
SOME INEQUALITIES FOR REVERSIBLE
MARKOV CHAINS
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1. Introduction

One of the most important results about finite ergodic Markov chains is the
convergence of transition probabilities to the stationary distribution. The object of
this paper is to investigate relations between the time taken to approach stationarity
and certain properties of mean hitting times. Our main result, Theorem 5, shows that
for reversible chains the following (informally stated) properties are equivalent.

(i) Convergence to stationarity is rapid,

(ii) Mean hitting times on single states are nearly uniform in the initial state.

(iii) Mean hitting times on a set A of states can be bounded in terms of the
stationary measure of A.

Theorem 6 gives weaker results for general (that is, non-reversible) chains.
Let Xt be an ergodic Markov chain in continuous time, with finite state space

/ = {i,j, k,...}. Let Q = {qitJ) be the matrix of transition rates, let p,j(0 = pt(i,j) be
the transition probabilities, and let n be the stationary distribution. The total
variation distance between distributions on / is

(1) y-M\ = Wlfij-Xjl = sup\fi(A)-X(A)\.

Because / is finite, the classical result on convergence to stationarity implies that

(2) l l p , ( i , - ) -« ( - ) l l - 0 a s t - > o o .

Recall that X, is called reversible if

(3) *iPij(t) = n j P j < i ( t ) , i j e l , t ^ O .

Because / is finite, this is equivalent to

See [7, 8] for discussions of reversibility.
We now formalise properties (i)-(iii) by defining several parameters. Let

Tt = min{f :||pf(i, • ) - * ( • )ll ^ W for all/} < oo by (2).
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Thus TX measures the time until the transition probabilities are close in total
variation to the stationary distribution: the constant (2e)~l has no special
significance beyond algebraic convenience. Another way to measure the time taken
to approach stationarity is to consider stopping times for which the stopped chain
has exactly stationary distribution, and this suggests defining x2 = max a,, where

(4) a, = inf {£,-7]: T{ a stopping time such that Pi(XT. = j) = n(j) for all j} .

It is not quite obvious that such stopping times exist; a construction is given later.
The next parameters formalise the properties (ii) and (iii). We define

T3 = max Y, nj\EiHj — EkHj\, T4 = max n(A)EiHA .
i, k j i, A

Here HA = inf{t: X(e A} is the first hitting time on a subset A of / . We can now
state our main result.

5 THEOREM. There exist universal constants Crs such that xr ^ Crsxs,
1 < r, s ^ 4, for every reversible chain.

The significance of Theorem 5 is qualitative—if one x is small then so are the
others, and so properties (i)—(iii) are equivalent. Universal inequalities seem rather
novel in Markov chain theory, but have been the subject of intensive research in
martingale theory [4].

Theorem 5 extends partially to non-reversible chains. Let 7rmin =

6 THEOREM. There exist universal constants Kx, K2, K3 such that for every chain

x2 ^ K ^ O + l o g O / T r , ^ ) ) , t 4 ^ T3 ^ K2x2,

T2<X3T4(l+lOg(l/7tm i n)) .

Examples 45 and 46 will show that the log terms cannot be omitted, and that
there is no similar upper bound for xt in terms of the other parameters.

Theorems 5 and 6 remain valid for positive-recurrent chains on a countable state
space; though here the parameters may be infinite. The condition Tt < oo is
equivalent to

sup X \Pi,M) ~ nj\ -> 0 as t -> oo ,
• J

which is often called "strong ergodicity" [6] or "uniform ergodicity" [5] in the
literature. So Theorem 5 shows that for a reversible chain each of the conditions
xr < oo is necessary and sufficient for this property. A general necessary and
sufficient condition is that [6]

sup EtHj < oo for some (respectively all); .

But Example 48 will show there is no universal inequality relating xx to sup £ ,# , .
i

A classical way to analyse the transition probabilities of reversible chains is via
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the spectral representation [7]

(7) Pij(t) = ny

r = l

where 0 < fix ^ j?2 ^ ... ^ jSN and the w[r) are real numbers such that
fn\il2

Ttj+ £ Wp] — 1 for each). So asymptotically p.-./i) « TT̂ H- I — I u,u,e (//\ where

w, = M|N) and (1 = [iN. Thus j? determines the asymptotic rate of convergence to
stationarity, whereas the parameters x describe features of the non-asymptotic
behaviour.

8 PROPOSITION. For any reversible chain,

(a) jS^t ! , -

(b) t , ^j?(l+|log(l/7:min)).

Example 49 will show that the log term cannot be omitted.
Motivation for Theorem 5 came from the study of a particular chain, the random

walk on the rf-cube, discussed as Example 50. David Williams aroused my interest in
this chain, and Jim Pitman observed that this chain had almost uniform mean hitting
times.

A chain for which tj is small might be called rapidly mixing. Such chains have
other properties: for example, first hitting times are approximately exponentially
distributed [1].

2. Proofs

We decompose Theorems 5 and 6 into a series of lemmas (12, 15, 16, 21, 22, 23).
Observations (9) and (10) and Lemma 11 are preliminaries. Let

A, = max ||pt(i, •)-*(•)!! •
i

It is easy to verify that Ar is decreasing and that

(9) As+f ^ 2ASA,.

By definition AT| = (2e)~l, and so (9) implies that Ani] ^ e~n. This gives an
exponential bound

(10) A , ^ e x p ( l - t / T 1 ) , t&O.

Let time (t ^ T: Xt e A) be the random variable describing the length of time X
spends in set A before time T.

11 LEMMA. Suppose T is a stopping time such that Pt(XT = j) = n(j) for all j .
Then £,time(t ^T:X, = i) = n^
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Proof. Let Xo = i. Let Ut be the time of the first hit on i after T; inductively
define Un analogously for the process restarted at time Un_ l. In this way the process
Xt is split into i.i.d. excursions of lengths U x, U2,... .In each excursion, the length of
time spent at i is distributed as time (t ^ T: Xt = i). Using the strong law of large
numbers, the asymptotic proportion of time spent at i is equal to
£,time(t ^ T : X, = i)/£,^i- But this asymptotic proportion is n{. Since

nHh the lemma follows.

12 LEMMA. T2 ^ C2lxlfor reversible chains.

Proof. Suppose that we can find t0 and 6 such that

(13) Pi.M > ^k, i,kel.

Then given i we can construct a stopping time T taking values in {t0, 2t0, 3t0,...}
such that

1

P(XTG- | T = nt0, X(n_1)t0 = ; ) = n;

and so

(14) x2^ElT = t0/5.

We now construct t0 and 5 satisfying (13).

j j

by reversibility. Now by the Cauchy-Schwarz inequality

\ l / 2

Z PiJii)Pk.Mi)/nj) > Z PWMPISM > Z min ( P ^ T J , pk,/TJ

by definition of T ^ Hence p,^(21^ ^ 7rk(l —e"1)2. Substituting into (13) and
applying (14), the lemma is established for C 2 1 = 2(1 —e"1)"2 .

15 LEMMA. T2 ^ X 1 T 1 ( 1 — Iog7rmin)/or any chain.

Proof. Let t0 = T1(2-log7rmin). By (10) we have

So in particular pitk{t0) ^ (l — e~l)nk for any. i,k. Now substitute into (13) and
apply (14) as before.

16 LEMMA. T3 < C3<2x2for any chain.

Proof. If T is a stopping time such that Pt(XT e •) = 7r( •) then
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j . Thus

We shall prove that

(18) J>JOM*J-W^3T 2 .
j

Straightforward arguments from (17) and (18) yield that

YinjEllHj-ElHJl ^5T2.

Thus T3 ^ 10T2.
To prove (18), fix £ > 0. By definition of T2, for each) there exists a stopping time

T) such that

(19) p.(XTj = k) = n ( k ) , k e l ,

and EJTJ ^ T2 + e. Now fix i, let Xo = i and put T = 7]. For any),

£,//,. ^ £<(//,.-T)l(H.>r) = J ] P ^ r = /c, if, > T)EkHj
k

where dfc = .̂(A"T = k, Hj < T). Thus

E^Hj-EiHj ^ Y.dkEkHj ^ {x2 + EKH})^dk by (17)

= (x2 + EnHj)Pi(Hj < T).

Now, averaging over j ,

(20) X w j ( £ . ^ - E,^) ^ T2 + X njE.HjPtiHj < T).
j

We must estimate the right hand term. For each), on the set {XT = j} define S to be
the stopping time 7} of (19) applied to the post-T process (XT+I)l ^ .Then XT+S has
distribution n and is independent of a{Xs: s ^ T), and E^T + S) < 2(T2 + E). NOW
fix;. Let X* be the post-//,- process (XH.+t),>0, let T* = T — Hj and consider these
processes only on the set {Hj < T}. On this set, XT+S = X$*+s, and T* + S is a
stopping time for X* such that, X$*+s has distribution n independently of
o{Xt: t ^ Hj). Thus, still considering only the set {Hj < T},

£,.(time(t ^ T + S:Xt =j)\Xu:u ^ Hj)

= £ ( t ime( t ^ T* + S:X* =j)\Xu:u ^ Hj)

= Uj{E(T* + S | Xu: u ^ Hj) + EnHi} by Lemma 11 applied to X*
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Integrating this inequality over the set {Hj < T],

nj • EnHj • P^Hj < T) ^ £,time(t ^ T + S : Xt = j).

Summing over j , we-see that the sum in the right side of (20) is at most £,(T+S),
which was shown above to be at most 2(T2 + E). This establishes (18).

21 LEMMA. T4 ^ t 3 /o r any chain.

Proof. Fix a subset A of / and a state i outside A. For any j inside A,
j where p is the Pt hitting distribution on A. Thus

n(A)EiHA = £ njEtHA = £ nj{EtHj-EpHj) ^ max £ UjiE.Hj-E.Hj) ^ T3 .
jeA jeA k jeA

To complete the proof of Theorems 5 and 6, we must prove the two lemmas
below.

22 LEMMA. T2 < K 3 T 4 ( 1 — Iog7imin) for all chains.

23 LEMMA. TX ^ C^Ax^,for reversible chains.

This is the most complicated part of our arguments, and we need some
preliminaries. Observe that for any initial distribution p and any subset A of / ,

PP{HA > exJn(A)) ^ n(A)EpHA/eU ^ e"1 .

Iterating this inequality gives an exponential bound

(24) Pp(HA > 0 *S exp (1 - tn(A)/eU).

Next we describe a way of constructing stopping times such that the stopped
process has a prescribed distribution. For the rest of the section, fix i and let Xo = i.
Let /i be a distribution on / \ { i } - Informally, think of /*(/) as a "quota" of probability
to be allocated to state j by the following procedure: when the chain jumps to a new
state, sayy, we stop if the quota for) has not yet been filled, and continue otherwise.
Thus we want a stopping time T < oo a.s. such that

(25) T

where

(26)

is the "quota" for j filled by time t. These imply that

(27) P{XT=j) = n(j) for all;.

That such a stopping time exists seems intuitively clear: the discrete-time analogue is
discussed in [3], and we give a rigorous construction in continuous-time in Section 3.
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In [3] it is shown that in discrete-time the construction minimises ET over all T
satisfying (27); the same is true in continuous-time, though we shall not prove this
since we do not need it. See also [9].

To attain the stationary distribution n, set n(j) = Uj/(l — 7t,),y =/= i. Let T* be the
stopping time constructed above for pi, and put

' 0 on F,
T =

T* on Fc,

where P{F) = n, and the event F is independent of X. From (27),

(28) P ( X T = j ) = n(j), J E l .

Defining nt{j) as at (26), we have from (25) that

(29) T = inf{t: Xt e /,} provided T > 0 ,

where /, = {j: nt{j) < n{j)}. We shall call T the canonical stopping time (for i). By
construction,

(30) Ht(j)^n(j).

Here are some estimates for the distribution of T.

31 LEMMA, (a) P{T > u) ^ n{lu), u ^ 0.
(b) P(T > v\ T > u) ^ exp{l-7t(/u)-(u-u)/eT4}, v ^ u ^ 0.

Proof, (a) P(T > u) = £ {KOV^O")} ^ £ </) = «(U

(b) By construction, {T > v} a [T > u: X does not hit Iv during (u, v)}. So if p
denotes the distribution of Xu given {T > u}, then

P(T > v | T > w) < Pp{Hh > v-u).

Now apply (24) to complete the proof.

Proof of Lemma 22. Fix iel, let Xo = i and let T be the canonical stopping
time. We must prove that

(32) • £ T ^ X 3 T 4

Define constants (t'n) by P(T > Q = e""(l -7i,), n ^ 1. Define constants {Q by

fO, n = 0,
C =

{ M{t :n{I() < e ln(I% _,)}, otherwise.

Merge the sequences rj,, tj,' into a single increasing sequence (tm). By definition of (Q
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we have P{T > t'n+l \ T > Q = e~\ and it follows that

(33) P(T>tm + l\T>tm)>e-i.

By definition of ( Q n{It) ^ e~ln{Ira+l), t < C and it follows that

(34) nil^e-'nil,^), t<tm.

To obtain (33) and (34) we are appealing to the fact that, if (an) is positive decreasing
and ajan + 1 ^ b for all n, then a*/a*+1 ^ b for any decreasing sequence (a*)
containing (aH) as a subsequence.

Now fix m and let <5 > 0. Then

\>tm) by (33)

{tm + l-S-tm)n(Ilm+i-d)) by Lemma 31(b).

Letting <5 -• 0 and using (34), we have

Putting c = 2e2T4 and rearranging,

(35) tm + l-tm^c/n(IJ.

But £min(T, tm + 1 ) - £ m i n ( T , tm) ^ {tm + l-tm)- P(T > tm), and so, summing over
m, we obtain

(36) ET^cZ P(T>tm)/n(IJ.
m Z 0

To estimate this sum, fix k ^ 1 and consider the sum taken over
Mk = {tm:e~k < n(ItJ ^ e1"*} only. The summands are at most 1, by Lemma
31 (a). There is at most one element of the t" sequence in Mk, by definition. And if
t'r, t'r+1,...., t's are in Mk then

f P(T > Qln{lt.) ^ e/n(I,r) • J] P(T > Q
n = r

= e/7r(/,,)(l + e"1 + e"2 + ...)P(T > Q by definition oft'

^ e/(l — e~x) using Lemma 31(a).

Hence the sum in (36) over Mk is at most 1 +e/(l — e~l). But Mk is non-empty only
for k ^ 1 — Iog7imin. Evaluating (36) now establishes Lemma 22.

Proof of Lemma 23. First we need a variant of the above argument to show that

(37) P(T > 2e2n + 2T4) ^ e'n.
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Since tm ^ t'm we have n(ItJ ^ n(I?J = e~m. Also, the definitions of t'n,t'^ and
Lemma 31 (a) imply that t'n ^ tj,', and so after the sequences are merged we have
t'n ^ t2n. So from (35)

m<2n

The definition of t'n now gives (37).
The second ingredient is the next lemma, whose proof is deferred.

38 LEMMA. Suppose that Xt is reversible, and let L, U be positive constants. Let T
be the canonical stopping time for i. Letf^u) = P-XXU = j , T ^ L). Then there exists
u^ L+ U/2 such that £ nj'fjiu) ^ 1 +2L/U.

From the definition,

(39)

Now we estimate

\\Pu(i,-)-n{-)\\ =

= l-(pi(T>L)+Yd\fj(u)-nj\\

by (39), since j){u) ^ piyj{u). Next,

n7i{fj(u)~nj)2 by the Cauchy-Schwarz inequality

^ 2L/U + 2P(T > L) by Lemma 38 and (39).

Since ||pf(i, - )~ n ( ' ) \ \ is decreasing in t, these estimates give

)-n\\ ^ \{Pi{T > L) + (2L/U + 2Pi(T > L))1 '2}.

Choosing L = CT 4 and U = CL for a suitably large constant C, and using (37), we
can make the right-hand side less than {2e)~l, so that Tt ^ L+ U/2 and Lemma 23 is
established.
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Proof of Lemma 38. Define a measure v on / x [0, L] by

Also define g^u) = /^(Ar
L+u/2 = j , T ^ L), 0 ^ u ̂  U. By conditioning on (XT, T),

•u/2-s)dv(k,s)

where the integral is over (k, s) in / x [0, L]. Thus

Now by reversibility the integrand reduces to nk2*pk] k2(2L + u — s1 —s2). So,
averaging over [0, [/],

V 2L + U

r^ rr ,
(40) U~

O

The integrand does not involve sx and s2, and so since v(/c, [0, L]) is less than or
equal to nk the right-hand expression is at most

2L+U

Since n is the stationary distribution, this reduces to U 1(2L+ U) = 1 +2L/U. This
is an upper bound for the average at (40), and hence dominates ]T njlg2j(u) for some
particular u: this proves Lemma 38.

Proof of Proposition 8. (a) Recall the definition A, = max ||pt(i, -) — n{-)\\. From
i

the spectral representation (7) it is not hard to see that lim &te'/p > 0. But from (10)
t-»oo

we have lim A,e'/T| ^ e. Thus 1/ff ̂  1/T19 giving (a). • -
f-»oo

(b) From the spectral representation (7),

(41) P M ( 0 < * i + « •" ' , * ^ 0 .

Now pu(2t) = X Pi,j{t)pjti(t) = X UinJ-ipfJt) by reversibility. After applying (41) to

2t we obtain

(42) S^pJ/OO+nf1*-™.
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N o w J > u ( 0 - n J = Y , 1 t j l 2 K l l 2 P i . M ) - n j l 2 \ ^ I ' D by the C a u c h y - S c h w a r z
j j

inequality, where

^ rtfV2"' by ( 4 2 ) .

T h u s A, ^ ie~'^7rmin/2
5
 a n d (b) follows from the definition of xx.

3. Construction of the canonical stopping time

Fix i G / , let Xo = i, and let /i be a distribution of / \ { i } . We shall construct a
stopping time T satisfying (25).

Set il = i, tx = 0, Jx = / \ { i ' i } , Ty = /fJr Suppose inductively that we have
defined

states i l9. . . , in,

times 0 ^ ^ ^ ... ^ tn ^ oo ,

stopping times Tl5..., Tn

such that, writing Jn = 7 \{ i l 5 . . . , in} and rf{j) = P(XTn = j , Tn ^ t), we have

f
(43) M-..0")

V ̂  Kj) > otherwise ,

(44) Tn < HJn.

Then, provided that tn < oo and Jn is non-empty, we can define

. Hj,, (> tn by (44)) otherwise ,

tB + 1 =inf{f ^ t n : K + 1 0 ) = fi(j) tor some jeJn]

and we can choose in + 1 to be an element of Jn for which n"n
+J(in + 1) = ^(in + 1). It is

clear that (43) and (44) extend from n to n+ 1. The induction ends when for some N
either tN = oo or JN is empty. In either case let T = TN and |ft = /if. Note that
T < oo a.s. because each HJn < oo a.s. For each j we have P{XT = j) = tfN{j) ^ n{j)
by (43), and hence

jel.

It remains to check that T satisfies (25). Define
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It is easy to check the following from the definitions: if T > tn then either
T = HJn^ tn + l or HJn > tn + l and T > tn+l; if T* > tn then either
T* = HJn < tn+l or HJn > tn + l and T* > tn + 1. By induction on n we see that
T = T*, and thus T satisfies (25).

4. Examples

The first two examples show how Theorem 5 may break down without
reversibility.

45 Example (motion round a circle). Let / = {0,1 , . . . , N — 1}; let
<7o,i = <7i,2 = ••• =

 <7JV-I,O = N\ a n d let q(j = 0 for other i ± j . Here n is uniform on
/ . By considering T = Hj, where J is distributed as n, we see that x2 ^ \. So by
Theorem 6, T3 and T4 are bounded (as N varies). But an argument using the central
limit theorem shows that xx ~ SN as N -> oo for some 5 > 0. Hence there can be no
general upper bound for xt in terms of the other parameters.

46 Example (climbing a greasy ladder). Let / = {1, ...,iV}; let <?,-,; +1 = 1.
(1 ^ i < N); let qiA = 1 (1 < i < N); let qN<] = 2; and let qu = 0 for other i j= j .
Here nt = 2"'/(l -2~N). Plainly ^ / / j ^ 1, and it follows easily that T15 T3 and T4

are bounded as N varies. But a rather complicated analysis of the canonical stopping
times of Section 2 shows that T2 ~ SN for some S > 0. Hence the log terms in
Theorem 6 cannot be omitted.

47 Conjecture. There exists a K such that x3 ^ Krt for every chain.

If so, then with Theorem 6 and the above examples we have a complete picture of
the inequalities obtaining between the parameters.

48 Example (uniform jump). Let / = {!,..., N}; and let qi} = 1 for i ^ j . Here
n is uniform on / . In this example TX is bounded as N varies, while £, / / , = N — 1,
i j= j . But in Example 45, EtHj ^ 1 whereas xx ~ <5iV. So there can be no universal
inequalities relating TX to max £ ,# , .

i

It would be interesting to know whether there is any parameter involving mean
hitting times which is equivalent (in the sense of Theorem 5) to xv for general chains.

49 Example (random walk with drift). Let / = {0,1 , . . . , N}\ let qiti + l = 1 and
qi + iti = 2 for i = 0 ,1, . . . , N — 1; and let qitj = 0 for other i ± j . This is a birth-
and-death process, and hence is reversible. It can be shown that as1 N ->-^o we have
TX -*• oo but j5 remains bounded (for (5 as in Proposition 8). So the log term in
Proposition 8(b) cannot be dropped.

50 Example (random walk on the d-cube). Here / = {0, l}d; \i—j\ denotes the
number of coordinates in which i and j differ; q{:>J. is d'1 if \i—j\ = 1, and is zero for
other i ^ j ; and n is uniform on / . Think of a particle resting at a vertex of a
hypercube for an exponential (mean 1) time, and then jumping to a randomly-
chosen neighbouring vertex. This chain is reversible, and other special structure (for
example symmetry of the hypercube, independence of the coordinate processes)
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makes it comparatively easy to analyse directly. We find that xi ~ dlog(d)/4 as '*%
d -* oo. Mean hitting times are of the form E(Hj = f{\i— j\), where/can be found
from the recursion

/(O) = 0, / (I) = 2 d - l , f(r) = [ d ( / ( r ) - l ) - r - / ( r - l ) ] / ( d - r ) .

As d -> oo, /(r)/2d -> 1 uniformly in r ^ 1. But even for such a nice chain, Theorem
5 provides information which would be hard to get directly—for example, bounds
on EiHA for arbitrary subsets A. For further properties of this random walk see [2].
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