
The Annals of Applied Probability 

1993,Vol. 3, No. 3, 696-730 


COMPARISON THEOREMS FOR REVERSIBLE 
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We introduce geometric comparison inequalities that give bounds on 
the eigenvalues of a reversible Markov chain in terms of the eigenvalues 
of a second chain. The bounds are applied to get sharp results for the 
exclusion process. 

1. Introduction. Let x be a finite set. Let P(x,  y) be an irreducible 
Markov kernel on X with stationary probability ~ ( x ) .  Assume throughout 
that P, T is reversible: 

. . ( ~ ) P ( X , Y )= T ( Y ) ~ ( Y ,x) .  
By symmetry, P has eigenvalues 1= Po > P, 2 2 Pi,,-, 2 -1.This pa- 
per develops methods for getting upper and lower bounds on Pi by compari- 
son with a second reversible chain on the same state space. This extends the 
ideas introduced in Diaconis and Saloff-Coste (1993), where random walks on 
finite groups were considered. The bounds involve geometric properties such 
as the diameter and covering number of an associated graph along the lines 
of Diaconis and Stroock (1991). 

The main application gives a sharp upper bound on the second eigenvalue 
of the symmetric exclusion process. Thus, let gobe a connected undirected 
graph with n vertices. For simplicity, we assume in this introduction that So 
is regular. To start, r unlabelled particles are placed in an initial configura- 
tion, 1I r I n. At each step, a particle is chosen a t  random; then one of the 
neighboring sites of this particle is chosen at random. If the neighboring site 
is unoccupied, the chosen particle is moved there; if the neighboring site is 
occupied, the system stays as it was. This is a reversible Markov chain on the 
r-sets of {l ,2 ,  . . . , n) with uniform stationary distribution. Liggett (1985) gives 
background and motivation (he focuses on infinite systems). Fill (1991) gives 
bounds on the second eigenvalue of the labeled exclusion process on the finite 
circle Z n .  

We study this chain by comparison with a second Markov chain on r-sets 
that proceeds by picking a particle at  random, picking an unoccupied site at  
random (not necessarily a neighboring site) and moving the particle to the 
unoccupied site. This is a well studied chain (the Bernoulli-Laplace model for 
diffusion). Its eigenvalues are known. We show that the comparison tech- 
niques apply to give upper bounds on the eigenvalues of the exclusion 
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process. For example, suppose that .Yois an n-point segment with a loop at 
each end. Our results give p1 5 1- 4/rn2. We also prove a sharp lower 
bound that, for this example, yields 1- .rr2/2rn2 I 1- (1 - cos(.rr/n))/r 5 
pl. These bounds improve upon results of Fill (1991). These techniques also 
yield interesting bounds for more complicated graphs. 

Simple exclusion is a well studied process related to a variety of other 
processes and to certain mechanical systems. Kipnis, Olla and Varadhan 
(1989) and Quastel (1992) are recent works on the limiting behavior of 
exclusion processes after an appropriate scaling, and they contain other 
references. Fill (1991) gives other motivations. Thomas (1980) connects the 
Hamiltonian of the quantum Heisenberg ferromagnets model in a finite box 
c Zd with simple exclusion processes. More precisely, he shows that the 
restrictions of this Hamiltonian to certain subspaces of its natural Hilbert 
space are unitarily equivalent to the generators of simple exclusion processes. 
Our bounds can be interpreted in this context. 

After a first draft of this paper was completed, Claude Kipnis informed us 
of the work of Quastel (1992). In his paper, Quastel studies the limiting 
behavior of a colored particle process on the d dimensional torus Zf. As a 
tool, he needs an upper bound on the second largest eigenvalue (i.e., a lower 
bound on the spectral gap) of simple exclusion. His approach to this question 
is very similar to ours and uses comparison with the Bernoulli-Laplace 
model of diffusion. The comparison argument is only a small part of his paper 
and we provide more details on this matter. The two works were done 
independently and take very different points of view. 

In Section 2A, we set out preliminaries on eigenvalues and the two- 
quadratic forms we use. The comparison techniques are developed in Section 
2B, which shows how they specialize to the results of Diaconis and Stroock 
(1991) and the comparison bounds for symmetric random walks on groups of 
Diaconis and Saloff-Coste (1993). A variant using multicommodity flows 
along the lines of the work of Sinclair (1991) is developed in Section 2C. The 
exclusion process is treated in Sections 3 (upper bound) and 4 (lower bound). 
Section 5 contains examples and Section 6 gives bounds on total variation in 
terms of eigenvalues and some final comments. 

2. Forms and eigenvalues. 

A. Preliminaries. Let X be a finite set. Let P(x, y), .rr(x) be a reversible, 
irreducible Markov chain on X. Let 12(X) have scalar product ( f ,  g )  = 

C, , f(x)g(x).rr(x). Because of reversibility, the operator f - Pf, with Pf(x) 
= Cf(y)P(x, y), is self-adjoint on l 2  with eigenvalues Po= 1> P1 2 P, 2 

... 2 PIX,- 2 -1.These eigenvalues can be characterized by the Dirichlet 
form 8defined as 
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We also use the form 

Given a subspace W of L2(X), set 

M,(W) = max{g(f, f ) ;  llfl lz = 1,  f E W}, 

m,(W) = min{g(f,  f ) ;l lf l lz = 1,f E W) 

and define M,( W) and m,( W) accordingly. The usual minimax characteriza- 
tion of eigenvalues [see, for instance, Horn and Johnson (1985)l gives, for 
0 5 i 5 1x1- 1, 

1- pi= min{M,(W);dimW = i + 1)= m a x { m , ( ~ ) ; d i m ~ ' =  i ) ,  

= max{m,(~) ;  dim w = 1x1- i - I}. 

If P(x, y), 6 is a second reversible Markov chain on X, the minimax 
characterization yields, for 1Ii i IXI - 1, 

B. Comparison of Dirichlet Forms. This section develops a geometric 
bound between Dirichlet forms. Let P,6 and P, .rr be reversible Markov 
chains on the finite set X. In the applications, P, r is the chain of interest 
and P, 6 is a chain with known eigenvalues. Both .rr and 6 are assumed to 
be supported on X. For each pair x # y with P(x,  y) > 0, fix a sequence of 
steps x, = x, x,, x,, . . . , x, = y with P(xi ,  xi+,) > 0. This sequence of steps 
will be called a path y,, of length 1 y,y l = k.  Set E = {(x, y); P(x,  y) > 01, 
E = {(x, y); P(x,  Y) > 0) and ~ ( e )  = {(x, y) E E; e E yXy}, where e E E. In 
other words, E is the set of "edges" for P and ~ ( e )  is the set of paths that 
contain e. Here is a convention that we fix once and for all in this paper. All 
graphs are undirected graphs. However, we describe such a graph as a set of 
vertices X and a symmetric set of directed edges E cX X X. 

THEOREM2.1. Let P ,  6 and P ,  .rr be reversible Markov chains on a finite 
set X. For the Dirichlet forms defined in (2.11, 

@ 5 ~ 8  

with 

(2.4) 	 A = max 
1 C I Y , , I ~ ( x ) ~ ( x ~ Y )

W )g(Z,w) 
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PROOF. Clearly, we can assume that none of the paths yxy contains loops. 
For an edge e = (z, w) E E ,  let f(e) = f(z) - f(w). Then 

To state a companion result, for x, y E X with P(x,  y) > 0, let y,*, be a 
path with 1 yZY1 odd. For e E E ,  set E*(e) = {(x, y) E E; e E y: y). Now, we 
cannot rule out the possibility of repeated edges along y,*,. Thus, we set 

Note that we can always assume that rxy(e) -< 2. The "sum along the path 
argument" of Theorem 2.1 can be used to write f(x) + f(y) = (f(x) + f(x,)) 
- (f(xl) + f(x2))+ ... + ( f ( x k l )  + f(xk)). The argument yields the follow- 
ing theorem. 

THEOREM2.2. Let P ,  6 and P, .rr be reversible Markou chains on a finite 
state space X. For the quadratic form Fdefined in (2.2), 

*I A*F 

with 

1 
(2.6) A* = max Y)C r x y ( ~ 7 w ) l ~ ~ y * ( ~ ) P ( ~ 7

7i(z)P(z7 W)  $*(Z, w )  

and rxy defined in (2.5). 

We begin with a simple example to demystify the notation. 

, EXAMPLE As a chain P of interest, consider the natural graph struc- 2.1. 
ture of the 1 x m grid X = (1,.. . ,1) x (1,.. . ,m) modified by deleting a 
number of edges from the grid. To keep things simple, suppose no basic 
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square has more than one edge deleted. An example with 1 = m = 5 is 

Let the resulting graph be called 9= (X, E). This is a connected graph with 
IEl edges. Take P to be the usual nearest-neighbor walk on 9.Let d(i, j )  be 
the degree of the vertex (i,j). The stationary distribution is ~ ( i ,j )  = 

d(i, j)/lEl. The problem is to bound the eigenvalues of P. Note that these 
eigenvalues are not known in closed form even in the simplest case where no 
edge is deleted from the grid. 

A chain P on X, with known eigenvalues, can be constructed as follows. 
For each integer n, let P, be the nearest-neighbor chain on the n-point 
segment with a loop at each end. The eigenvalues of pn are given in Feller 
[(1968), page 4361 and are equal to 

Now, set 

P = t(P, @ Id + Id @Pm) 
In other words, 

This has stationary distribution + = l/lm. Its eigenvalues are the numbers 

In particular, assuming 1 2 m, we have p, = i ( 1  + cos(~/l)) and Bmi, 2 
-cos(n-/l). 


Observe that 


The pairs (x, y) E X x X with x # y and ~ ( x ,  y) > 0 are exactly the edges of 
X as a usual grid. Using the notation of Theorem 1, choose a path connecting 
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them in 27. This path will be of length 1if the connecting edge has not been 

deleted. It  will be of length 3 otherwise. Consider the comparison constant A 

in (2.4). For any edge e E E,  there are at  most two paths of length 3 and one 

path of length 1using e .  Using (2.4), @ 5 7(I E1/41m)8. Hence, (2.3) and (2.7) 

yield 


It  is even easier to carry out a comparison in the other direction. Reverse the 
roles of P and P. Now, all paths can be chosen of length 1. We get 
8I(41m/l EI)@. Thus, 

Combining bounds, the second largest eigenvalue of P satisfies 

when 1 2 m. 
These inequalities show that the positive parts of the spectrums are quite 

close for the two processes. Here, the comparison constant A* between $and 
9is A* = because there is no path of odd length in 9 from a corner to 
itself. Indeed, bminr -cos(7r/l), whereas Pmin= -1. 

This example generalizes to higher dimension. Let X be a finite box of size 
1, x ... x 1, = n in Zd and set 1 = maxi{li). Consider the simple random walk 
for the natural graph structure of the box X (for simplicity we do not delete 
edges here). Comparing with a product walk shows that the second largest 
eigenvalue of the simple random walk in this box satisfies 

EXAMPLE2.2. This example shows how present bounds include some 
previous results. Let P, .rr be a reversible Markov chain. Let ~ ( x ,  = ~ ( y )y) 
for all x. This is a Markov chain with stationary distribution %(x) = d x ) .  
Then @(f, f )  = Var( f )  = C,, x( f(x) - f)27r(x) with f = C,, f(x).rr(x). The 
bound of Theorem 2.1 reduces to the geometric bound, P, I 1- 1/A, of 
Diaconis and Stroock [(1991), Proposition l',page 381. These authors, along 
with Fill (1991) and Sinclair (1991) have shown, that this bound can be 
usefully applied in a wide variety of problems. See also Example 2.5 and 
Corollary 2.1. 

Now, take P(X, x) = 1 and P = 0 otherwise. This trivial chain ( P  = Id) 
has any probability measure as invariant measure. Choose 6= .rr and apply 
Theorem 2.2. Because P(x,  y) = 0 unless x = y, the paths we consider are 
loops of odd length a,, x E X. In this case, Theorem 2.2 yields a variant of 
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Proposition 2 in Diaconis and Stroock [(1991), page 401: The smallest eigen- 
value Pminof P is bounded by 

Pmin2 -1 + 2/A#, 
where 

A# = max 
1 C r,(z, w ) l ~ , l ~ ( x >  

P ( ~ , W ) ~ T ( ~ )g x 3 ( z , w )  

with r, as in (2.5). When P(z,  z) 2 s > 0 for all z E X, we can take cxto be 
the trivial loop at x and get 

Pmi, 2 -1 + a s .  

EXAMPLE2.3. Diaconis and Saloff-Coste (1993) developed comparison 
techniques of similar flavor for symmetric random walks on finite groups. Fill 
has pointed out that Theorem 2.1 specializes to give exactly the previous 
bounds. This is useful because the geometric flavor of the bound was not 
apparent in the group case. To develop the details, suppose X = G is a finite 
group and = {s,, . . . ,s,} is a symmetric set of generators of G. Let q be a 
symmetric probability on G supported on I'. Let q' be a second symmetric 
probability on G. These probabilities define Markov chains P(x, y) = q(x-' y) 
and P(x, y) = q'(x-'y). Assume that each of these chains has the uniform 
distribution as its unique stationary distribution. 

For each w E G, choose a representation w = s,s, ... s, with si E and 
set I wl = I .  Let N(s, w) be the number of times that a given s E r appears in 
this representation. Then, for any x, y E G, set y,, = (x, xs,, xs,s,, . . . ,xs, 
. .  s,), where w = x-ly. Now, the edges that occur are of the form e = (z ,zs)  
for z E G and s E r. For such an edge, 

1 


where the sum is over 

R = {(x,  w): 3 i E (1 , . . . , I }  such that xs, ... s i l  = Z ,  XS, ... si = ZS}. 

For any fixed w, the number of x E G such that (x, w) E R is exactly 
N(s, w), SO 

A = max -
1 C IwlN(s, w)q'(w) 

q(s )  w'EG 

A similar analysis works for A*. Diaconis and Saloff-Coste (199213, 1993) give 
many examples of the use of this bound. The connection will be useful here as 
well because bounds for random walks on graphs can be used to bound the 
eigenvalues of the exclusion process on these graphs; see Theorem 2.3. 

EXAMPLE This example shows that removing a single edge can lead to 2.4. 
bounds that are "off." Let X = {0,1,2,.. . ,n - 1). Let P be the nearest- 
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neighbor random walk on the circle Z, = X. Thus P(i ,  i + 1) = P(i,  i - 1) = i 
with all entries mod n. Here %(i) = l / n  and the eigenvalues are easily 
shown to be bj = cos(a.rrj/n), 0 5 j r n - 1.As a different chain of interest, 
take the nearest-neighbor walk on the segment X with a loop at each end: 
f(0,O) = P(0, 1) = = P(n  - 1,n - 1) = P(n  - 1,n - 2) with P(i ,  j )  = 

P(i,  j )  for i # 0, n - 1.This also has ~ ( i )  = l/n. 
For the comparison, for each edge (i, i + I), 0 I i In - 2, let yi,i +  = (i, i 

+ 1). Take yo,,-,= 0,1,. . . , n - 1.The maximum in (2.4) is taken on a t  (0,l)  
with A = n. Here, the bound on eigenvalues is 

For j = 1,this gives 

,rr 2,rr2 
cos- = p, r 1-7 

n n 

which is clearly off by a factor of n. 

EXAMPLE2.5. It is of interest to specialize Theorems 2.1 and 2.2 to the 
case where P and p are simple random walks associated with two nonori- 
ented graphs 29 = (X, E )  and 5 = (X, E )  on the same underlying finite set 
X. Then, if d(x) and d(x) are the degrees of x E X, we have .rr(x) = d(x)/lEl 
and P(x,  Y) = l /d(x) if (x,  y) E E,  P = 0 otherwise, and 8(f,f )  = 

(1/2 E)C,, ,.E l  f(x) - f( y)12. It follows that the constant A in (2.4) is A = 
(1~ 1 / 1 81 ) ~with 

More generally, this is a reasonable way to bound A whenever P(z,  w),rr(z) 
does not depend too strongly on z, w. A similar analysis can be used for A* if 
we consider 

A* = A*(P, 9 )  = max 

Setting S = minx. ,{d(x)/d(x)), the estimate (2.3) on eigenvalues yields 

Note that we did not need to compare IEl and 181.For instance, applying 
(2.10) with P = l/IXI (i.e., with 2? the complete graph) we get the following 
corollary. 
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COROLLARY2.1. Let 9 = (X, E )  be an undirected connected graph. The 
nontrivial eigenvalues of the nearest-neighbor random walk on (X, E )  satisfy 

where 

A* = max 
e e E  

with r,, given by (2.5) and d = max, d(x). 

Diaconis and Stroock (1991) consider 

which have simpler geometric interpretations than A Iyb. The preceding 
upper bound is a slight improvement on their bound [Diaconis and Stroock 
(1991), Corollary 1, Section 1,page 391 

Finding bounds on A (or y, b) can turn out to be a hard combinatorial 
problem. However, it is feasible for "simple" graphs and some more sophisti- 
cated ones; see Diaconis and Stroock (1991), Sinclair (1991) and Fill (1991). 
Babai, Hetyii, Kantor, Lubotzky and Seress (1990) discuss bounding y for 
Cayley graphs of finite groups. The main point in the method used in this 
paper and in Diaconis and Saloff-Coste (1993) is to compare P with a 
nontrivial known P. This reduces the complexity of the combinatorics of 
paths: Instead of having to deal with paths from any x E X to any y E X, one 
just needs to consider paths that link x and y when p(x,  y) > 0. This is well 
illustrated in the study of simple exclusion; see Section 3. 

C. Comparison using multicommodity flows. Many variations on Theo- 
rems 2.1 and 2.2 are possible. We now describe one of them that will be 
applied later to exclusion processes. We adapt an idea of Sinclair (1991). 

Suppose we are in the situation of Theorem 2.1 and want to compare the 
Dirichlet forms Z? and @ of two reversible Markov chains P ,  .rr and P, ii. It  
often happens that there is more than one path x = x,, x,, . . . , x, = y with 
P(xi ,  > 0 between x and y such that ~ ( x ,  y) > 0 [i.e., (x, y) E E]. Let 
9,, be the set of all simple paths connecting x to. y as before and set 

= - 9,,. Also, for e E E,  let 9 ( e )  = {y €9,U ( X , ~ ) E E  e E y]. A function f on 
9 is called a flow or more precisely a (P,P )  flow if 

The proof of Theorem 2.1 yields immediately the following theorem. 
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THEOREM2.3. Let P ,  iiand P, IT be reversible Markov chains on a finite 
set X. For any (P ,  P )  flow f, the Dirichlet forms defined in (2.1) satisfy 

@ I~ ( f ) 8  

with 

1 
(2.13) 	 A( f )  = max 

IT(z)P(z, W)  p(Z,W )  

Clearly, Theorem 2.3 contains Theorem 2.1: Take f to be the flow defined 
by f(y) = 0 unless y = yxy is the chosen path for a pair (x,  y) E E in which 
case f(-yzY) = P(x,  y)ii(x). The same idea yields a variant of Theorem 2.2, 
which we will not write down. 

EXAMPLE2.6. Let (X, E )  = Z7 be a graph with automorphism group acting 
transitively on the set E of the oriented edges. This implies that 5 is vertex 
transitive and thus regular; see Biggs (1974) for examples and more details. 
For the simple random walk on such a graph, Proposition 4 in Diaconis and 
Stroock [(1991), page 461 gives 

with 

where for each x E X, 10x1 is the distance from the fixed point o E X to x. 
This can be obtained by comparing with the trivial uniform chain. In Theo- 
rem 2.3, take f uniformly supported on geodesic paths; that is, 

if y is in gXY,the set of all geodesic paths from x to y. The point is that, for 
this f ,  

does not depend on e E E. The result then follows as in Diaconis and Stroock 
(1991). 

EXAMPLE2.7. Let K,,,  =. (X, E )  be the complete bipartite graph with 
n = 1 + m vertices. To be precise, X = (1,. . . ,1  + m} and E = (1,. . . ,I} x (1
+ 1,.. . , 1  + m} u (1 + 1,.. . ,1  + m} x (1,. . . , I}. Sinclair (1991) used the case 
1 = 2, m = n - 2 to demonstrate the effectiveness of random paths. Here, we 
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compare the simple walk P, T on K,,,with the chain p(x,  y) = d y ) ,  
ii= T. Pairs (x, Y) E X X X are of three types: 

Type 1: ( x , Y )  E E ,  

Type 2: ( x ,  Y) E (1 , . ..,q 2 ,  

Type 3: ( x ,  y)  E {I + 1,..., I + m12. 

If (x, y) is of Type 1, Px,,= {(x, y)) and we set f(y) = T ( x ) T ( ~ )for these 
paths. If (x, y) is of Type 2, Px,,= {(x, i ,  y); i E {I + 1, .. . ,I + m)) and we 
set f(y) = (l /m).rr(x)~(y) for these paths. When (x, y) is of Type 3, Px,,= 

{(x, i ,  y); i E {I , .. .,I)) and we set f(y) = For this flow the ( l / l ) ~ ( x ) ~ ( y ) .  
constant A( f )  in (2.13) is 

This yields PI I $ for any of these graphs. Of course, the eigenvalues of K,,, 
are known to be 1, 0 and -1with multiplicities 1,n - 2 and 1. 

In fact, the preceding example is a special case of a generalization of 
Example 2.6. If the automorphism group of a graph g acts transitively on 
the set of undirected edges, we have PI 1 1 - 1/D2 with D2 = 

z x , , l x ~ 1 2 T ~ x ~ T ~ ~ ) .  
The complete multipartite graphs K,,,, ,give examples where one has to 

use nongeodesic paths to get good bounds. An example of comparison between 
two nontrivial chains is given at the end of the next section. 

3. The exclusion process. Let X, be a set with n elements. Let 
E, cXo x X, be a symmetric set of edges such that (X,,E,) = gois an 
undirected connected graph. Before defining the exclusion process of r In 
unlabelled particles on g o ,  we fix some notation. Let do  = max{d(x); x E Xo) 
be the maximum degree in go.According to (2.11) the nontrivial eigenvalues 
of the simple random walk on 5, satisfy 

with 

Our main result in this section shows that A,, A*, and d o  can also be used to 
bound the eigenvalues of the exclusion process of r particles hopping around 
on go. 



707 COMPARISONS FOR MARKOV CHAINS 

For r I n, the exclusion process is defined as a Markov chain with values 
in the r-sets of X,. Informally, if the current state is the set A, pick an 
element in A with probability proportional to its degree, pick a neighboring 
site of this element a t  random and move the element to the neighboring site 
provided this site is unoccupied. If the site is occupied, the chain stays at  A. 

Formally, let X = X, be the set of the r-sets of X, and A, and A, be 
r-sets. Define 

i f lA ,  n A , l s r - 2 ,  

i f I A , n A , I = r - 1  
and A, = A u (a,}, 

A, = A u {a,} with (a,, a,) Eo, 
= r -(3.2) 	 P(A,, A,) = if /A ,  nA,I 1 

and A, = A u {a,}, 

d(a) ,  if A1 =A,,  where 
dX-41)= IIb E A,, (a ,  b )  E Eo}I. 

The chain P can be interpreted as a nearest-neighbor random walk on a 
graph with multiple edges [there are Ca, .dg(A) loops from the r-set A to 
A]. It is a reversible chain with stationary distribution 

Hence, for A, # A, and P(A,, A,) # 0, we have 

Given 1I r In, we define the maximum mean degree d, over r-sets by 

d. = max {j d(a ) )  i do.  
a s A  

When 5, is d o  regular [i.e., d(a) = do], then P is symmetric, is uniform 
on the r-sets and d, = do. If 5, is not regular, a variant of the foregoing 
process is discussed briefly at  the end of the paper. When r = 1,the preced- 
ing process reduces to the simple random walk on the underlying graph. 
When r = n, we get a trivial process with only one state (we will informally 
exclude this case). When r = n - 1,looking at the only unoccupied site gives 
a description of the process as a simple random walk with strange holding 
condition. 

Our main results are summarized in the following theorem. 

3.1. 
The Markov chain P a t  (3.2) of the exclusion process has its eigenvalues Pi(r), 

' THEOREM Let (X,, E,) be a connected graph and 1i r < n as before. 
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15 i a (:) - 1,bounded above by 

where k, = j when ( j  II )  i < (;), 0 r j I min{r, n - r). In particular, the 

second largest eigenvalue P,(r) is bounded by 

n 
PI(.) r 1- -. 

rdrA0 

Moreover, the smallest eigenvalue of P satisfies 

n - r - 1  
Pmin(r) 2 -1 + 

dr A*, * 

Here A, and A: are given in (3.1) and d, is the maximum mean degree over r 
sets defined a t  (3.5). 

REMARK1. Because d r  a do where do  is the maximum degree in F,, all 
the foregoing estimates hold with d, replaced by do. Examples 5.6 (a star) 
and 5.8 show that using d, instead of d o  can be useful. 

REMARK2. Specialize to the case of X ,  = (1,.. . ,n) with edges E, = {(i, i 
+ 11,(i + 1, i); i = 1, .. . ,n - 1) u ((1, 11,(n, n)) (i.e., 5,is the n-point seg- 
ment with a loop at each end). In this case, d o  = 2, A, a n3/8, A*, < n3 (this 
last estimate is rough) and thus 

and the negative eigenvalues are all bounded by 

For this case, Fill (1991) obtained the lower bound P, 2 1- 6/rn2. This 
shows our result is sharp. Fill also obtained an upper bound PI I 1- (3 -
o(1))/2rn5. He used a path bound as in (2.12). The power of using comparison 
with a nontrivial chain can be seen here. Fill introduced methods for bound- 
ing nonsymmetric exclusion by comparison with symmetric exclusion. Other 
examples are discussed in Section 5. 

REMARK3. Let yo denote the diameter of 5,. As a crude but universal 
estimate we have A, 5 nzy0. This yields p, I 1- l /rnyodr I 1- l /rn2do. 

PROOFOF (3.6). The argument proceeds by comparison with the classical 
B'ernoulli-~a~lacemodel of diffusion. This is a Markov chain P on the r sets 
of X, that can be described as follows: If the current state is the set A,, pick 
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an  element in A, a t  random, pick an  element in A", Xo \A1 a t  random and 
switch the two elements. Formally, let A, and A, be r-sets. Define 

i f I A , n A , I s r - 2 o r A l = A 2 ,
(3.8) P ( A , ,  A,) = 

1 - r ) ,  i f I A , n A , I = r - 1 .  

The stationary distribution for this chain is uniform, +(A) = I/(:) and 

when P(A,, Az_) > 0. Diaconis and Shahshahani (1987) showed that  the 
eigenvalues of P are 

with multiplicity (7) - j j  1,). In other words, 6, = 6, = 1- n/r(n  - r )  for 

1s i < n and more generally, 

where k, = s if ( s  1,)4 i < (:) and 0 < s s min{r, n - r). 
In order to apply the comparison technique, we now describe a path ~ A ~ A ~ 

for each (A,, A,) such that  P(A,, A,) # 0; that  is, for each (A,, A,) such 
that  A, nA, = A, 1Al = r - 1. We set A, = {a,) uA and A, = {a,) U A. 
Denote by yalaz the fixed path from a, to a, in (X,, E,). Say yalaz= 

(b,, . . . ,bk) with 

a, = b,, b,, . . . ,bk = a,. 

We can assume that  b, # bj if i # j (no loops). 
There are many paths from A, to A, that  can be associated with yalaz.In 

order to get a good bound, we have to choose one of them in a careful manner. 
We start  with an  informal description. First, we draw the path yalaz in the 
graph (X,, E,), and we mark the b,s that  belong to Al by the symbol @ : 

Of course the part of A, that  does not meet yal?azis of no importance in the 
description of of our path from Al to A,. (It will be there and stay there all 
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along.) Now, in the foregoing example, we start in the most obvious manner: 


710 

Here, we realize that we are blocked (in our move toward a,) by the particles 
that are on the path. Our next moves are better described by drawing them: 

This ends the first part in the construction of our path: We have reached a,, 
but we have left some mess behind. However, it is easy to clean up: 

We are done, because B,, = A,. 
Before trying to formalize this, we emphasize that the preceding construc- 

tion is mechanical. In fact, given the path yala2, it is enough to be given an 
edge (B , ,B,,,) to be able to reconstruct the entire path in X. Here is an 
example of this fact. In the preceding example, assume we are given a,, a, 
and the edge B, , B, : 

First we see that this edge belongs to the first part of our path (moving 
toward a,) because a, f£ B, (not because a, $Z B,; see the other example that 
follows). In order to find A,, we look at the particles that are on the path yala2 

, 	 and to the left of the move indicated by the given edge (B, -+ B,) (including 
the particle involved in this move). Each particle that does not have a left 
neighbor has to be moved backward until it is blocked by another particle 
[start from the particle involved in (B,, B7) and then from right to left]. Here, 
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this gives 

Alternatively, we could finish the construction of the path and thus find A,. 
We now formalize the foregoing construction (we also draw a second 

example): 

First define i ,  to be the smallest integer i 2 1such that b,, ,P A = A, \ {a,j 
and let i ,  be the smallest integer i 2 i ,  + 1 such that b,+,E A. Then,define 
inductively i Z j + ,to be the smallest integer i 2 i Z j+ 1 such that b,,, 6Z A 
and i Z j + ,is the smallestinteger i 2 i,,,, + 1 such that b,,, EA or i 2 j+z= k 
in case b, P A for all i 2 iZj+,.Let v be the integer such that biz"= bk he., 
i,, = k ) . Set i ,  = 1and 

k: = ( i Z a- i Z a - , )+ + ( i 2  - i , )  
for 15 a s v. Also, define 

A; = ( A ,\ {b,,})= ( A  u { a l l )\{bij)  

and, inductively, 

A&= ( 4 - 1  u Pi,,-,I) \ {b,,,-,I 

for 1I a I v. This notation will be used to describe the first part of the path 
(toward a,).Namely, set 

B,  = A ,  = A ;  U {b , , } ,  

' 2  = A ;  U {bi l+l} ,  

Bj+l = A ;  U {bil+j}, 

for 1I j I i ,  - i ,  = k;. More generally, for 0 I a < v and kh + 15 j r kA+l, 
set 

Bj+l  { b i , , + l + j - k ~ }  

and consider the edges ( B j ,  Bj+ ,). Note that 

This ends the description of the move toward a,. 
In order to describe the "cleaning up" stage, we introduce the following 

notation for 1I a I v: Set 

k: = k ; ,  k z - I  = ( i Z a - ,- i2 (a-1) )+ k;  
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and 

A': = A: u {a,) ,  


A: = (Ar;+, U {biz,+,))\ {biz,). 

Note that 1 Ah1 = r - 1,whereas IA: I = r .  The cleaning up starts with the 
edge 

B k : + l  9 BkF + 2  = {bi2u- l ) )  \ {bizr-l-l). 

More generally, for k: + 1I j I kz-, and 1I a I v ,  set 

Bj+1 = (Ar; { b i z , - l - j + k h + l ) )  \ { b i z , - l - j + k l )  

and consider the edges (Bj, Bj+ ,). Note that the last of the Bj is obtained for 

Hence, the length of the path that we just described is equal to k - 1,which 
is also the length of yalaz. In fact (and this will be important later on when 
looking at A*), each edge of yaldz corresponds to exactly one edge of yAIAz. 

Finally, we check that the foregoing path does what we want (i.e., Bk = A,) 
by checking that whatever is to be to the right of the particle that is moved at 
one given step describes exactly the intersection of A with the right part of 
Yalaz. 

Now, assume that we are given an edge e = (C,, C,). How many of the 
preceding paths can pass through e? [This is the question we have to study in 
order to bound the constant A in (2.8)]. Assume that C, = C U {c,) and 
C, = C U {c,}. First, we choose a path yalaz that contains the corresponding 
edge eo = (c,, c,) E E,.This fixes the endpoints a,  and a, in X,. Now, we 
claim that we know enough to describe completely the two ends A, and A,: 
A, = A u {a,} and A, = A  u {a,} corresponding to yala2 and the given edge 
(C,,C,). Indeed, we can first determine whether (C1,C2) appears in the 
"moving toward a," or in the "cleaning up" phase of this path. This only 
depends on whether or not a, E C,. 

Suppose first that a, P C,. Then we are in the "moving toward a," phase. 
For instance, consider 

In this case, starting with cl and proceding from right to left, we move to the 
left (as much as possible) the particles that do not have a left neighbor. This 

' gives A,: 
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and A, is then of course given by 

Assume now that a, E C,. Then we are in the "cleaning up" phase. For 
instance, 

Here again, we can find A, and A,. To find A,, starting from the left of c,, 
we just move each particle one step to the right: 

Hence, given an edge e = (C,, C,) with C1 = C U {c,} and C, = C U {c,), we 
established a one-to-one correspondence between the paths yala2 in Xo going 
through eo = (el, c,) and the paths yAl,Az in X containing the edge e. 
Moreover, the length of the paths is preserved in this correspondence. Hence, 
we certainly have 

From (3.4), (3.9) and (3.11) we deduce the following lemma. 

LEMMA3.1. The comparison constant A defined in (2.4) with P being the 
exclusion process (3.2) and P the Bernoulli-Laplace model of diffusion (3.8) 
satisfies 

IEolAo 
A = 

n(n  - r ) '  

The corresponding stationary distributions satisfy 

where d, is the maximum mean degree over r-sets in (3.5). Hence, (2.3) 
implies that 

and (3.6) follows from the values of f i i  given in (3.10). 
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PROOFOF (3.7). In order to estimate the negative eigenvalues of P, we 
now construct a path of odd length yTAZ from A, to A, when P;(A,, A,) > 0. 
Thus, let A = A, n A,, A, = A u {a,),A, = A u {a,) and consider the fixed 
path ~ , * 1 , ~of odd length in (X,,E,). First, we construct y,lA2 from yGaZ as 
before. Here, we face a small difficulty: yGaZ = (b,, . . . , bk) might contain one 
"holding edge" (c, c) (we can always suppress an even number of holding 
edges). We have to specify when the corresponding holding edge in yTlA2 
should occur. This difficulty is easily dealt with: Suppose b, = b,, ,= c. Then, 
if i = 1,we start the path y,lA2 with the holding edge (A,, A,). If i > 1,we 
attach the edge (b,, b,,,) to (b,-,, bi) and whenever we perform the move 
(b,- ,, b,) in the construction of y,lA2, we immediately follow it by the "holding 
edge" corresponding to (b,, b,,,). This make sense because each edge of yGaZ 
yields exactly one edge of y,lA2. 

Now, set h(C) = C,, cd,*(C) [ h stands for holding and d,* is defined in 
(3.211. We claim that we have 

First, consider the case when e = (C, C). Let y,lA2 be a path that contains 
e. Of course, yAlA2 is constructed from a path yGa2 that contains an edge 
e, = (c, c) with c E C. Moreover, if we fix c E C in advance, the correspon- 
dence between paths is one-to-one and preserves the length. Finally, the 
number of c E C that can be used to define a holding edge eo = (c, c) is 
smaller than h(C) because (c, c) E Eo and c E C implies d,*(C) 2 1. This 
proves the first inequality. 

Second, assume that e = (C,, C,) with C, # C, and C, = C U {c,}, C2 = C 
U {c,). For this case the argument is identical to the one used in the proof of 
(3.6) except when eo = (c,, c , )  is a double edge of yZa2 (multiple edges can 
always be reduced to double edges). Indeed, if eo is a double edge of ~ , * 1 ? ~ ,  
either there is one path y,lA2 corresponding to yzaZ and e is a double edge in 
that path or there are two paths ~,*1,~, yiiAh corresponding to yZa2 and (C, C) 
is a simple edge of each of these paths. In any case, we obtain 

when C, # C2, and this proves the second inequality in (3.13). 
To finish the proof, note that (3.2) and (3.3) imply that 
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Hence, (3.4), (3.9) and (3.13) imply that the comparison constant A* in (2.5) 
with P and P as in (3.2) and (3.8) satisfies 

Together with (2.3) and (3.12), this yields Pi 2 -1+ [(n - r)/d,A*,l(l + pi) 
and (3.7) follows from the fact that pmin2 - l / (n  - r). This ends the proof of 
Theorem 3.1. 

REMARK.If there exists (x,  y )  E Xo2 such that there is no path of odd 
length from x to y, we set A*, = a.This is the case if and only if the graph 
(X,, E,) = Fo is bipartite. Even so, it is clear that the smallest eigenvalue 
Pmin of the exclusion process (3.1) satisfies Pmin> -1 as soon as r 2 2. 
Indeed, given an r-set A c Xo,let a, and a, be two elements of A such that 
Iy,,,,l is minimum. We can assume that yUla2does not intersect A except in 
a,, a, (if it does, replace a, by the first element of A on the path). Now, we 
can construct a loop aAof odd length 21yUlu21- 1by moving the particle in a, 
along yUlu2.Once the two particles are neighbors, we perform a holding edge 
and move back to the starting point. 

We claim that the constant A* in (2.6) for the exclusion process can now be 
bounded by 

A* 5 2ryodrn ,  

where yo is the diameter of go.Indeed, if e = (C,, C,) is not a holding edge 
(C, + C,), 

1 

whereas if e = (C, C) is a holding edge, 

Hence, we conclude as in (2.6) that 
1 

Combining (3.14) with Remark 2 following Theorem 3.1, we get the simple 
universal bound 

1 1 
(3.15) P * 5 1 - -< 1- ----

2ryOdrn 2rdon2' 

where p, = max{l Pminl,PI). The order of magnitude of the bound (3.14) can 
sometimes be improved by further geometric considerations. For instance, 
consider our running example of the n-point segment with a loop at each end. 
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If there are r particles, we can bound the length of the foregoing loops by 
2n/r and the number of loops using a given edge by n/r. This yields 

r 


This is better than the bound given by (3.7). See also the examples in Section 
5. 

There is a variant of Theorem 3.1 using the multicommodity flow tech- 
nique of Section 2C. Let Po denote the simple random walk on Soand let 
Uo = l / n  be the trivial uniform chain on So.A (Po, Uo)-flow is a function fo 
on simple paths in Sosuch that 

I 

where Po,.,is the set of all simple paths in Sofrom x to y. Let A( fo) be the 
comparison constant at  (2.13) associated with such a flow. Applying Theorem 
2.3 shows that the second largest eigenvalue /3: of Po is bounded by 

Consider now the exclusion process. 

THEOREM3.2. The second largest eigenvalue &(r) of the Markov chain P 
in (3.2) of the exclusion process of r particles on Sois bounded by 

for any (Po, Uo)-flow fo. Here, d, I d o  is the maximum mean degree over r 
sets defined a t  (3.5). 

PROOF. Using the construction in the proof of Theorem 3.1, we establish a 
one-to-one correspondence between a subfamily of simple paths joining the 
two given r sets A, = A u {a,) and A, = A u {a,) with (a,, a,) =-EO and 
simple paths in Sojoining a,  to a,. Thus, given fo ,  we obtain a (P ,  P)-flow f 
for comparison between the exclusion process and the Bernoulli-Laplace 
model by setting 

By construction, for an edge e = (C,, C,) with C1= C U {el) and C2 = C u 
{c,), (c,, c,) = eo E Eo,  c, + c,, we have 

1 nlEol n
C Ir l f ( r )  = -C Irlfo(r) 5 -A(fo).

p(c1,c2)r(c1) y 3 e  - y 3 e o  n - r  

Now, Theorem 2.3 yields the following lemma. 
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LEMMA3.2. The Dirichlet forms 8 and @ of the exclusion process (3.2) 
and the Bernoulli-Laplace model of diffusion (3.8) satisfy 

n
@ I -A( f 0 ) 8

n - r  
for any (Po,Uo)-flowf, on .YO. 

Theorem 3.2, as well as further bounds on the other eigenvalues, follows 
from this, (3.10) and (3.12) as in the proof of Theorem 3.1. 

4. Lower bound on the second largest eigenvalue of the exclusion 
process. This section gives a sharp lower bound for the second largest 
eigenvalue Pl(r) of the exclusion process of r particles on a connected graph 
(X,, E,) with n = IX,( and 15 r < n. Let p: be the second largest eigen-
value of the simple random walk on (X,, E,). Of course, P: = &(I), because 
the random walk on the underlying graph corresponds to the (trivial exclu-
sion) process of one particle. Recall that do  is the maximum degree in 
(X,, E,)and let dh = min,, Xo(d(x))be the minimum degree. 

THEOREM4.1. For 1I r < n, the second largest eigenvalue of the r parti-
cle exclusion process (3.2) is bounded below by 

REMARK.Consider our running example of an n-point segment with a 
loop a t  each end. Then, P: = cos(.rr/n), do  = dh = 2 and we get 

which has to be compared with our upper bound pl(r) 5 1- 4/rn2. Fill 
(1991) had the lower bound Pl(r) 2 1- 6/rn2 for this case. 

PROOFOF THEOREM4.1. Let cp, be an eigenfunction associated with P: 
for the random walk on (X,, E,). For any r-set A of X,,set 

cp(A) = C cpo(x). 
X E A  

The variational characterization of P1 = Pl(r) gives 

Here, 



718 P. DIACONIS AND L. SALOFF-COSTE 

where A - B means A  = A '  U {a}, B = A '  U {b) with (a,  b) E Eo and the 
variance Var( f )  = Var,( f )  is taken with respect to the invariant measure T 
at (3.3). Now, for A - B as before, 

Counting the edges (A, B )  corresponding to a given edge (a,  b) E Eo yields 
n - r  

Z ( P ,  P) = , - l80(Po, Po), 

where 

is the Dirichlet form on the underlying graph. 
To finish the proof, we recall the following classic fact also used by Fill 

(1991) for his lower bounds. 

LEMMA4.1. Let an  urn con,tainN balls, the ith ball labelled with the real 
number y,. Fix 15 r IN and take a sample of size r from the urn without 
replacement. Let X be the sum of the numbers shown. Then 

1 - '  

E ( X )  = r 7  with Y = - yi,
N 

Using Lemma 4.1 with balls labelled by the values of cpO shows 
n - r  

Var*(cp) = r-Var*(p0),
n - 1  

where the asterisk indicates that the variances are taken with respect to the 
uniform distribution on r-sets and the uniform distribution Xo,respectively. 
Thus, 

and 

Combining (4.2)-(4.6) with the fact that 

proves the stated bound. 
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5.2. 
n = 2d, d o  = d,  A, = (d + 1)2~- '  and p t  = 1- 2/d; see Diaconis (1988). 
Thus 

EXAMPLE Consider the cube Z$ with is natural graph structure. Here 

We do not know if the extra factor of d is necessary for large r ,  but we 
believe it is not. 

This graph is bipartite. For r 2 2, (3.14) yields 

Note, however, that if we add a trivial loop at each vertex of the cube, the 
chain P in (3.2) satisfies P(A, A) 2 l / (d  + 1) for any r set A, and (3.6) and 
(2.7) give 

5.3. = 

that are of minimal length, have at most one turn and always start horizon- 
tally (unless they are vertical with no turn). For this set of paths, we find 

EXAMPLE Let 27, be an 1 x m grid in Z2 with lm n. Fix paths in 9, 

Here, d o  = 4, dh = 2 and, assuming 1 2 m, (3.6) yields 

For the lower bound, we use comparison with a product chain as in Example 
2.1 to bound the second largest eigenvalue of the grid by P; 2 cos(.rr/l). This 
and Theorem 4.1 yield 

This graph is bipartite. Using (3.14) yields 

for r 2 2. There is an interesting argument that yields an improved bound. 
Let t = t(A) be the minimal distance between the r elements of a given r-set 
A c X,. The balls of radius t/2 - 1around each of our particles are pairwise 
disjoint. Hence, r(t  + 2)t/8 I n and t* = maxA t(A) 242n/ r .  Now, the 
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line of reasoning that gave (3.14) yields here Pmin2 - 1 + 1/ (16r t*( t*+ 
l ) ( t * + 2)).Finally, we get 

for a universal constant c .  For a square ( 1  = m = n 1 l 2 )and r = n / 2  particles, 
(5.4)gives Pmin2 - 1 + 1/815,whereas (5.5)yields Pmin2 - 1 + c/Z2.These 
bounds may be compared with the universal bound (3.15), which gives 
p, 1 1 - 1/4Z6 for this example. Here, using the geometry gives a big 
improvement. 

This example extends to higher dimensions. Consider a grid in Zd with 
size 1 ,  x x Z d  = n and set 1 = max Z i .  Fix paths on this grid by always 
moving first along the first axis, then along the second axis, etc. For this 
choice of paths, 

d o  = 2 d ,  d ;  = d and thus 

where the lower bound is obtained as in dimension 2.  
We leave to the reader the details of the estimate 

c ( d ) r 1 l d
Pmin 2 - 1  + Z I + I / ~  9 

which generalizes (5.5).As a variant of this we mention the natural Cayley 
graph of the group Zll x x Zld .  

EXAMPLE Let 27, be the Cayley graph of the symmetric group Sk with5.4. 
the transpositions as a symmetric set of generators. The exclusion process on 
this graph is better described as a way to choose a set of r permutations in 
Sk without repetition. Here n = k !  and d o  = k ( k  - 1 ) / 2 . Using the analysis 
in Example 2.3 we find that A, I k( (k  - I ) ! )  = k ! .  Also, Diaconis and 
Shahshahani (1981)have shown that /3: = 1 - 2 / ( k  - 1). Thus, 

We do not know whether or not the extra factor of k is necessary for large r 
in the upper bound. 
, This graph is bipartite and (3.14)yields 
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This is probably a very bad bound when r = n/2, but it seems difficult to 
improve upon. 

EXAMPLE5.5.  Let G be a finite group and r = {g,, . . .,gs} be a symmetric 
set of generators. Consider the Cayley graph 9, of (G, T). Example 3 in 
Section 2 above and Corollary 1 in Section 3 of Diaconis and Saloff-Coste 
(1993) show that A, I sy;, where yo is the diameter of 9,.Thus, in this case 
we have 

1 
p l - < l - -

sry; ' 

EXAMPLE5.6. Let Xo = (1,. . . ,n} and E, = ((1, i), (i, 1); i = 2, .  . .,n} so 
that gois a star. The eigenvalues of the simple random walk on this graph 
are 1,0 - 1,with multiplicity 1, n - 2, 4 1. This graph is a tree, paths are 
forcedand A. = 2n - 1, do = n - 1and dh = 1.Thus 

n 1 
p l < l - -< I - - .

r (2n  - l ) ( n  - 1) 2 rn 

This can be improved by using d, in (3.5). Indeed, here 

Hence, 
n 

When r = n/2, this gives P, I 1- 1/3n. 
Direct application of the lower bound of Section 4 yields the uninformative 

inequality p, 2 1- (n - l)/r. This is only due to the crude handling of the 
variances. Here, an eigenfunction cpo is obtained by setting cp,(x) = 0 unless 
x = 2 or 3, in which case - cp0(2) = 1. This has Var*(cp,) 2/n and= ~ ~ ( 3 )  = 

Var(V0) = 2/(2n - 1). Plugging this in at  the end of the proof in Section 4 
yields 

2 
p 1 2 1 - - .  

r 

We believe this is of the right order of magnitude. 

EXAMPLE5.7. Let 27, be a graph with automorphism group acting transi- 
tively on the set of oriented edges. Let R,  and Di be the mean distance and 
the mean square distance, 



723 COMPARISONS FOR MARKOV CHAINS 

where 10x1 is the distance between a fixed point o and x in F,,.Theorem 3.2 
and Example 2.6 yield 

For a lower bound, fix a point o E X , ,  and consider the test function 
&(x) = 10x1. This shows that 

where B02 = Var($o) = Di  - R;,  and'thus 

1
p 1 2  1 - -. 

rDi 

EXAMPLE Let Fo= be the complete bipartite graph described in 5.8. K,,, 
Example 2.7. We will use the notation introduced there and assume 1 2 m. 
We want to apply Theorem 3.2 to this example. However, the flow considered 
in Section 2C has to be modified. Namely, we set now f,,(y) = l /n2  if y is a 
simple path joining x to y with (x, Y) of Type 1, fo(y) = l /mn2 for Type 2 
and f,,(y) = l/ln2 for Type 3. This has 

Here, d o  = 1, 1 E,,l = 21m and Theorem 3.2 yields 
m 

p l < l - -. 
rn 

When r > m, the bound can be improved by using d, in (3.5) instead of do. 
Here rd, < 1 + m(r - m) 5 lm and we get 

1 1 
p l < l -

n(1  + ( r  - m)/l) -
< I - - .

2n 

For the lower bound, Section 4 gives 

1 
p 1 2 1 - - ,

rm 

which is bad when 1 >> m. We can fix this by considering the eigenfunction 
cpO defined as follows. Picture the graph with 1 vertices on the left and m on 
the right. For [1/2] of the vertices on the left, let cp0(x) = -1.For [1/21 other 
vertices on the left, let cp,(x) = 1. Proceed similarly to define cp, on the right 
vertices. Then, Var*(cpo) = 2([1/2] + [m/2])/n and Var(cpo) = 2([1/2lm + 
[m/2]1)/21m. This yields (for m 2 2) 
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Note that other choices of the eigenfunction are possible, but this one leads to 
the best bound. For some of these choices, the variances Var and Var* are 
indeed of different orders of magnitude. 

6. Further results and remarks. 

A. Time to reach equilibrium. Our main motivation in bounding eigenval- 
ues of a finite irreducible reversible Markov chain P, n- is to estimate the 
time the chain takes to be close to equilibrium. Classically, the variation 
distance 

IIPf - = max{lPf(A) -n - 1 1 ~ ~  r (A) l}
A c X  

is used to discuss this question. Here P,"(y) = Pk(x, y) is the iterated kernel 
of the chain. The relation with eigenvalues comes from the estimate 

where n-, = min,{n-(x)) and p, = max{l ,&,I, PI). See for instance Diaconis 
and Stroock (1991) or Fill (1991), which also has a version of this for 
nonreversible chains. If we consider the continuous time process 

the inequality 

holds instead. There is no mystery behind (6.1) and (6.2); they follow from the 
observation that 211Pf - n-[ITv = C,I Pk(x, y) - r(y)l, Jensen's inequality, 
and the following lemma. 

LEMMA6.1. Let pk(x, y) = Pk(x, y)/n-(y) be the kernel of the operator P 
with respect to the measure n- and set ht(x, y) = Ht(x, y)/n-(y). Let pi, 
0 I i s 1x1- 1, be a basis of orthonormal eigenfunctions in  12(n-)correspond-
ing to the sequence 1= p, > P1 2 ... 2 pIxI-,of the eigenvalues. We have 

XI- 1 1- T ( X )  

I - I = C vi2(x)p,lk _< Ek, 


1 n ( x )  
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PROOF. For the first line, note that q+)= P;~+(X).For the second 
equality, set 6,(x) = .rr(x)-l and 6,(y) = 0 otherwise. Then, (a,, = ~ ~ ( x )  
and 1 1  6,11; = rr(x)-l. The last inequality follows. 

In general (6.1) and (6.2) are far from optimal. The reason is not so much 
the use of Jensen's inequality, but because they only take into account the 
value of p1 and Pmi, Indeed, these inequalities are easily complemented 
with 

If P is vertex transitive [see Aldous and Diaconis (1987)], the quantity 
IIP; - .rrllTv does not depend on x and can be bounded by (C\$l;$:k)1/2. 
Diaconis (1988) and Diaconis and Saloff-Coste (1993) give many examples of 
sharp bounds for random walks on groups that are obtained by using all 
eigenvalues. 

Now, there are many examples of graphs that are not vetex transitive but 
for which a heuristic argument indicates that IIP; - .rrllw does not depend 
much on x. For such graphs, one expects a bound of the order of (C1.'f; $iak)l/' 
for IIP: - .rrllw. As an easy and typical example of this, consider the 1 x m 
grid .F with (or without) some deleted edges as in Example 2.1. In this case, 
using (6.2), we find that 211H,3L - .rrllTv 5 e-c when t is of order 12(; log(1m)
+ c). If one believes the foregoing heuristic, t of order 12cshould be enough. 
This is indeed the case, but the proof needs a different approach; see Diaconis 
and Saloff-Coste (1992b). 

For the exclusion process, Theorem 3.1 and the preceding inequalities yield 
the following theorem. 

THEOREM6.1. Let .Fo = (X,, E,) be a connected graph, n = IXol; for 
0 5 r < n recall d, from (3.5). The chain P of the exclusion process (3.2) 
satisfies 

(6.4) 
1 - cIIH: - . r r l l~vIye 

for t z n1rd,B0/(log(:) + c), c > 0. In particular, if r = [ n/2], (6.4) holds 
for t 2 ;d,B,(n + 2 + c), c > 0. 

If we specialize (6.4) to the circle Z,and r = [n/2] (Example 5.0, we get 
1 -cl l  H,3L - .rrllw 5 ye for t 2 n3(n + 2 + c)/24. In this case, (6.1) and the 

1 - cestimates (5.1) and (5.3) on P1 and p,, also yield IIP; - . r r l l~v5 ye for 
k '2 n3(n + 2 + c)/24 and n 2 7; compare with Fill (1991). 

As a different example, consider choosing k random permutations without 
repetition in Sk.Using our results, we find that running the exclusion process 
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on Sk with random transpositions yields an acceptable answer after order 
i k 5  log k steps starting from any fixed choice. More precisely, IIH! - ~ 1 1 ~ 
I ie-"or t = ik3(k2 log k + c) and any 8 E S,. 

As an application of comparing all the eigenvalues, we get an improved 
bound for the mean variation distance at (6.3). 

THEOREM6.2. Let 9, = (X,, E,) be a connected graph, n = (Xol; for 
0 I r < n, recall d, from (3.5). The chain P of the exclusion process (3.2) 
satisfies 

1
for t 2 H rd, n-'(log n + c), c > 0. Here A is a universal constant. 

PROOF. Let Pi, i = 0, 1, . . . , ( )  - 1 be the eigenvalues of the 
Bernoulli-Laplace model of diffusion. Diaconis and Shahshahani (1987) 
proved that 

1/ 2

1(:)-I r ( n  - r )  
eV2('-bJt) < Ae-'l2 for t 2 (log n + c) . 

2n 

Now, in Section 3, we proved (see Lemma 3.1) that 
n - r  

1- P iI-(I -P i ) ,
do*, 

where the pis are the eigenvalues of the exclusion process. Thus, we have 

For the circle Z,and r = [n/21 particles, this yields IIH," - TI IT^ IAe-c/2 
for t 2 n3(log n + c)/48. For the symmetric group Sk as before, we find that, 
on average, order k3 log k log log k steps are enough to chose k permutations 
at  random by running the exclusion process. 

We believe that the improved estimate of Theorem 6.2 holds as well for the 
variation distance starting from any fixed state. In Diaconis and Saloff-Coste 
(1992c), we prove that this conjecture is correct up to logarithmic factors. 

B. Further comments. 

I. The results obtained in this paper raise the following question. What is the 
relation between the second largest eigenvalue ~f of the nearest-neighbor 
walk on a graph 9, and the second largest eigenvalue Pl(r) of the 
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exclusion process of r particles on .Yo? Of course P: = &(I). Also, in 
Examples 5.1 and 5.3 we have 

It is tempting to conjecture that (6.6) holds universally. Note that Section 5 
yields a lower bound of this type for graphs that are nearly regular. What 
we have shown here is that (6.6) holds as soon as a bound of the right 
order of magnitude on P: follows from the "Poincarh technique" [compare 
(2.11) and (3.6)l. Diaconis and Saloff-Coste (1992a) give many examples of 
Cayley graphs that have this property. However, the cube ~ , dor the 
symmetric group SI,with random transpositions are examples where we 
do not know whether (6.5) holds or not. Note that (6.6) holds for the 
complete graph. Also, this conjecture agrees with a heuristic argument, 
often used for exclusion processes, where one "approximates" exclusion by 
the "free" product. Indeed, for the product 1- (1 - @)/r is exactly the 
second largest eigenvalue. 

2. For simplicity, we restricted ourselves in Sections 3 and 4 to an exclusion 
process associated with a graph. The definition and our analysis can be 
generalized to exclusion processes associated with a reversible chain Poon 
xo. 

3. There is a class of labelled exclusion processes for which a similar attack 
should work. The new chain Plabis defined on r-tuples without repetition 
in a manner similar to (3.1). The difference is that when a particle chooses 
an occupied site, the two particles switch places. For r = n, this is a 
random walk on the symmetric group studied in Section 4.A of Diaconis 
and Saloff-Coste (1993). 

4. 	The main estimate in Theorem 3.1 can be rephrased by saying that the 
Dirichlet form 8 of the exclusion process (3.1) satisfies 

for all f with C, f(A)rr(A) = 0. The l 2  norm is of course taken in l2(n-), 
where rr is given by (3.2). Using the eigenvalues of the Bernoulli-Laplace 
model of diffusion and Lemma 3.1 (i.e., the comparison technique of this 
paper), it is possible to show that 8 satisfies also the log Sobolev inequal- 
ity 

crd,Ao log n 
L ( f )  5 8 ( f , f ) ,  f E l 2 ,  

where L( f )  = 2 ~ , l  f ( ~ ) l ~  log([ f(A)l/ll f l12)rr(A) And c is a universal con- 
stant. Using this, one can improve Theorem 6.1. For more of this, see 

' Diaconis and Saloff-Coste (1992~). 
5. When the underlying graph .Yo is not regular, there is another natural 

exclusion process of r particles on .Yo, different from (3.2). Informally, if 
the process is at  A, pick a particle in A at random, and a neighbor of this 
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particle at  random. If the neighboring site is unoccupied, the particle 
moves there; if it is occupied, the system stays at  A. With this definition, 
the chain P of the process is given by P(A,, A,) = 0 unless A, #A,,  
A, = A u {a,}, A, = A u {a,} and (a,, a,) E Eo,in which case 

1 
P(A1, A,) = -

rd(a1) 

or A, = A, = A and 


This is a reversible chain with reversible probability 

where Z is a normalizing constant. We can compare this chain with the 
Bernoulli-Laplace model of diffusion. The paths are the same as in Section 
3. The only difference comes from the values of the transitions and the 
reversible measures. Here the comparison constant (2.4) is 

where the maximum is taken over the pairs (A,, A,) with A, +A,  and 
nonzero transition probability. Also, 

Set 

where the minimum is taken over the pairs (A,, A,) as before. Using (3.8) 
and (2.3), we get the bound 

on the second largest eigenvalue P1(r) of this process. Clearly 13, and 6 ;  
are rather nasty quantities to bound. 

For Example 5.6 (i.e., a star), the preceding argument gives 

n 


&(r )  5 1 
r(2n - l ) ( n  - 1) ' 

which is the same bound as for the other exclusion process (if one uses d o  but 
not d, in Theorem 3.1).For Example 5.8 (i.e., the graph K,,,, I + m = n), we 
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need to adapt Theorem 3.2 using the multicommodity flow technique. At each 
flow fo on go,a flow f corresponds for the comparison between the exclusion 
process and the Bernoulli-Laplace chain with 

Thus, we get 

For K,,,, this specializes to 

When Z = m + p for a fixed p, we have 6, r Z r ,  6:: 2 (1  - pcL)'-l and thus 

When m is fixed, we get instead 6, r I ,m'-", mr-' r 8; and thus 

When Z = 2 m  = 2r, these estimates are exponentially bad whereas, for the 
exclusion process of Section 3, the bound is always polynomial. 

~no the rsimple example where we can get a good bound for the process of 
Section 3 but not for the preceding process is a finite square grid in Z2 with, 
say, one-tenth of the edges deleted according to the rule of Example 2.1. 
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