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Abstract 

Consider the class of discrete time, general state space Markov chains which satist)' a "'uni- 
form ergodicity under sampling" condition. There are many ways to quantify the notion of 
"mixing time", i.e., time to approach stationarity from a worst initial state. We prove results 
asserting equivalence (up to universal constants) of different quantifications of mixing time. This 
work combines three areas of Markov theory which are rarely connected: the potential- 
theoretical characterization of optimal stopping times, the theory of stability and convergence 
to stationarity for general-state chains, and the theory surrounding mixing times for finite-slate 
chains. 1997 Elsevier Science B.V. 

K e y w o r d s .  Markov chain; Minorization; Mixing time: Randomized algorithm: Stopping time 

1. Introduction 

'Our topic lies near the intersection of three different areas of the theory of [discrete 
time, general state space) Markov  chains. 

(a) Potential theory, as treated in e.g. Revuz (1984) or Dellacherie and Meyer 

(1983). This theory classically focused on transient chains, but does include results on 

r e c u r r e n t  p o t e n t i a l  and its relation to hitting times for recurrent chains, which are our  
concern (see also Syski, 1992). 

(b) The theory of convergence to stationarity for general state space chains, treated 

in Orey (1971) and Nummel in  (1984) and in part icular  given a recent very clear 
exposition by Meyn and Tweedie (1993). 

(c) The theory surrounding m i x i n q  t imes ,  i.e. quanti tat ive measures of times to 

approach  stationarity,  for finite-state chains. This is treated (in the reversible setiingl 
in the for thcoming book  Aldous and Fill (1997). See also Diaconis (1988) for the case 
of r andom walks on groups, and Sinclair (1993) and Motwani  and Raghavan (1995) 
for uses in the theory of algorithms. 
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These areas have developed rather independently, and the connections are not easy 
to find in the monographs  above. The purpose of this paper is to record two related 
results which explicitly use aspects of all three areas. These results (Theorems 1 and 3) 
assert the equivalence (up to universal constants) of different formalizations of 

"mixing time" in (essentially) the context of uniformly ergodic general state-space 
chains. 

In Section 1.1 we recall the underlying algorithmic motivation for studying mixing 
times. In Section 1.2 we describe, as mathematical  background, known results from 
each of the three areas (a)-(c) above. Section 1.3 states our new results, and Section 1.4 
interprets the conceptual significance of the new results. 

1.1. Mixing times and randomized algorithms 

One motivation for the study of mixing times comes from computer  science, more 
exactly from the analysis of sampling algorithms, which has been an active area over 
the last ten years. In randomized algorithms solving a variety of computat ional  tasks 
(approximate enumeration, volume computation,  integration, simulated annealing, 
generation of contingency tables etc.) the key element is to sample from a given 
distribution ~ over a known but large and complicated set. The basic method is to 
construct an ergodic Markov  chain with stationary distribution ~, and then run the 
chain for an appropriately large number  of steps• The details vary according to the 
goal of the algorithm, which might be to estimate an average ~fdJr, or to bound the 
~z-probability of some set of unlikely states, or to generate typical realizations from 

for illustrative purposes. The number  of steps required by a particular algorithm (as 
a function of the Markov  chain) will depend on some algorithm-specific notion of 
"mixing time", i.e. the number  of steps until the distribution approaches stationarity. 

Three such notions are mentioned below. Even for the more restricted issue of 
quantifying the distance between the time-t distribution and ~ there are several 
answers: total variation distance (i.e. ll distance for densities), the analogous 12 or 
l~ distances, Kullback Leibler distance, etc. 

In a sampling algorithm, we may want to generate a single state from the stationary 
distribution, starting from some fixed state (determined by the rest of the algorithm). 
The minimum mean time to do so is a definition of a mixing time from a given state. 
If we do not have more information about  the starting state, we have to use the 
maximum over all starting states, which we will call the mixing time "Y-m~ 
(precise definitions will be given later). But it may be the case that we need to generate 
several independent samples from the stationary distribution. In this case we 
might start the second run of the Markov  chain where the first one stopped, and so 
the expected time needed for this will be the average, rather than the maximum, of 
mixing times from individual states. This leads us to the definition of the reset 
time ~Y-rese," Alternatively, we may use the Markov  chain to find an element 
from a specified, but not directly accessible subset of the state space. The worst 
expected time needed for this (normalized by the measure of the subset) is the set 
hitting time ,Y-~e~. 

This paper  is motivated by a foundational question. 
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Does it make sense to undertake a mathematical  analysis of a given chain being 
used in some sampling algorithm, without paying attention to the algorithmic use 

of the samples? 

If the mixing times for the given chain associated with different algorithms were 
incomparable, then it would not make sense. Fortunately this is not the case. For 
reversible chains, it has been known for a long time (Aldous, 1982) that various mixing 
times (including the three mixing times above) are within absolute constant factors of 
each other, assuming that they are finite at all. The case of non-reversible chains is 
a bit more complicated, but results of this paper show that many mixing measures fall 
into three groups only, where measures in the same group arc within absolute 
constant factors of each other, one group is always "above" the other two. and these 

two are related in an interesting way through time-reversal. 
To discuss a celebrated example, consider a convex body K in R" and suppose that 

we want to generate a uniformly distributed point in it. We assume that the body is m 
isotropic position (i.e. a uniform random point (X~ . . . . .  X,,) of K has EX~ = 0 and 

ENiX  j l l i=j) ). Choose an appropriately small (~ > 0, say ~5 = 1..'x."~l, and start 
a random walk from a point s by stepping distance ~ in a uniformly chosen random 

direction. (If this step takes us outside the body, we choose another direction, until we 
tinally are able to make a step.) The stationary distribution of this walk is close to 
uniform. Mixing properties of this walk were analyzed in several papers (Lov/tsz and 
Simonovits, 1993; Kannan et al., 1997). It turns out that the mixing time of the walk is 
O'(n ~) independently of the body (it may even be O(n 2 ): this is an open questiont. Our 
results than say that a number  of other mixing measures have the same order of 
magnitude. 

Other algorithmic contexts where mixing times have been studied include sampling 
from log-concave distributions (Frieze, 1994), matchings in graphs (Jerrum and 
Sinclair, 1989; Motwani and Raghavan, 1995), and Metropolis-type algorithms 
(Diaconis and Saloff-Coste, 1996). 

1,2. Background mathematical results 

We set the stage by first quoting one standard theorem from each of the three areas 
mentioned initially. None of these theorems is recent. Theorem A, in explicit form, is 
due to Baxter and Chacon (1976), though seems implicit in the earlier works of Dinges 
(19741 and Rost (1971) (see also Pitman, 1977): extensions can be found in Revuz 
(1978) and finite-state applications in Lov/lsz and Winkler (1995). Theorem B is part of 
Theorem 16.0.2 of Meyn and Tweedie (19931, who describe its history, tracing the 
various parts of the cycle of equivalences to dates between 1941 and 1980. Theorem 
C is from Aldous (1982). 

Write (X(t); t = 0, 1, 2 . . . .  ) for a Markov chain with transition kernel P1x, ,41 on 
a measurable state space ~'. Suppose an invariant probability measure ~z exists. Write 
l] v 11 for the total variation norm on signed measures on :'1", so that for probability 

measures t~1, t~2 we have 

Illt~ 112 Ii = 2 sup J i l l ( A )  - -  p2(A) l .  
A 
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Here  we have used the "functional  analysis" normal izat ion,  even though in the 
"mixing t ime" l i terature it is c o m m o n  to divide the right sides by 2. Write H A ~ 0 for 
the first hitt ing t ime on A. Write E , ( - )  and d , ( - )  for expecta t ion and distr ibution 
w.r.t, the initial distr ibution/~.  Fo r  probabi l i ty  measures  t~, 0 define 

h(/~, 0) = inf{E,  T : T  is a randomized  s topping time, £ ° , ( X ( T ) )  = 0}. 

Abusing nota t ion  slightly, write h(x, O) instead of h(6~, O) for the case of  an initial 

dis tr ibution 6x concent ra ted  at x. 
Consider  the hypothesis  

G(x, .) - lira ~ (W(x ,  .) - n(- ) )  exists Vx, (1) 
t ~ ".;o s - - O  

where the limit is w.r.t, total  variat ion.  If  (1) holds, then G(x, .) is a signed measure  
with G(x, f )  = O. It may  not  be true that  G(x, .) ~ n, but it is easy to see that  G(x, • ) 

decomposes  as the sum of a posit ive measure  singular w.r.t, n, and a signed measure  
with some density g(x, • ) w.r. t .n.  We call g = g(x, y) the recurrent potential density. 

Theorem A. Suppose (1). I f  the negative part o f  (t 2 - a)G has a density - O(Y) w.r.t. 

n then 

h(/*, a) = ess sup 0- 

Otherwise, h(l*, a) = ~ . 

To state the second theorem,  define 

d(t) = sup I] Pt(x," ) - n II. (2) 
x 

If  d(t) --+ 0 the chain is called uniformly ergodic. It  is well known that  d(t) is submult i -  
plicative, so if d(t)--+ 0 then the convergence is geometr ical ly  fast. Next,  a petite 

structure is a collection {C,/2, m, a} where C is a subset of  °2",/~ is a probabi l i ty  
distr ibution on f ,  m ~> l, 5 > 0 and 

Km(x , ") =~ (m + 1) 1 ~" pt(x  ' .) >~ 6t~(') V x e C .  (3) 
t = O  

Call C a petite set if it is par t  of some petite s tructure {C, #, m, 5}. 

Theorem B. The following are equivalent. 

(i) The chain is uniformly ergodic. 
(ii) There exist m < oo , 6 > 0 and a probability measure I~ such that 

Pro(x,') > 61~(" ) Vx.  

(iii) The chain is aperiodic and there exists a petite set C such that 

sup E x H c <  ~ .  
x 
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(iv) 
and constants fi > O, b < ~ such that 

G V I X ~ ) -  V(x) ~< - fi, x¢C 

<~ b, x e C .  

To state the third theorem,  define 

~Y-,,i~ = sup h(x, re), ,7~t = sup ~(A)E~HA. 
x x.A:n(A)>O 

J-continuize = in f{ t :P ' (x ,  ") -- ~l[ ~< e IVx} 

where 

* e ~t i 

P'(x,"  i y'To i7[-" Pi(x' ") 

The chain is aperiodic and there exist a petite set C. a bounded function V (x) >~ 0 

associated cont inuous- t ime chain. Finally. in the is the transit ion kernel for the 
finite-state case, where h(x, y) and h0z, y) are finite for all x, y. we may  define 

.~;  = sup ~ Ih(x, y) - h(=, Y)I=(Y)- 
x 

Y 

So .Tca measures  variabil i ty of mean  hitt ing times as a function of start ing state. ~See 
(9) for a more  generally appl icable redefinition of ,Y-c; ). 

Theorem C. For each pair (,Y]i, .Y-;) #ore { ~ i x ,  J-,¢t,-TG, ~ - c o m i n u i z e }  t h e r e  is a ( 'oH- 

stcmt Ki. j < ~ such that for every irreducible reversible chain on every finite stale 
space/t' ,  

~Yi <-G Ki.j/Ti. 

Though  the hypotheses  and conclusions of  Theorems  A C are somewhat  different. 
it seems intuitively clear that  they refer in par t  to the same idea: the relation between 
means  of s topping times and convergence to stat ionari ty.  Means  of s topping times are 
explicit in Theo rem A, in Theo rem B(iii) and the definitions of :Y-m~x and .~-,,., in 
T he o rem C. And as regards convergence,  the pa ramete r s  "Y-m~x and .7~onU,,u~,~ in 
The o rem C provide  quantif icat ions of the uniform ergodicity assertion in Theo rem 
B (i), while in Theo rem A one expects the size of the measures  G(x, " ) to be related to 
the speed of convergence of the sum in (1). 

1.3. Statement o f  new results 

The goal of our  paper,  in brief, is to establish quant i ta t ive  bounds  like those in 
The o rem C in the cont inuous-space  setting of Theo rem B. 

The setting we shall adop t  is best described as "uni form ergodicity, but without  
assuming aperiodicity".  More  precisely, define d(t) as "'d(t) for the uniformly- 
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sampled chain", i.e., 

d(t) = sup rlPx(X(U,)c') - ~z(')ll = sup ][K,(x, .) - ~(')ll  
X x 

where Kt was defined at (3) and where U~ denotes a random variable distributed 
uniformly on {0, 1, 2 . . . . .  t}, independent  of the chain. If d ( t ) ~ 0 ,  call the chain 
uniformly ergodic under sampling (UES). Minor  modifications to the proof  of Theorem 
B would establish the parallel result 

Theorem B*. The followin 9 are equivalent. 

(i) The chain is UES. 

(ii) There exist m >~ l, 6 > 0 and a probability measure t~ such that 

K m ( x  , .)  ~ (~[l(" )'V'x. 

(iii, iv) The corresponding statements in Theorem B, without the "aperiodic" asser- 

tion. 

Our  goal is to give a "quant i ta t ive"  version of Theorem B*. That  is, we replace 
assertions of the form 

there exist objects {a, b . . . .  } satisfying requirements {R, S, T ... } 

by parameters  J defined via 

Y is the minimum, over all choices of objects {a, b . . . .  satisfying requirements 
{R, S, T . . .  }, of a certain numerical  function of {a, b . . . .  }. 

Applying this procedure  to the four parts of Theorem B* leads to the following four 
definitions. 

J~-unif . . . .  (C) = min{t :d( t )  ~< c}, 0 < c < 1. (5) 

Jmi,orize is the infimum of ,5 l m over all {m, 6,/2} in Theorem B* (ii). (6) 

Yvetito is the infimum of 6-~(m + supxExHc)  over all petite structures 
{C, ~t, m, 3}. (7) 

"Y--drift is the infimum of 6 l(m + max(b,  [3 l supx V(x))) over all petite 
structures {C, #, m, 6} and all { V, fi, b} satisfying the inequality in 
Theorem B (iv). (8) 

But it is almost obvious (see Section 6.2) that in fact J ~ - d r i f t  = '~-petite, SO we need not  
consider 'Y-drift separately. We shall also consider parameters  equal or similar to those 
in Theorem C. Redefine J"-~ as 

,Y-o = sup II a (x ,  ")H. (9) 
x 

This is consistent with the previous definition in the finite-state case, where it is 
classical (see the discussion of the fundamental  matrix in [17]) that 
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h ( i , j ) - ( G ( j , j ) - G ( i , j ) ) / ~ ( j ) ,  h(Tc, j)=G(j, j) /Tc(, j) and so ~z(j)(h(i,j) h(~,j)) 
- - G ( i , j ) .  Next,  we give two weaker  var iants  of ,J-,,~. The first requires only 

a pp r ox ima te ly  a t ta in ing  the target  d i s t r ibu t ion  To: 

.Y-,~op(Cl=supinf{E,-T:llSxX(T)-Trll ~<c}, 0 < c < l .  t10) 
x 

The second replaces ~ by some target  d i s t r ibu t ion  ~r of our  choice. 

"~orRel = i n f sup  h(Iz, a) = inf sup h(x, a). I111 
o- i i  ~ x 

Theorem 1. A chain is UES  (f amt only if one o f  the parameters 

{'~'G, '~/sel, *~-forget,-~-minori ~"petite, "~-unif . . . .  (C), 0 < C < 1. J-~,,,p(C), 0 < C < 1~ is finite. 
in which ease all o f  these parameters are finite. For each pair (~-i, ~7]1 (~1' parameters in 

that set, there is a constant K~.j < ,c such that ,~. <~ Ki.i-ff- j ,fi~r ererv UES chain. 

More  concisely,  call these pa rame te r s  equivalent. In add i t ion  to quant i fy ing 

Theorem B*, Theorem 1 shows that  par t  of Theorem C remains  true in the non- 

reversible setting. One  might  hope  that  "fm~, remained  equivalent  to these pa ramc tc r s  

in the non-revers ib le  setting, but  this hope is dashed  by 

Example  2. The winning streak chain. Take  ' / '  - {0, 1, 2 . . . .  ] and P(x, x + 1) - p. 

P(x,O) 1 - p  for fixed 0 < p  < 1. So r e ( x ) - ( 1 -  p)pL By cons ider ing  a = ,5. 

we: have .Y-fo,-g~, = 1/(1 - p). But an e lementary  ca lcula t ion  gives 

E(:,H,- = (1/St(x)) -- (1/(1 -- p)) and  so ,Y-mix ~> h(0, 70 = ~.,zr(x)E(~Hx = z .  

It turns  out  that  'Y-m~ is related ins tead to yet ano the r  parameter .  Definc. tk, 
0 < c <  1. 

.#-,~p,~,~(c) = m i n { t : p , . ( X ( U t l e ' )  >~ (1 - clTr(-)Vx}. (12) 

F o r  a UES chain the pa rame te r s  ,Tm~ and ,Y,~p~,,,Jc) may be infinite, but they are 

equivalent .  

Theorem 3. 'Tmi* ~< [1/2(1 -- C)] 3-~op~,r~,te(C): 0 < C < 1. Conrersely, {f l .c  is an inte~ler 

then 'Y-~,l, ........ (c) ~ (4/e  2 )'~-mix. 

To connect  this with recurrent  potent ia l ,  note  that  Theorem A gives 

h(x, ;r) = ess sup. , , ( -  g(x, y)). (13t 

Thus  -<,,~x can be defined direct ly  in terms of the recurrent  potent ia l  densi ty  g as 

.<,,ix sup ess s u p ; . ( -  ,q(x, y)). 
x 

We should  emphas ize  that  Theo rems  1 and 3 are not  really difficult or  deep. O u r  

proofs  use the same mix of  ingredients  as the p roo f  of T he o re m C. with occas ional  
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modifications which use Theorem A in place of considering mean hitting times on 
single states. Textbooks sometimes leave the impression that general-state chains 
require different techniques than finite-state chains, but from the quantitative view- 
point this is not so: our proofs were originally written for finite-state chains but then 
extended to the UES setting with only minor rephrasing. 

Some further results dealing with time-reversals (and requiring some measure- 
theoretic technicalities) will be given in Section 5. 

1.4. Interpretation o f  results 

In the setting of Section 1.1, there is a specific Markov chain which we use to obtain 
samples for some ultimate algorithmic use. For an analysis of the number of steps 
needed, the ultimate use affects the notion of "mixing time" needed. The significance of 
our results is that one can to some extent "decouple" mathematical analysis of the 
chain from the ultimate algorithmic use of the samples, because many different mixing 
times are equivalent up to constants. In other words, for a sequence of Markov chains 
with size-parameter n, Theorem 1 says there is a well-defined "order of magnitude of 
mixing times" t(n) such that each parameter in Theorem 1 is ®(t(n)). In contrast, 
Theorems B and B* are typically uninformative in this context. 

Of course, to actually bound mixing times for specific chains is a more interesting 
and important problem. Our results do not directly help, beyond providing flexibility 
in what one needs to prove to obtain an order-of-magnitude bound. (For instance, in 
obtaining upper bounds the freedom of choice of a in Yfor=e, may be helpful; in 
obtaining lower bounds the freedom of choice of x and A in .Y-set may be helpful.) 

We remark that most of the algorithmic problems of Section 1.1 are so hard that 
one cannot get the correct order of magnitude bound for mixing times. On the other 
hand, in the more highly-structured setting of card-shuffling and random walks on 
groups, one can often do rather precise calculations of mixing times: see for instance 
the analysis (Beyer and Diaconis, 1992) of the riffle shuffle. Our work is perhaps most 
relevant to examples whose complexity is such that one can get only the correct order 
of magnitude. Here are two recent examples. Chung and Graham (1996) analyze the 
chain on states {0, 1 }" in which two coordinates i, j are chosen at random, and the 
parity ofx i  is changed ifxj  = 1. They show the mixing time is ®(n log n). Diaconis and 
Saloff-Coste (1996) study simple symmetric random walk on a convex subset of the 
two-dimensional lattice, and show that the mixing time is ®(diameter2). 

In the setting of random walks on groups, the main focus of study has been 

J--(c) = min{ t :d ( t )  <~ c} (14) 

and the cut-off  phenomenon [8], in place of the time averaged analog .~'-uniform(C). While 
this is natural in examples, there seems no elegant "equivalence theory" analogous to 
Theorem 1 for J ( c ) ,  and indeed Corollary 9 later indicates how J ( c )  may behave 
undesirably. The underlying difficulty is to quantify aperiodicity. Since periodicity is 
irrelevant for algorithmic sampling purposes, the Theorem ! mixing times are more 
natural in that context. 
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2. Some  technical tools 

The minorization construction. Let (Y(t)) have kernel Q satisfying the minorizat ion 

condit ion Q(x, ") >~ Dlz(')Vx, for some 6 > 0 and some probabil i ty measure l~. Obvi-  
ously we can construct  a randomized  s topping time T with geometric(6) distribution 

such that Y ( T  ) has distribution l~ and is independent of both the starting state and the 

vahle of T" in particular 

J ' Y I T )  lU ET = 1/b. 115) 

Elaborations of Theorem A. We need to use some ingredients of the proof  o1 

Theorem A, so we shall outline parts of the proof. See Baxter and Chacon (1976). 

Lovasz and Winkler (1995) and Aldous and Fill {1977) for more details. 

Fix ic o- and consider a s topping time T w i t h  E~,T< ~ and ~' , ,X(T)  a. Write 
7"-1 

$ ( ' )  = E, ,~,= o llxm~. > Then $ is one solution of the identity i/J (JP = I~ ~r. 
Assuming IlL a particular solution of this identity is i/Jo = (Iz a)G and then the 
general solution is ~b = (tl - a)G + err for some constant  c. Since i)(.'g) = t7, T wc 

have c E,, T. To summarize:  

1' 1 

gJ(') - E,, y~ l~xl,>.l = (I* - a)G + (E,, T ):r. (16) 
1=0 

Since i/J >~ 0. (16) implies 

d(a  /l)G 
E , T  ~> ess sup dTt I1 71 

The proof  of Theorem A is completed via a .tilling schenie construction,  which detines 
inductively a certain decreasing sequence A, of r andom subsets such that 

T min[ t :X( t )~At]  flS~ 

achieves equality in (17). 

3. Proof  of  Theorem 1 

The proof  is structured as three cvctes of inequalities, in which 0 < ~' < 1 is 
arbitrary. The first cycle is 

.~,,,p(C) ~< 4,7-,e~/c 2, t191 

2 
~-, ,~-stop (C). 120t  

These imply that .~'~op(C) ~< [8/cZ(l - c')]  J~,oldc'). So the parameters 
[ 'J--  . . . .  ..5' ( i ,  .Y~lop(C) ,  0 < C % 1 } are all equivalent, i.e. ratios are bounded  by constants. 
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The second cycle is 

,~-stop(C ) ~ 1 ~/uniform(C) ' 

o7- ' 2+~ st°p (c) 
"~/uniform( C ) ~ - - ,  C z - -  C 

C' > C. 

(21) 

(22) 

' 1} are These show that  the pa ramete r s  {Juniform(C), 0 < C < equivalent  to the para-  
meters  above.  The third cycle is 

"~/forget ~ ~-petite ~ ~ ~ 1 ~ffminorise ~ 4 3 J u n i f o r m ( ~ ) ,  (23) 

4 
'Y~'-uniform(C) ~ -- ~/~-forget. (24) (. 

These imply equivalence of the remaining pa ramete r s  ~32, JT- "( forget~ 'ffpetite~ 'ff minorize}' 

The first cycle. Fix some initial distribution. The  fact that  a min ima l -mean  stop- 
ping time T with S X ( T )  = zr can be constructed via a filling scheme (18) implies 

P ( T  ) t) <~ P(HA, >~ t), P ( T  >~ t) ~ ~r(A,). 

Using the definition of "Y-,e, and the inequalities above,  

J-~c, Y-se, V ( r  ~ t) <~ P(HA, >~ t) <~ t-IEHA, <~ ~ <~ 
t P ( T  >1 t) 

and so P ( T  ~> t) ~< ~ ,  in par t icular  

P ( T  > L4J-,o,/c2 J) ~< c/2. 

But / S X ( m i n ( T ,  t)) - ~r 11 ~< 2P(T  > t) and min(T,  t) is a s topping t ime with mean  at 
most  t, so by definition of 3-~s,op(C) we have J~top(C) ~< 4Y~:,/c z, which is (19). 

Fix it and A and write a = ~ , X ( H A ) .  Consider  (16) with T = HA: since ~ = 0 on 
A we have d(a  - tOG/d~ = E~HA on A. Then 

7~(A)E, H A = (a - p)G( A) <~ l l [ (a  - B)G[] ~< ~--G. 

So by definition of ,Y~t we have J~et ~< J~--G, which is the first inequali ty of (20). 
Fix x. By Theo rem A, for any distr ibution a and any set A, 

(a - ~=)G(A) 
h(x, a) >~ 

~(A) 

Rearranging,  and using the fact 7:G(.) = 0 (a simple consequence of (1)), 

- G(x, A) <~ h(x, c;) - ~rG(A) = h(x, a) + (re - a)G(A) 

<~ h(x, ~) + ½117r - ~ II Y-o. 

By definition of 3-=,op(C ), minimizing over  {a : I[ a - u [1 ~< c} gives 

C 
- ~ ( x ,  A) ~< &,odC)  + ~ :(~. 
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Applying this t o  A = {y:,q(x,y)<0} and maximizing over x gives, by definition 
of YG, 

C 

In other  words, .7~ ~< [2/(1 - c)] .~,op(C), which is the second inequality of (20). 
The second cycle. Inequali ty (21) follows from the definitions of .2<,op(Cl and 

-£-.niror,,,(C), because EU, t//2. Now lix x, consider T as in the definition of .7~,op(C), 

so that E., T ~< .~ top(C)  and II W % X ( T  j -- 7r Ii ~< c. The latter implies 
I!~'..<X(T + U,) - ~ll ~< c. And 

Ii Z / ' . ,X(U, ) -  g ' x X i T  + U,)II 

~< II ~ ' . u ,  - £P~(T + U,)ll 

<~ 21 ~E.~T because II~'~U, - S { a  + /-7,){I ~< 2t la 

~< 2t - 1.7~,op(C ), 

By the triangle inequality 

[ ~ ) x X ( U , } -  roll 4 c +  2 t -  1j-,,,p(c}. {25) 

In other  words, :Y<,~r .... (c') 4 t whenever c + 2t 1.~,<,p(c) ~< c'. Rearranging gives 
,~~niro~m(C'J ~ 2J-stop(C)/(C' --  C), C' > C, which is (22). 

The third cycle. We start by proving (24), the proof  being similar to the proof  of 
(22}. Let a attain the infin the definiiion of ~-org~t- So given an initial state x. we can 
choose S., and S~ such that 

2 '~X(S , )  = a, E.S_~ <~ '~forge,, ~°rrX(Sn)  = o. E~zgrc ~ "~forge,. 

Then ~ x X ( S ~  + U,) X,P~X(S= + U,) = cJ'.X{U,), and so 

!l g ' . x ( u , t  - ~ % x ( u , ) l l  ~< I I ~ ' ~ x ( u , )  - s , x ( s .  + C,)ll 

+ 112'~x(c,l ~ .X (S~  + U,)l 

~< ll~':<c,', - u ' . ( s . +  u,)i + i' u % ( g , )  5 " d s . +  u, ll 

~< 4t - 1.if-forget. 

Since ~ X ( U , )  ~, we have established (24). 
Given a petite structure {C, tL, m, 'Sl, we have 

O ( x , ' ) = p d X ( H c +  U , , ) c ' ) > 6 y ( . )  Vx~/ / ' .  

Use (15) to construct  a s topping time attaining distribution l~ with mean 
<~ 6 l SupxEx(Hc + U,,,) = 6 1(m/2 + sup~E~.Hc). This implies "~forgel ~. *~pelite, the 

first inequality in (23). The second inequality, <p~m~ ~< ~,ino~i~, is immediate  by 
taking C = :~' in the definition of 3-p¢,~... The third inequality requires a preliminary 
lemma. 
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L e m m a  4. Let  Q be a transition kernel for which n is invariant, and suppose 

sup II Q(x, .) - n(.)II <~ ¼. 
x 

(26) 

Then there exists a set A with n(A) >~ 1/2 such that, for all probability distributions #, 

d # Q j > s (  1 1  _ I I # - n l [ )  o n A .  
dn 14 

Proof.  Let B~ be the set where dQ(x, ")/dn <<. ½, or more  precisely where the measure  
Q ( x , ' ) - ½ n ( . )  is negative. Write B = { ( x , y ) : y ~ B ~ }  ~ J J ' x X .  For  each x we have 
Q(x, B~) <~ ½n(B~), and so 

ln(B~)  <<. n(Bx) - Q(x, Bx) <. ~ll Q(x, ') - 7c(')ll. 

Using (26), n(B~) ~<¼ and hence n x n ( B )  ~<¼. Write B ~' = { x : ( x , y ) 6 B }  and define 
A = { y : n ( B  y)~<½}. Then n(A ~)-%<nxn(B)/1/2<~ I/2. By definition we have 
dQ(x, ") /dn(y)  ~- 2 for x63{ ' \B  y, and so 

d#Qdn (y) ~> ½ #(~'\BY) ~> 2 (n(~ ' \By) - 2 r] # - n IJ) ~> ~ ~ -- ~ I] g - n 11 on A, 

the final inequali ty by definition of A. [ ]  

N o w  set t = • uniform(4) and let U and U' be independent ,  uniform on {0, 1 . . . . .  t}. 
Let  Q be the kernel associated with X(U ' ) ,  so that  (26) holds by definition. Let A be 
the set guaran teed  by the lemma.  Fo r  fixed x, write # = 2PxX(U), and then 

d ~ x X ( U + U ' )  d#Q > 1 ( 1  1 )  3 
dn - d n  ~ 4  - 4  = 1 6  ° n A  

by the lemma.  In other  words, if R(x, .) is the kernel associated with X ( U  + U') and if 
we set # = n ( ' [ A )  then R ( x , ' ) j > 3 # ( . ) V x ,  because n(A)/> 1/2 by the lemma.  It  is 
e lementary  that  P(Uzt = i) >1 ½ P(U + U' = i)Vi, and so LfxX(U2t)  >~ 34pVx.  So by 
definition of "~minorize we have ,~°7"minorize ~ ~ 2 t  ~< 43J-uniform(i/4 ). 

4. Proof of Theorem 3 

Fix t, write 

s(t) = inf{c : Px(X(Ut)E" ) >~ (1 - c )n( . )Vx} 

and consider  the chain Y with transi t ion kernel Kt(x, ") = Px(X(U~)e') .  Const ruc t ion  
(15) gives a s topping t ime S for Y satisfying ~ Y ( S )  = n and ES = 1/(1 - s(t)). This in 
turn specifies a s topping t ime T = U~ 1) + ... + U~ sJ for X satisfying ~ X ( T )  = n and 

E T  = (ES)(EUO = t/[2(1 - s(t))]. Put t ing  t = J-separate(C) gives 

,~-separate (C) 
~. ix  ~< 

2(1 - c) 
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F o r  a reverse inequal i ty ,  the central  idea  is con ta ined  in the fol lowing lemma,  

ana logous  to L e m m a  4. Wr i t e  N(t, .) = ~ , = o  lu~,l~.~. 

L e m m a  5. ~d~E,N(t, .) >~ (1 -1~2~ l i ) t  --¢/~,,~x. 

Proof.  Wri te  ~ = [Icr-Tzl]/2.  D e c o m p o s e  the initial d i s t r ibu t ion  a as 

a = rc + 3(:~ [~), where z = (a - rr) ~/(5 and [~ = (~z G) ~/& Note  that  

ess sup drr ~< 1/'~5 (27) 

and  thai  

E , N ( t , ' ) = E ~ N ( t , ' ) + a ( E ~ N ( t , ' ) - E t ~ N ( t , ) ) > ~ t n ( ' ) - b E t ~ N ( t , ' ) .  (28) 

Next  observe  that  for any s topp ing  t ime S with ~'~X(S)  = Tc (note this refers to the 

stationary chain) we have by (16) 

E~N(S, .) = (E,S)Tr(. ). (29) 

By defini t ion of ~"mix there exists a s topp ing  t ime T with E~T ~< "£~mi~ and 
5/~.,X(T ) = rc for all x. So 

1 
~ ~ ~mix X( ' ) 

and then 

ElaN(t, .) <~ f l~(dx)ExN(r  + t, .) 

= f [ J (dx )ExN(T ,  ") + E=N(t, .) 

1 

The l emma now follows, using (28). [ ]  

To deduce  the reverse inequal i ty  in Theo rem 3, fix an initial  s tate x and a t ime s. 

Then 

ExN(s + t, ") >~ E~N(U~ + t, . ) = E~N(t, . ) 
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for a = 5P~X(U~). By (25) with c = 0 we have I l a -  nil ~< 2Ymi~/S and so using 
L e m m a  5 

d 
d~ E ~ N ( s  + t, ") >1 t -- J~-mixt/S - ~-mix. 

In other  words, 

- -  s )  ~Jmix  d t - -  ~-mix t /S  - -  ~-mix  t - -  (1  t 
d~ K~+t-l(x, ' )  ~> >/ s + t - - 1  s + t  

2 ~7- Provided 1/c is an integer we m a y  set s 7~',,ix and t = (~ 2 07- - -  c ) ~ / m i x  . The right side 
becomes 1 - c, so we have proved  

~'-separate(C) ~ S -~- t - -  
4Ymix 

C2 
(30) 

5. Time-reversals 

A kernel P with s ta t ionary  dis tr ibut ion n and the t ime-reversed kernel P* are 
related by the following identi ty for measures  on Y" x 5f. 

n ( d x ) P * ( x ,  dy) = n ( d y ) P ( y ,  dx). (31) 

It  is perhaps  surprising that  for a UES  chain the t ime-reversed (or dual) chain need not 
be UES. Fo r  instance, the t ime-reversal  of Example  2 is the chain with 
p*(x,  x - 1) = 1, x ~> I and p(0, x) = (1 - p)pX, x >~ O, which is plainly not  UES. This 
lack of symmet ry  suggests s tudy of the class of  processes whose t ime-reversals are 
UES. Fo r  each pa rame te r  Y we m a y  define a pa rame te r  3--* as " Y  for P*". Fo r  
instance, 3--~ = supx ]l G*(x, -) j] where G* is defined in terms of P* as in (1). Theo rem 
1 implies equivalence of the "s tar red"  pa ramete r s  therein, but what  does this mean  for 
the P-chain? The pa ramete r s  involving s topping times for the P*-chain  have no very 
clear in terpre ta t ion as pa ramete r s  for the P-chain,  but  it turns out  ( L e m m a  6) that  the 

O7":t: remaining pa ramete r s  {,Y-*, g mino~i,e,* J .nil .... (C)} can be expressed directly in terms 
of the P-chain.  But first we must  deal with a technical issue. If we use (31) as 

a definition of the t ime-reversed kernel P * ( x , .  ) of a given kernel P, then P * ( x ,  .) is 
defined uniquely only up to n-null sets of  x-values. This mat ters  because the para-  
meters  .Y- were defined as sups, ra ther  than ess sups, over x. Issues like this are 
frequently resolved by imposing  topological  assumptions ,  but  for our  purposes  we 
m a y  just adop t  the following simple though inelegant assumpt ion.  

Assumption. P and P* are related by (31). Fur thermore ,  in the definition of each 
pa rame te r  J-- for bo th  P and P*, using sup~ and ess SUpx give the same value. 

It is s t ra ight forward to check that, given P and P* related by (31), we can delete 
a single n-null set f rom ~ so that  the second requi rement  holds on the remaining 
space. In this sense, the assumpt ion  involves "no loss of  generality".  To  see the need 
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for some such assumpt ion ,  consider a finite state space chain containing both  transi- 

ent states and a single recurrent  class ,~. Then there exists a (unique) s ta t ionar  3 

distr ibution suppor ted  on ~ ,  the chain is UES, so Theo rems  1 and 3 are meaningful  
(and true), for pa ramete r s  defined as m a x i m a  over  the whole state space• But there is 
no natural  way to define P* outside .~, and hence no natural  way of mak ing  results 
like', Theo rem D true, Our  technical a s sumpt ion  has the effect of pruning the state 
space down to .~. 

Relation (3l) easily implies that  the density componen t s  k,(x,y)zr(dyl and 

,q(x, y)Tr(d),) of K,(x , .  ) and G(x, .) are related to their duals by symmetry:  

k*(x, y) = k,( y, x), 9*(x, y) = 9(3', x), a.e. (~ x zrt. ~32t 

Now using this symmet ry  and our  technical assumpt ion,  it is easy to relate certain 
"s tar red"  paramete rs  to their unstarred versions. The parameters  in Theo rem 3 can be 
writ ten as 

J-mi~ -- ess suplx.y)(-- ,q(x, y)) 

.<~p.~.,e(c) = min{t  : essinfc~.r~t- ~k,(x, y) >1 (1 - c)}. 

So by symmet ry  they are unchanged by t ime-reversal .  The next l emma (proved in 
Section 5.1) expresses the "s tar red"  versions of certain paramete rs  in Theorem 1 in 
terms of the P-chain,  

L e m m a  6 .  ( a )  ~ -  * • '~/ minorize is the infimum 01" 8-  1 m over all triples {m, ~5, I/~j such that 

V>~0; fVdTz  = 1; K,,(x, ' )  ) fil/(x)Tr( • ) Vx. 

(b) 

'~'-uenif . . . .  (C) = min{ t :d*( t )  <~ c}, 0 < c < 1, 

where 

d*(t) = 2 ess sups, f ( k , ( x ,  y) - 1) rc(dx), 

where k,(x, y)rc(dy) is the density component q[ Kt(x, ") 
(c) Write G = G + - G fl)r the Hahn Jordan decomposition of  G as a d!Ili'rence 0! 

positit~e kernels, and write [GI = G' + (7,-. Then 

drtlG[ 
Y-~ = ess s u p -  

' 1 

drt 

Whereas  the original pa ramete r s  in Theo rem 1 all explicitly involved sups over  initial 
states, the s tarred pa ramete r s  in L e m m a  6 have a different flavor: roughly, they 
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involve approximate minorization at a terminal time. A more natural parameter with 
that flavor is 

~-reset = ~h(x,  ~r)~(dx). 

In Section 5.1 we prove the simple bounds 

lo7-* Lemma 7. l y  ~ ~< ~"-reset ~ 2~" minorize. 

Combining with Theorem 1 (applied to time-reversed chains) gives 

Corollary 8. The parameters ¢ ~- * ~" * ,/~ uniform(C), 0 < C < "~J . . . .  t ,  ~ - ~ ,  J "  1} a r e  minorize~ 
equivalent. The time-reversed chain is UES iff one (all) of  these parameters are finite. 

We observed above that the parameters in Theorem 3 are unchanged by time- 
reversal. So (e.g. because ~top(C) ~< Ymix) if ~--mix is finite then both the chain and its 
time-reversal are UES. The converse also holds: if a chain and its time-reversal are 

both UES then J-~nix is finite. (So our results imply the equivalence of {Jrnix, @set, Y-G) 
for reversible chains, which was part of Theorem C). In fact, 

~'-mix ~ 2(~-s~t + ff'~reset)" 

Because A = {x: h(x, 7r) <<, 2Yreset} has ~(A) ,I> !2, and so SUpxExHa ~< 2~-~,. Thus for 
any initial distribution, we run the chain until hitting A, then until an optimal 
stopping time attaining 7r, and this stopping time has mean ~< supxExHA + 2Jreset. 

Theorems 1 and 3 reflect the spirit of Theorems B and C in dealing with inequali- 
ties. Theorem A is in the spirit of standard results on maximal coupling and minimal 
strong stationary times (see Section 6.3) giving "optimal constructions" or "rain-max 
characterizations". Lovfisz and Winkler (1997) proved another remarkable identity in 
the same spirit. 

Theorem D. For a finite-state irreducible chain, ~f°7- reset* = ~forget" 

Assuming this extends to our general-space setting, one could use Theorem D in 
place of Lemma 7 in establishing Corollary 8. 

5.1. Proofs 

Proof  of  Lemma 6. In the definition of ~-minorize, the probability measure # must 
satisfy p ~ ~r. Setting V = dp/dTr and using the symmetry relation (32) leads to the 
stated expression for ~ *  J mi,orize. Next, we may rewrite the definition of aV(t) as 

aV(t) = 2 ess supx f ( k t ( x ,  y) - 1)-~(dy) 



D. Aldous et al./Stochastic Processes and their Applications 71 (1997) 165 185 181 

and then the expression for ~ *  .~ u~f .... (c~ follows by symmetry. Similarly, writing 

-TG = 2 ess supply (x, y)~(dy) gives by symmetry 

= 2 ess sup,. f g - ( x ,  y)rt(dx) (33} 

and the stated expression for ,Y-~ follows because rcG = 0. 

Proof of Lemma 7. 

= ess sup,, [ ' e  (x, 
O 

y)Tr(dx) by (33) 

g 
~< J ess sups. ( -  9(x, y))lr(dx) 

= f h ( x ,  rc)rc(dx) by (13) 

= ~ ' - r e s e t  • 

For the second inequality, consider {m, 6, V } as in the definition of J -  * m i n o r i z e ,  S O  that 
the chain Y with kernel Q = K,, satisfies 

Q(x,.) >1 ~V(x)rr(.) Vx. 

Let Y(0) have distribution rt and define a randomized stopping time T >~ 1 for Y by 

P ( T = t +  l [ T > t , Y ( t ) = x ,  Y(t + 1 ) = y ) = 6 V ( x )  
dQ(x, ") - - -  (y) 

d~z 

One can verify inductively that 

P(Y( t )e .  I T > t )=  ~(.), 

P(Y( t  + 1)~'1 T = t + 1, Y(t) = x) = ~z('t, 

P (T  = t + l i T  > t) = 6. 

So ET = 1/b and Y ( T )  has distribution ~z, independent of Y(0). Since Y is the 
uniformly-sampled X-chain, this construction gives a stopping time S for X such that 
X(S) has distribution 7t, independent of X(0). So -Treset ~< ES = m/26 and thus 
7. ~< ½,Y-* ' r e s e t  m i n o r i z e  - 

6. Discussion 

6.1. Transforming a chain 

Let X(t) be a chain with forget time 'Yforget. Corollary 9 gives three constructions of 
chains of the form 3~(t) = X(N(t) )  for different definitions of N(t), and relates their 

forget t imes &-orget to ~'-forget. 
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Corollary 9. (a) [ jump chain]. Define 

N(t  + 1) = min{s > N(t): X(s) :~ X(N(t))}.  

Then ~-forget ~ ~forge,. 
(b) [slowed-down chain]. Take N(t  + 1) = N(t) or N(t) + 1, with 

P(N(t  + 1) = N(t) + 1 I X(N(t))  = x) = a(x). 

Then ~orget ~< a-l~-o~get, where a = inf~a(x). 
(c) [-chain watched only on A]. Take 

N(t  + 1) = min{s > N(t): X(s)~A}.  

Then J-forget ~ ~forget" 

The proofs are immediate, by considering the minimizing a in the definition of 
~orget, and using r7 = a (cases (a, b)) or ~ = P a ( X ( H A ) E ' )  (case (c)) as target distribu- 
tions in the definition of 3-forget- Intuitively, any reasonable definition of"mixing time" 
should satisfy similar inequalities. But note that with the traditional definition using 
total variation at fixed times (14), inequality (a) fails (the jump chain may be periodic) 
and the other inequalities do not seem simple to establish. 

6.2. Technical remarks 

(a) We have used "uniform smoothing" rather than "geometric smoothing" 
throughout, though there is no essential difference. Our statement of Theorem B skips 
some further, similar-style, assertions in [-23, Theorem 16.0.2]. Our statement of the 
drift condition (iv) is superficially different from theirs, but is clearly equivalent. Our 
statement was chosen to highlight the quantitative equality Yp~tite = Ydrift, which is 
a consequence of the following observations. Given a petite set C, the function 
V(x) = ExHc satisfies the inequality in Theorem B (iv) with fi = 1 and b = supxExHc. 
Conversely, if V satisfies the inequality in Theorem B (iv) then E~Hc <~ V(x)/fl by the 
obvious supermartingale argument. 

(b) In the deterministic chain X(t) = t modulo n, the parameters in Theorems 1 and 
3 are O(n). This example shows that in Theorem 1 we cannot replace ~-"unif .... (C) by 
~--continuize or  by any smoothing essentially weaker than uniform. 

(c) We glossed over two related technical points. For a periodic chain the limit (1) 
defining G may not exist; and in the setting of Theorem 1 we do not know a priori that 
G exists. What is important about G is that it satisfies 

( I  - -  P )  G - -  I - -  H ,  

where I is the identity kernel and YI(x, .) = n(-). In the period-d setting where W is 
uniformly ergodic on each cyclic component, we can modify (1) by taking averages 
over {t, t + 1 . . . . .  t + d - 1}, and then the t -+ ~ average of these limits exists. Using 
the general-space decomposition of a periodic chain into cyclic components (Meyn 
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and Tweedie, 1993, Section 5.4.1; Revuz, 1994, Section 6.3), one can show that a UES 

chain is of this form, and so G exists. 
(d) In our proofs we assumed that infima in the definitions of parameters .Y- are 

attained. Pedantically, we should have considered attaining .Y- + r, and then let c ~ 0. 
(ell The parameters .Y'--~ and Jmix give probabilistic interpretations of certain L ~ and 

L '~ norms of G, so it is natural to ask whether the analogous L 2 norm 

sup.,~y:,t.,.:.)~0g2(x, y)rc(dy) has a probabilistic interpretation as a mixing time. 
(ft Our  proofs used the same general set of techniques as in Aldous (1982~, though 

at the level of detailed proofs the overlap with Aldous (1982), Baxter and Chacon 
[1976) and Lovasz and Winker (1995) is quite small. 

(gl A more complicated example of a UES chain whose time-reversal is not 1.JES 
can be found in Revuz (1994, Exercise 8.3.11). 

6.3. Conceptual remarks 

(a) The asymptotic geometric rate of convergence of a chain is controlled by its 
spectral gap. That  parameter  is rather different from our mixing time parameters. See 
Aldous and Fill (1997) for an extensive discussion in the reversible setting. 

(b) Fix an initial distribution IL and define s ( t )=  m i n { c : ~ , X ( t ) > ~ ( l - c ) ~  I. 
A stron,q stationary time is a stopping time T such that X ( T  } has distribution ~r and is 

independent of T (e.g. the minorization construction (15) gave a strong stationary 
time). Such a T must satisfy the inequalities P (T  > t)>~ s(t)Vt; and it is easy to 
construct an optimal strong stationary time T satisfying P ( T >  t ) =  s(t)Vt. See 
Diaconis and Fill (1990) for developments of such theory. This construction, and 
the conceptually similar notion (Goldstein, 1979; Lindvall, 1992) of maximal couplin,q. 
are in the same spirit as Theorem A. 

(c) One of the themes of Meyn and Tweedie (1993) is a sequence of theorems, in the 
general format of Theorem B, which treat successively stronger notions of conver- 

gence (ergodicity, geometric ergodicity, V-uniform ergodicity, uniform ergodicity). 
and relate each to drift and "return time to petite sets" conditions. Their presentation 
thus emphasizes "'general" results such as the existence of minorizing measures as 
a consequence of irreducibility, and the "split chain" construction. But results at that 
lew;1 of generality are inherently non-quantitative. We are deliberately approaching 
these results from the opposite direction in order to get quantitative results. Whether 
analogs of Theorem 1 hold for these more general notions of convergence is an 
interesting question. 

Idt Informally, our parameters are defined to "scale as time". This is easier to 
formalize in continuous time: if X(t) has parameter  value .U then X * ( t ) =  Xlctt 
should have parameter  value c L~,-. For two such parameters in continuous time, thc 
existence of some universal inequality ,)-2 ~< tp(,Y-~ ) clearly implies a linear inequality 
-Y-2 ~< K~.z,Y-~. Thus the existence of linear inequalities in Theorems I and 3 is not 
surprising. 

!e) A quite different setting where mixing times might be studied is "randomly- 
perturbed chaos". Consider a topological space ,~' and a continuous function 
.[:.f'~.'1' for which ~ is invariant, and suppose we define kernels P~"~(x,t such 
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P( ')(x,  - ) ~ 6i(x ) w e a k l y  a n d  w h o s e  s t a t i o n a r y  d i s t r i b u t i o n s  ~")  --* ~ in to ta l  va r i a t ion .  

T h e o r e m  1 impl ies  the re  is a we l l -de f ined  o r d e r  o f  m a g n i t u d e  ®(t (n) )  for the  p a r a -  

me te r s  there in ,  p r o v i d i n g  an  ind i rec t  f o r m a l i z a t i o n  o f  the  t ime  unt i l  the  u n d e r l y i n g  

de t e rmin i s t i c  p rocess  ( f i ( x ) ;  i >~ 0) b e c o m e s  chao t ic .  G e t t i n g  expl ic i t  resul ts  in this 

se t t ing  seems  cha l l eng ing ,  even  in s i m p l e - l o o k i n g  e x a m p l e s  l ike the  fo l lowing.  F ix  

0 ~< a < 1 a n d  c o n s i d e r  the  r a n d o m  walk  on  the  reals  m o d u l o  1 w h o s e  s t ep -d i s t r ibu -  

t ion  is N o r m a l ( a ,  a 2) m o d u l o  1. I f  a - - 0 ,  c lear ly  the  m i x i n g  t ime  p a r a m e t e r s  in 

T h e o r e m s  1 a n d  3 are  ® ( ~  2) as a ~ 0. F o r  gene ra l  a, the  b e h a v i o r  of  o u r  p a r a m e t e r s  

as a---> 0 is r e la ted  to e q u i d i s t r i b u t i o n  o f  { ia  rood  1: i =  1, 2 . . . .  }. Heur i s t i c a l l y  it 

a p p e a r s  tha t  for typ ica l  a the  m i x i n g  t imes  are  ® ( a - 2 / 3 ) ,  bu t  this a p p e a r s  n o n -  

e l e m e n t a r y  to  p rove .  
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