarity, whereas the parameters $\tau$ describe features of the non-asymptotic behaviour.

8 Proposition. For any reversible chain,
(a) $\beta \leqslant \tau_{1}$;
(b) $\tau_{1} \leqslant \beta\left(1+\frac{1}{2} \log \left(1 / \tau_{\text {min }}\right)\right)$.

Example 49 will show that the log term cannot be omitted.
Motivation for Theorem 5 came from the study of a particular chain, the random walk on the $d$-cube, discussed as Example 50. David Williams aroused my interest in this chain, and Jim Pitman observed that this chain had almost uniform mean hitting times.

A chain for which $\tau_{1}$ is small might be called rapidly mixing. Such chains have other properties: for example, first hitting times are approximately exponentially distributed [1].

## 2. Proofs

We decompose Theorems 5 and 6 into a series of lemmas (12, 15, 16, 21, 22, 23). Observations (9) and (10) and Lemma 11 are preliminaries. Let

$$
\Delta_{t}=\max _{i}\left\|p_{t}(i, \cdot)-\pi(\cdot)\right\|
$$

It is easy to verify that $\Delta_{t}$ is decreasing and that

$$
\begin{equation*}
\Delta_{s+t} \leqslant 2 \Delta_{s} \Delta_{t} \tag{9}
\end{equation*}
$$

By definition $\Delta_{\tau_{1}}=(2 e)^{-1}$, and so (9) implies that $\Delta_{n \tau_{1}} \leqslant e^{-n}$. This gives an exponential bound

$$
\begin{equation*}
\Delta_{t} \leqslant \exp \left(1-t / \tau_{1}\right), \quad t \geqslant 0 . \tag{10}
\end{equation*}
$$

Let time ( $t \leqslant T: X_{t} \in A$ ) be the random variable describing the length of time $X$ spends in set $A$ before time $T$.

11 Lemma. Suppose $T$ is a stopping time such that $P_{i}\left(X_{T}=j\right)=\pi(j)$ for all $j$. Then $E_{i} \operatorname{time}\left(t \leqslant T: X_{i}=i\right)=\pi_{i}\left(E_{i} T+E_{n} H_{i}\right)$.

Proof. Let $X_{0}=i$. Let $U_{1}$ be the time of the first hit on $i$ after $T$; inductively define $U_{n}$ analogously for the process restarted at time $U_{n-1}$. In this way the process $X_{t}$ is split into i.i.d. excursions of lengths $U_{1}, U_{2}, \ldots$. In each excursion, the length of time spent at $i$ is distributed as time $\left(t \leqslant T: X_{t}=i\right)$. Using the strong law of large numbers, the asymptotic proportion of time spent at $i$ is equal to $E_{i}$ time $\left(t \leqslant T: X_{t}=i\right) / E_{i} U_{1}$. But this asymptotic proportion is $\pi_{i}$. Since $E_{i} U_{1}=E_{i} T+E_{\pi} H_{i}$, the lemma follows.

12 Lemma. $\tau_{2} \leqslant C_{2,1} \tau_{1}$ for reversible chains.
Proof. Suppose that we can find $t_{0}$ and $\delta$ such that

$$
\begin{equation*}
p_{i, k}\left(t_{0}\right) \geqslant \delta \pi_{k}, \quad i, k \in I . \tag{13}
\end{equation*}
$$

Then given $i$ we can construct a stopping time $T$ taking values in $\left\{t_{0}, 2 t_{0}, 3 t_{0}, \ldots\right\}$ such that

$$
\begin{gathered}
P_{i}\left(T=n t_{0}\right)=\delta(1-\delta)^{n-1} \\
P\left(X_{T .} \in \cdot \mid T=n t_{0}, X_{(n-1) t_{0}}=j\right)=\pi
\end{gathered}
$$

and so

$$
\begin{equation*}
\tau_{2} \leqslant E_{i} T=t_{0} / \delta \tag{14}
\end{equation*}
$$

We now construct $t_{0}$ and $\delta$ satisfying (13).

$$
p_{i, k}\left(2 \tau_{1}\right)=\sum_{j} p_{i, j}\left(\tau_{1}\right) p_{j, k}\left(\tau_{1}\right)=\pi_{k} \sum_{j} p_{i, j}\left(\tau_{1}\right) p_{k, j}\left(\tau_{1}\right) / \pi_{j}
$$

by reversibility. Now by the Cauchy-Schwarz inequality

$$
\begin{aligned}
\left(\sum_{j} p_{i, j}\left(\tau_{1}\right) p_{k, j}\left(\tau_{1}\right) / \pi_{j}\right)^{1 / 2} & \geqslant \sum p_{i, j}^{1 / 2}\left(\tau_{1}\right) p_{k, j}^{1 / 2}\left(\tau_{1}\right) \geqslant \sum \min \left(p_{i, j}\left(\tau_{1}\right), p_{k, j}\left(\tau_{1}\right)\right) \\
& =1-\left\|p_{\tau_{1}}(i, \cdot)-p_{\tau_{1}}(k, \cdot)\right\| \geqslant 1-2(2 e)^{-1}
\end{aligned}
$$

by definition of $\tau_{1}$. Hence $p_{i, k}\left(2 \tau_{1}\right) \geqslant \pi_{k}\left(1-e^{-1}\right)^{2}$. Substituting into (13) and applying (14), the lemma is established for $C_{2,1}=2\left(1-e^{-1}\right)^{-2}$.

15 Lemma. $\quad \tau_{2} \leqslant K_{1} \tau_{1}\left(1-\log \pi_{\text {min }}\right)$ for any chain.
Proof. Let $t_{0}=\tau_{1}\left(2-\log \pi_{\min }\right)$. By (10) we have

$$
\left\|p_{t_{0}}(i, \cdot)-\pi(\cdot)\right\| \leqslant e^{-1} \pi_{\min }
$$

So in particular $p_{i, k}\left(t_{0}\right) \geqslant\left(1-e^{-1}\right) \pi_{k}$ for any. $i, k$. Now substitute into (13) and apply (14) ás before.

16 Lemma. $\quad \tau_{3} \leqslant C_{3,2} \tau_{2}$ for any chain.
Proof. If $T$ is a stopping time such that $P_{i}\left(X_{T} \in \cdot\right)=\pi(\cdot)$ then
$E_{i} H_{j} \leqslant E_{i} T+E_{\pi} H_{j}$. Thus

$$
\begin{equation*}
E_{i} H_{j} \leqslant \tau_{2}+E_{\pi} H_{j} \tag{17}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
\sum_{j} \pi_{j}\left(E_{\pi} H_{j}-E_{i} H_{j}\right) \leqslant 3 \tau_{2} \tag{18}
\end{equation*}
$$

Straightforward arguments from (17) and (18) yield that

$$
\sum \pi_{j}\left|E_{\pi} H_{j}-E_{i} H_{j}\right| \leqslant 5 \tau_{2}
$$

Thus $\tau_{3} \leqslant 10 \tau_{2}$.
To prove (18), fix $\varepsilon>0$. By definition of $\tau_{2}$, for each $j$ there exists a stopping time $T_{j}$ such that

$$
\begin{equation*}
P_{j}\left(X_{T_{j}}=k\right)=\pi(k), \quad k \in I \tag{19}
\end{equation*}
$$

and $E_{j} T_{j} \leqslant \tau_{2}+\varepsilon$. Now fix $i$, let $X_{0}=i$ and put $T=T_{i}$. For any $j$,

$$
\begin{aligned}
E_{i} H_{j} & \geqslant E_{i}\left(H_{j}-T\right) 1_{\left(H_{j} \geqslant T\right)}=\sum_{k} P_{i}\left(X_{T}=k, H_{j} \geqslant T\right) E_{k} H_{j} \\
& =\sum\left(\pi_{k}-d_{k}\right) E_{k} H_{j}=E_{\pi} H_{j}-\sum d_{k} E_{k} H_{j}
\end{aligned}
$$

where $d_{k}=P_{i}\left(X_{T}=k, H_{j}<T\right)$. Thus

$$
\begin{aligned}
E_{\pi} H_{j}-E_{i} H_{j} & \leqslant \sum d_{k} E_{k} H_{j} \leqslant\left(\tau_{2}+E_{\pi} H_{j}\right) \sum d_{k} \quad \text { by (17) } \\
& =\left(\tau_{2}+E_{\pi} H_{j}\right) P_{i}\left(H_{j}<T\right)
\end{aligned}
$$

Now, averaging over $j$,

$$
\begin{equation*}
\sum_{j} \pi_{j}\left(E_{\pi} H_{j}-E_{i} H_{j}\right) \leqslant \tau_{2}+\sum_{j} \pi_{j} E_{\pi} H_{j} P_{i}\left(H_{j}<T\right) \tag{20}
\end{equation*}
$$

We must estimate the right hand term. For each $j$, on the set $\left\{X_{T}=j\right\}$ define $S$ to be the stopping time $T_{j}$ of (19) applied to the post- $T$ process ( $\left.X_{T+1}\right)_{t \geqslant 0}$.Then $X_{T+S}$ has distribution $\pi$ and is independent of $\sigma\left(X_{s}: s \leqslant T\right)$, and $E_{i}(T+S) \leqslant 2\left(\tau_{2}+\varepsilon\right)$. Now fix $j$. Let $X_{t}^{*}$ be the post $-H_{j}$ process $\left(X_{H_{j}+t}\right)_{t \geqslant 0}$, let $T^{*}=T-H_{j}$ and consider these processes only on the set $\left\{H_{j}<T\right\}$. On this set, $X_{T+S}=X_{T^{*}+S}^{*}$, and $T^{*}+S$ is a stopping time for $X^{*}$ such that. $X_{T^{*}+s}^{*}$ has distribution $\pi$ independently of $\sigma\left(X_{t}: t \leqslant H_{j}\right)$. Thus, still considering only the set $\left\{H_{j}<T\right\}$,

$$
\begin{aligned}
E_{i}(\operatorname{time}(t & \left.\left.\leqslant T+S: X_{t}=j\right) \mid X_{u}: u \leqslant H_{j}\right) \\
& =E\left(\operatorname{time}\left(t \leqslant T^{*}+S: X_{i}^{*}=j\right) \mid X_{u}: u \leqslant H_{j}\right) \\
& =\pi_{j}\left\{E\left(T^{*}+S \mid X_{u}: u \leqslant H_{j}\right)+E_{\pi} H_{i}\right\} \quad \text { by Lemma } 11 \text { applied to } X^{*} \\
& \geqslant \pi_{j} E_{\pi} H_{i} .
\end{aligned}
$$

Integrating this inequality over the set $\left\{H_{j}<T\right\}$,

$$
\pi_{j} \cdot E_{\pi} H_{j} \cdot P_{i}\left(H_{j}<T\right) \leqslant E_{i} \operatorname{time}\left(t \leqslant T+S: X_{i}=j\right) .
$$

Summing over $j$, we-see that the sum in the right side of (20) is at most $E_{i}(T+S)$, which was shown above to be at most $2\left(\tau_{2}+\varepsilon\right)$. This establishes (18).

21 Lemma. $\quad \tau_{4} \leqslant \tau_{3}$ for any chain.
Proof. Fix a subset $A$ of $I$ and a state $i$ outside $A$. For any $j$ inside $A$, $E_{i} H_{j}=E_{i} H_{A}+E_{\rho} H_{j}$ where $\rho$ is the $P_{i}$ hitting distribution on $A$. Thus

$$
\pi(A) E_{i} H_{A}=\sum_{j \in A} \pi_{j} E_{i} H_{A}=\sum_{j \in A} \pi_{j}\left(E_{i} H_{j}-E_{\rho} H_{j}\right) \leqslant \max _{k} \sum_{j \in A} \pi_{j}\left(E_{i} H_{j}-E_{k} H_{j}\right) \leqslant \tau_{3}
$$

To complete the proof of Theorems 5 and 6 , we must prove the two lemmas below.

22 Lemma. $\quad \tau_{2} \leqslant K_{3} \tau_{4}\left(1-\log \pi_{\text {min }}\right)$ for all chains.
23 Lemma. $\tau_{1} \leqslant C_{1,4} \tau_{4}$ for reversible chains.
This is the most complicated part of our arguments, and we need some preliminaries. Observe that for any initial distribution $\rho$ and any subset $A$ of $I$,

$$
P_{\rho}\left(H_{A}>e \tau_{4} / \pi(A)\right) \leqslant \pi(A) E_{\rho} H_{A} / e \tau_{4} \leqslant e^{-1}
$$

Iterating this inequality gives an exponential bound

$$
\begin{equation*}
P_{\rho}\left(H_{A}>t\right) \leqslant \exp \left(1-t \pi(A) / e \tau_{4}\right) \tag{24}
\end{equation*}
$$

Next we describe a way of constructing stopping times such that the stopped process has a prescribed distribution. For the rest of the section, fix $i$ and let $X_{0}=i$. Let $\mu$ be a distribution on $I \backslash\{i\}$. Informally, think of $\mu(j)$ as a "quota" of probability to be allocated to state $j$ by the following procedure: when the chain jumps to a new state, say $j$, we stop if the quota for $j$ has not yet been filled, and continue otherwise. Thus we want a stopping time $T<\infty$ a.s. such that

$$
\begin{equation*}
T=\min \left\{H_{j}: \mu_{H_{j}}(j)<\mu(j)\right\}, \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{t}(j)=P\left(X_{T}=j, T \leqslant t\right) \tag{26}
\end{equation*}
$$

is the "quota" for $j$ filled by time $t$. These imply that

$$
\begin{equation*}
P\left(X_{T}=j\right)=\mu(j) \quad \text { for all } j \tag{27}
\end{equation*}
$$

That such a stopping time exists seems intuitively clear: the discrete-time analogue is discussed in [3], and we give a rigorous construction in continuous-time in Section 3.

In [3] it is shown that in discrete-time the construction minimises $E T$ over all $T$ satisfying (27); the same is true in continuous-time, though we shall not prove this since we do not need it. See also [9].

To attain the stationary distribution $\pi$, set $\mu(j)=\pi_{j} /\left(1-\pi_{i}\right), j \neq i$. Let $T^{*}$ be the stopping time constructed above for $\mu$, and put

$$
T= \begin{cases}0 & \text { on } F \\ T^{*} & \text { on } F^{c}\end{cases}
$$

where $P(F)=\pi_{i}$ and the event $F$ is independent of $X$. From (27),

$$
\begin{equation*}
P\left(X_{T}=j\right)=\pi(j), \quad j \in I \tag{28}
\end{equation*}
$$

Defining $\mu_{t}(j)$ as at (26), we have from (25) that

$$
\begin{equation*}
T=\inf \left\{t: X_{t} \in I_{t}\right\} \quad \text { provided } T>0 \tag{29}
\end{equation*}
$$

where $I_{t}=\left\{j: \mu_{t}(j)<\pi(j)\right\}$. We shall call $T$ the canonical stopping time (for $i$ ). By construction,

$$
\begin{equation*}
\mu_{t}(j) \leqslant \pi(j) \tag{30}
\end{equation*}
$$

Here are some estimates for the distribution of $T$.
31 Lemma. (a) $P(T>u) \leqslant \pi\left(I_{u}\right), u \geqslant 0$.
(b) $P(T>v \mid T>u) \leqslant \exp \left\{1-\pi\left(I_{v}\right) \cdot(v-u) / e \tau_{4}\right\}, v \geqslant u \geqslant 0$.

Proóf. (a) $P(T>u)=\sum\left\{\pi(j)-\mu_{u}(j)\right\} \leqslant \sum_{l_{t}} \pi(j)=\pi\left(I_{t}\right)$.
(b) By construction, $\{T>v\} \subset\left\{T>u: X\right.$ does not hit $I_{v}$ during $\left.(u, v)\right\}$. So if $\rho$ denotes the distribution of $X_{u}$ given $\{T>u\}$, then

$$
P(T>v \mid T>u) \leqslant P_{\rho}\left(H_{I_{0}}>v-u\right) .
$$

Now apply (24) to complete the proof.
Proof of Lemma 22. Fix $i \in I$, let $X_{0}=i$ and let $T$ be the canonical stopping time. We must prove that

$$
\begin{equation*}
E T \leqslant K_{3} \tau_{4}\left(1+\log \left(1 / \pi_{\min }\right)\right) \tag{32}
\end{equation*}
$$

Define constants $\left(t_{n}^{\prime}\right)$ by $P\left(T>t_{n}^{\prime}\right)=e^{-n}\left(1-\pi_{i}\right), n \geqslant 1$. Define constants $\left(t_{n}^{\prime \prime}\right)$ by

$$
t_{n}^{\prime \prime}= \begin{cases}0, & n=0 \\ \inf \left\{t: \pi\left(I_{t}\right) \leqslant e^{-1} \pi\left(I_{t_{n-1}^{\prime \prime}}\right)\right\}, & \text { otherwise }\end{cases}
$$

Merge the sequences $t_{n}^{\prime}$, $t_{n}^{\prime \prime}$ into a single increasing sequence $\left(t_{m}\right)$. By definition of $\left(t_{n}^{\prime}\right)$
we have $P\left(T>t_{n+1}^{\prime} \mid T>t_{n}^{\prime}\right)=e^{-1}$, and it follows that

$$
\begin{equation*}
P\left(T>t_{m+1} \mid T>t_{m}\right) \geqslant e^{-1} \tag{33}
\end{equation*}
$$

By definition of $\left(t_{n}^{\prime \prime}\right), \pi\left(I_{t}\right) \geqslant e^{-1} \pi\left(I_{t_{n+1}^{\prime \prime}}\right), t<t_{n}^{\prime \prime}$, and it follows that

$$
\begin{equation*}
\pi\left(I_{t}\right) \geqslant e^{-1} \pi\left(I_{t_{m-1}}\right), \quad t<t_{m} \tag{34}
\end{equation*}
$$

To obtain (33) and (34) we are appealing to the fact that, if $\left(a_{n}\right)$ is positive decreasing and $a_{n} / a_{n+1} \geqslant b$ for all $n$, then $a_{n}^{*} / a_{n+1}^{*} \geqslant b$ for any decreasing sequence ( $a_{n}^{*}$ ) containing $\left(a_{n}\right)$ as a subsequence.

Now fix $m$ and let $\delta>0$. Then

$$
\begin{aligned}
e^{-1} & \leqslant P\left(T>t_{m+1}-\delta \mid T>t_{m}\right) \quad \text { by (33) } \\
& \leqslant \exp \left(1-\left(e \tau_{4}\right)^{-1}\left(t_{m+1}-\delta-t_{m}\right) \pi\left(I_{t_{m+1}}-\delta\right)\right) \text { by Lemma 31(b) }
\end{aligned}
$$

Letting $\delta \rightarrow 0$ and using (34), we have

$$
e^{-1} \leqslant \exp \left(1-e^{-2} \tau_{4}^{-1}\left(t_{m+1}-t_{m}\right) \pi\left(I_{t_{m}}\right)\right)
$$

Putting $c=2 e^{2} \tau_{4}$ and rearranging,

$$
\begin{equation*}
t_{m+1}-t_{m} \leqslant c / \pi\left(I_{t_{m}}\right) . \tag{35}
\end{equation*}
$$

But $E \min \left(T, t_{m+1}\right)-E \min \left(T, t_{m}\right) \leqslant\left(t_{m+1}-t_{m}\right) \cdot P\left(T>t_{m}\right)$, and so, summing over $m$, we obtain

$$
\begin{equation*}
E T \leqslant c \sum_{m \geqslant 0} P\left(T>t_{m}\right) / \pi\left(I_{t_{m}}\right) . \tag{36}
\end{equation*}
$$

To estimate this sum, fix $k \geqslant 1$ and consider the sum taken over $M_{k}=\left\{t_{m}: e^{-k}<\pi\left(I_{t_{m}}\right) \leqslant e^{1-k}\right\}$ only. The summands are at most 1 , by Lemma 31(a). There is at most one element of the $t^{\prime \prime}$ sequence in $M_{k}$, by definition. And if $t_{r}^{\prime}, t_{r+1}^{\prime}, \ldots, t_{s}^{\prime}$ are in $M_{k}$ then

$$
\begin{aligned}
\sum_{n=r}^{s} P\left(T>t_{n}^{\prime}\right) / \pi\left(I_{t_{n}^{\prime}}\right) & \leqslant e / \pi\left(I_{t_{r}^{\prime}}\right) \sum \sum P\left(T>t_{n}^{\prime}\right) \\
& =e / \pi\left(I_{t_{r}}\right) \cdot\left(1+e^{-1}+e^{-2}+\ldots\right) P\left(T>t_{r}^{\prime}\right) \quad \text { by definition of } t^{\prime} \\
& \leqslant e /\left(1-e^{-1}\right) \quad \text { using Lemma 31(a) }
\end{aligned}
$$

Hence the sum in (36) over $M_{k}$ is at most $1+e /\left(1-e^{-1}\right)$. But $M_{k}$ is non-empty only for $k \leqslant 1-\log \pi_{\min }$. Evaluating (36) now establishes Lemma 22.

Proof of Lemma 23. First we need a variant of the above argument to show that

$$
\begin{equation*}
P\left(T>2 e^{2 n+2} \tau_{4}\right) \leqslant e^{-n} \tag{37}
\end{equation*}
$$

Since $t_{m} \leqslant t_{m}^{\prime}$ we have $\pi\left(I_{t_{m}}\right) \geqslant \pi\left(I_{t_{m}^{\prime}}\right)=e^{-m}$. Also, the definitions of $t_{n}^{\prime}, t_{n}^{\prime \prime}$ and Lemma 31 (a) imply that $t_{n}^{\prime} \leqslant t_{n}^{\prime \prime}$, and so after the sequences are merged we have $t_{n}^{\prime} \leqslant t_{2 n}$. So from (35)

$$
t_{n}^{\prime} \leqslant c \sum_{m<2 n} e^{m} \leqslant 2 e^{2 n+2} \tau_{4}
$$

The definition of $t_{n}^{\prime}$ now gives (37).
The second ingredient is the next lemma, whose proof is deferred.

38 Lemma. Suppose that $X_{t}$ is reversible, and let $L, U$ be positive constants. Let $T$ be the canonical stopping time for $i$. Let $f_{j}(u)=P_{i}\left(X_{u}=j, T \leqslant L\right)$. Then there exists $u \leqslant L+U / 2$ such that $\sum \pi_{j}^{-1} f_{j}^{2}(u) \leqslant 1+2 L / U$.

From the definition,

$$
\begin{equation*}
\sum f_{j}(u)=P_{i}(T \leqslant L) . \tag{39}
\end{equation*}
$$

Now we estimate

$$
\begin{aligned}
\left\|p_{u}(i, \cdot)-\pi(\cdot)\right\| & =\frac{1}{2} \sum_{j}\left|p_{i, j}(u)-\pi_{j}\right| \\
& \leqslant \frac{1}{2}\left(\sum_{j}\left|p_{i, j}(u)-f_{i, j}(u)\right|+\sum_{j}\left|f_{j}(u)-\pi_{j}\right|\right) \\
& =\frac{1}{2}\left(P_{i}(T>L)+\sum_{j}\left|f_{j}(u)-\pi_{j}\right|\right)
\end{aligned}
$$

by (39), since $f_{j}(u) \leqslant p_{i, j}(u)$. Next,

$$
\begin{aligned}
\left(\sum\left|f_{j}(u)-\pi_{j}\right|\right)^{2} & =\left(\sum \pi_{j}^{1 / 2}\left|\frac{f_{j}(u)-\pi_{j}}{\pi_{j}^{1 / 2}}\right|\right)^{2} \\
& \leqslant \sum \pi_{j}^{-1}\left(f_{j}(u)-\pi_{j}\right)^{2} \quad \text { by the Cauchy-Schwarz inequality } \\
& =\sum \pi_{j}^{-1} f_{j}^{2}(u)-2 \sum f_{j}(u)+1 \\
& \leqslant 2 L / U+2 P(T>L) \quad \text { by Lemma } 38 \text { and (39) }
\end{aligned}
$$

Since $\left\|p_{t}(i, \cdot)-\pi(\cdot)\right\|$ is decreasing in $t$, these estimates give

$$
\left\|P_{L+U / 2}(i, \quad)-\pi\right\| \leqslant \frac{1}{2}\left\{P_{i}(T>L)+\left(2 L / U+2 P_{i}(T>L)\right)^{1 / 2}\right\} .
$$

Choosing $L=C \tau_{4}$ and $U=C L$ for a suitably large constant $C$, and using (37), we can make the right-hand side less than $(2 e)^{-1}$, so that $\tau_{1} \leqslant L+U / 2$ and Lemma 23 is established.

Proof of Lemma 38. Define a measure $v$ on $I \times[0, L]$ by

$$
v(\cdot, \cdot)=P_{i}\left(T \leqslant L,\left(X_{T}, T\right) \in(\cdot, \cdot)\right)
$$

Also define $g_{j}(u)=P_{i}\left(X_{L+u / 2}=j, T \leqslant L\right), 0 \leqslant u \leqslant U$. By conditioning on $\left(X_{T}, T\right)$,

$$
g_{j}(u)=\int p_{k, j}(L+u / 2-s) d v(k, s)
$$

where the integral is over $(k, s)$ in $I \times[0, L]$. Thus

$$
\sum \pi_{j}^{-1} g_{j}^{2}(u)=\iint \sum_{j} \pi_{j}^{-1} p_{k_{1}, j}\left(L+u / 2-s_{1}\right) p_{k_{2}, j}\left(L+u / 2-s_{2}\right) d v\left(k_{1}, s_{1}\right) d v\left(k_{2}, s_{2}\right)
$$

Now by reversibility the integrand reduces to $\pi_{k_{2}}^{-1} p_{k_{1}, k_{2}}\left(2 L+u-s_{1}-s_{2}\right)$. So, averaging over $[0, U]$,

$$
\begin{equation*}
U^{-1} \int_{0}^{U} \sum_{j} \pi_{j}^{-1} g_{j}^{2}(u) d u \leqslant U^{-1} \iint \pi_{k_{2}}^{-1}\left(\int_{0}^{2 L+U} p_{k_{1}, k_{2}}(u) d u\right) d v\left(k_{1}, s_{1}\right) d v\left(k_{2}, s_{2}\right)^{\prime} \tag{40}
\end{equation*}
$$

The integrand does not involve $s_{1}$ and $s_{2}$, and so since $v(k,[0, L])$ is less than or equal to $\pi_{k}$ the right-hand expression is at most

$$
U^{-1} \sum_{k_{1}, k_{2}} \pi_{k_{2}}^{-1}\left(\int_{0}^{2 L+U} p_{k_{1}, k_{2}}(u) d u\right) \pi_{k_{1}} \pi_{k_{2}}
$$

Since $\pi$ is the stationary distribution, this reduces to $U^{-1}(2 L+U)=1+2 L / U$. This is an upper bound for the average at (40), and hence dominates $\sum \pi_{j}^{-1} g_{j}^{2}(u)$ for some particular $u$ : this proves Lemma 38.

Proof of Proposition 8. (a) Recall the definition $\Delta_{t}=\max \left\|p_{t}(i, \cdot)-\pi(\cdot)\right\|$. From the spectral representation (7) it is not hard to see that $\lim _{t \rightarrow \infty} \Delta_{t} e^{t / \beta}>0$. But from (10) we have $\lim _{t \rightarrow \infty} \Delta_{t} e^{t / \tau_{1}} \leqslant e$. Thus $1 / \beta \geqslant 1 / \tau_{1}$, giving (a).
(b) From the spectral representation (7),

$$
\begin{equation*}
p_{i, i}(t) \leqslant \pi_{i}+e^{-t / \beta}, \quad t \geqslant 0 . \tag{41}
\end{equation*}
$$

Now $p_{i, i}(2 t)=\sum_{j} p_{i, j}(t) p_{j, i}(t)=\sum_{j} \pi_{i} \pi_{j}^{-1} p_{i, j}^{2}(t)$ by reversibility. After applying (41) to $2 t$ we obtain

$$
\begin{equation*}
\sum_{j} \pi_{j}^{-1} p_{i, j}^{2}(t) \leqslant 1+\pi_{i}^{-1} e^{-2 t / \beta} \tag{42}
\end{equation*}
$$

Now $\sum_{j}\left|p_{i, j}(t)-\pi_{j}\right|=\sum_{j} \pi_{j}^{1 / 2}\left|\pi_{j}^{-1 / 2} p_{i, j}(t)-\pi_{j}^{1 / 2}\right| \leqslant 1 \cdot D$ by the Cauchy-Schwarz inequality, where

$$
\begin{aligned}
D^{2} & =\sum\left\{\pi_{j}^{-1 / 2} p_{i, j}(t)-\pi_{j}^{1 / 2}\right\}^{2}=\sum \pi_{j}^{-1} p_{i, j}^{2}(t)-2 \sum p_{i, j}(t)+\sum \pi_{j} \\
& \leqslant \pi_{i}^{-1} e^{-2 \ell / \beta} \quad \text { by }(42) .
\end{aligned}
$$

Thus $\Delta_{t} \leqslant \frac{1}{2} e^{-t / \beta} \pi_{\min }^{-1 / 2}$, and (b) follows from the definition of $\tau_{1}$.

## 3. Construction of the canonical stopping time

Fix $i \in I$, let $X_{0}=i$, and let $\mu$ be a distribution of $I \backslash\{i\}$. We shall construct a stopping time $T$ satisfying (25).

Set $i_{1}=i, t_{1}=0, J_{1}=I \backslash\left\{i_{1}\right\}, T_{1}=H_{J_{1}}$. Suppose inductively that we have defined

$$
\begin{gathered}
\text { states } i_{1}, \ldots, i_{n} \\
\text { times } 0 \leqslant t_{1} \leqslant \ldots \leqslant t_{n} \leqslant \infty \\
\text { stopping times } T_{1}, \ldots, T_{n}
\end{gathered}
$$

such that, writing $J_{n}=I \backslash\left\{i_{1}, \ldots, i_{n}\right\}$ and $\mu_{t}^{n}(j)=P\left(X_{T_{n}}=j, T_{n} \leqslant t\right)$, we have

$$
\mu_{t_{n}(j)}^{n}\left\{\begin{array}{ll}
=\mu(j), & j=i_{1}, \ldots, i_{n} \\
\leqslant \mu(j), & \text { otherwise } \tag{44}
\end{array},\right.
$$

Then, provided that $t_{n}<\infty$ and $J_{n}$ is non-empty, we can define

$$
\begin{aligned}
& T_{n+1}= \begin{cases}T_{n} & \text { if } T_{n} \leqslant t_{n}, \\
H_{J_{n}}\left(>t_{n}\right. \text { by (44)) } & \text { otherwise },\end{cases} \\
& t_{n+1}=\inf \left\{t \geqslant t_{n}: \mu_{t}^{n+1}(j)=\mu(j) \text { for some } j \in J_{n}\right\}
\end{aligned}
$$

and we can choose $i_{n+1}$ to be an element of $J_{n}$ for which $\mu_{t_{n+1}}^{n+1}\left(i_{n+1}\right)=\mu\left(i_{n+1}\right)$. It is clear that (43) and (44) extend from $n$ to $n+1$. The induction ends when for some $N$ either $t_{N}=\infty$ or $J_{N}$ is empty. In either case let $T=T_{N}$ and $\mu_{t}=\mu_{t}^{N}$. Note that $T<\infty$ a.s. because each $H_{J_{n}}<\infty$ a.s. For each $j$ we have $P\left(X_{T}=j\right)=\mu_{I_{N}}^{N}(j) \leqslant \mu(j)$ by (43), and hence

$$
P\left(X_{T}=j\right)=\mu(j), \quad j \in I .
$$

It remains to check that $T$ satisfies (25). Define

$$
T^{*}=\min \left\{H_{j}: \mu_{H_{j}}(j)<\mu(j)\right\} .
$$

It is easy to check the following from the definitions: if $T>t_{n}$ then either $T=H_{J_{n}} \leqslant t_{n+1} \quad$ or $\quad H_{J_{n}}>t_{n+1} \quad$ and $T>t_{n+1} ; \quad$ if $T^{*}>t_{n}$ then either $T^{*}=H_{J_{n}} \leqslant t_{n+1}$ or $H_{J_{n}}>t_{n+1}$ and $T^{*}>t_{n+1}$. By induction on $n$ we see that $T=T^{*}$, and thus $T$ satisfies (25).

## 4. Examples

The first two examples show how Theorem 5 may break down without reversibility.

45 Example (motion round a circle). Let $I=\{0,1, \ldots, N-1\}$; let $q_{0,1}=q_{1,2}=\ldots=q_{N-1,0}=N$; and let $q_{i, j}=0$ for other $i \neq j$. Here $\pi$ is uniform on I. By considering $T=H_{J}$, where $J$ is distributed as $\pi$, we see that $\tau_{2} \leqslant \frac{1}{2}$. So by Theorem 6, $\tau_{3}$ and $\tau_{4}$ are bounded (as $N$ varies). But an argument using the central limit theorem shows that $\tau_{1} \sim \delta N$ as $N \rightarrow \infty$ for some $\delta>0$. Hence there can be no general upper bound for $\tau_{1}$ in terms of the other parameters.

46 Example (climbing a greasy ladder). Let $I=\{1, \ldots, N\}$; let $q_{i, i+1}=1$ $(1 \leqslant i<N)$; let $q_{i, 1}=1(1<i<N)$; let $q_{N, 1}=2$; and let $q_{i, j}=0$ for other $i \neq j$. Here $\pi_{i}=2^{-i} /\left(1-2^{-N}\right)$. Plainly $E_{i} H_{1} \leqslant 1$, and it follows easily that $\tau_{1}, \tau_{3}$ and $\tau_{4}$ are bounded as $N$ varies. But a rather complicated analysis of the canonical stopping times of Section 2 shows that $\tau_{2} \sim \delta N$ for some $\delta>0$. Hence the $\log$ terms in Theorem 6 cannot be omitted.

47 Conjecture. There exists a $K$ such that $\tau_{3} \leqslant K \tau_{1}$ for every chain.
If so, then with Theorem 6 and the above examples we have a complete picture of the inequalities obtaining between the parameters.

48 Example (uniform jump). Let $I=\{1, \ldots, N\}$; and let $q_{i, j}=1$ for $i \neq j$. Here $\pi$ is uniform on $I$. In this example $\tau_{1}$ is bounded as $N$ varies, while $E_{i} H_{j}=N-1$, $i \neq j$. But in Example 45, $E_{i} H_{j} \leqslant 1$ whereas $\tau_{1} \sim \delta N$. So there can be no universal inequalities relating $\tau_{1}$ to $\max _{i} E_{i} H_{j}$.

It would be interesting to know whether there is any parameter involving mean hitting times which is equivalent (in the sense of Theorem 5) to $\tau_{1}$ for general chains.

49 Example (random walk with drift). Let $I=\{0,1, \ldots, N\}$; let $q_{i, i+1}=1$ and $q_{i+1, i}=2$ for $i=0,1, \ldots, N-1$; and let $q_{i, j}=0$ for other $i \neq j$. This is a birth-and-death process, and hence is reversible. It can be shown that as $N \rightarrow$ we have $\tau_{1} \rightarrow \infty$ but $\beta$ remains bounded (for $\beta$ as in Proposition 8). So the log term in Proposition 8(b) cannot be dropped.

50 Example (random walk on the $d$-cube). Here $I=\{0,1\}^{d} ;|i-j|$ denotes the number of coordinates in which $i$ and $j$ differ; $q_{i, j}$ is $d^{-1}$ if $|i-j|=1$, and is zero for other $i \neq j$; and $\pi$ is uniform on $I$. Think of a particle resting at a vertex of a hypercube for an exponential (mean 1) time, and then jumping to a randomlychosen neighbouring vertex. This chain is reversible, and other special structure (for example symmetry of the hypercube, independence of the coordinate processes)
makes it comparatively easy to analyse directly. We find that $\tau_{1} \sim d \log (d) / 4$ as $d \rightarrow \infty$. Mean hitting times are of the form $E_{i} H_{j}=f(|i-j|)$, where $f$ can be found from the recursion

$$
f(0)=0, \quad f(1)=2^{d}-1, \quad f(r)=[d(f(r)-1)-r \cdot f(r-1)] /(d-r) .
$$

As $d \rightarrow \infty, f(r) / 2^{d} \rightarrow 1$ uniformly in $r \geqslant 1$. But even for such a nice chain, Theorem 5 provides information which would be hard to get directly-for example, bounds on $E_{i} H_{A}$ for arbitrary subsets $A$. For further properties of this random walk see [2].

## References

1. D. J. Aldous, "Markov chains with almost exponential hitting times", Stochastic Process Appl., to appear.
2. D. J. Aldous, "On the time taken by the random walk on the $d$-cube to visit all vertices", preprint, University of California at Berkeley, 1981.
3. J. R. Baxter and R. V. Chacon, "Stopping times for recurrent Markov processes", Illinois J. Math., 20 (1976), 467-475.
4. A. M. Garsia, Martingale inequalities (Benjamin, Reading, Mass., 1973).
5. E. Hille and R. S. Phillips, Functional analysis and semigroups, American Mathematical Society Colloquium Publications 31 (American Mathematical Society, Providence, 1957).
6. C. Huang and D. Isaacson, "Ergodicity using mean visit times", J. London Math. Soc. (2), 14 (1976), 570-576.
7. J. Keilson, Markov chain models-rarity and exponentiality (Springer, New York, 1979).
8. F. P. Kelly, Reversibility and stochastic networks (Wiley, New York, 1979).
9. P. A. Meyer, "Travaux de H. Root en theorie du balayage", Seminaire de probabilités V, Lecture Notes in Mathematics 191 (Springer, Berlin, 1971) pp. 237-250.

Department of Statistics, University of California, Berkeley, Ca. 94720, U.S.A.

