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GEOMETRIC INEQUALITIES FOR THE EIGENVALUES OF 
CONCENTRATED MARKOV CHAINS 

OLIVIER FRANCOIS,* LMC/IMAG 

Abstract 

This article describes new estimates for the second largest eigenvalue in absolute value of 
reversible and ergodic Markov chains on finite state spaces. These estimates apply when 
the stationary distribution assigns a probability higher than 0.702 to some given state 
of the chain. Geometric tools are used. The bounds mainly involve the isoperimetric 
constant of the chain, and hence generalize famous results obtained for the second 
eigenvalue. Comparison estimates are also established, using the isoperimetric constant 
of a reference chain. These results apply to the Metropolis-Hastings algorithm in order 
to solve minimization problems, when the probability of obtaining the solution from the 
algorithm can be chosen beforehand. For these dynamics, robust bounds are obtained at 
moderate levels of concentration. 

Keywords: Reversible Markov chain; eigenvalues; isoperimetric constant; Metropolis- 
Hastings dynamics; minimization 
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1. Introduction 

During the past few years, Markov chain Monte Carlo methods have proved to be useful 
in seeking the absolute minimum of a function H defined on a finite set E. In these methods, 
an ergodic reversible Markov chain is simulated, for which the stationary distribution tends to 
concentrate on the absolute minimum. However, Monte Carlo algorithms return approximate 
solutions, and the quality of the approximation depends on the number N of steps performed 
by the chain. 

Most often, the stationary distribution is a Gibbs distribution, which depends on a positive 
parameter T called temperature: 

exp(-H(i)/ T) 
Vi E E, 7T(i) = ex (1) 

ZT 

where 

ZT = exp(-H (i)/T). (2) 
ieE 

In this article, the function H is assumed to be non-negative and minimal at a unique point i, 
in E such that H(i,) = 0. Thus, one has 

7rT(i,) -- as T -> 0. (3) 
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0. FRAN(OIS 

Hence, simulating TrT at low temperatures enables us to solve the minimization problem 
associated with H with high probability. Let a be a number in the interval (0, 1), say a > ^, 
and assume that T can be fixed so that 

rT (i,) > -. (4) 

Denote by XN the state which is returned at the end of the algorithm. For 'large' N, the 
probability P(XN = i*) is correctly approximated by 7T(i*). Then, one has 

P(XN - i*) >_ . (5) 

Therefore, the number a may be viewed as a level of the confidence that a user can have in the 
Monte Carlo minimization procedure. 

In order to make the method efficient, the distribution of the Markov chain at the final step 
must be close to the stationary distribution JrT. Then, the main issue consists of finding the 
number N of steps needed to reach the stationary distribution. 

It is well known that the rate of convergence towards the stationary distribution is controlled 

by the spectral gap of the chain (the second largest eigenvalue in absolute value). This article 

gives new estimates on the spectral gap of a reversible Markov chain under the hypothesis that 

Equation (4) is satisfied for a greater than an explicit value (close to 0.701, see Section 2). 
The approach is geometric. Intuitively, fast convergence is expected when the chain moves 

quickly to the subsets having large probability under the stationary distribution. This situation 

corresponds to large values of geometric quantities called isoperimetric constants. References 
[ 16, 21] shed light on the role played by these quantities on the control of the second eigenvalue 
of the chain. This article emphasizes the control which is exerted on the whole spectrum 
by the isoperimetric constant. It is organized as follows. The main results are stated in 
Section 2. The proofs are given in Section 3. Among Markov chain Monte Carlo methods, 
Metropolis-Hastings dynamics are very popular [12, 18]. In Section 4, our bounds are applied 
to the Metropolis-Hastings dynamics, yielding robust convergence estimates. The paper is 
concluded by a short discussion, in which the results are compared to those obtained in [15]. 

2. Background and presentation of the main results 

2.1. Previous results 

This article considers reversible ergodic Markov chains defined on the finite set 

E-{1,...,n}, n > 2. (6) 

Let rr denote the (common) stationary distribution of these chains. The subscript T is used 
when r = rT is a Gibbs distribution at temperature T. The transition matrix is denoted by 
P = (p(i, j))i,j=l...n, or PT when the stationary distribution is rT. Also denote 

Vi, j e E, a(i,j) = (i)p(i, j). (7) 

Reversibility induces that 

Vi, j E , a(i, j) = a(j, i). (8) 

The eigenvalues of P are real, and can be ordered as follows 

(9) 
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Geometric inequalities for concentrated Markov chains 

Denote 

p(P) = max{lXnI, X21. (10) 

It is well known that p(P) controls the convergence of the chain towards its stationary dis- 
tribution. For instance, such a control is expressed in the following result (see, for example, 
[6, 5, 14]): 

7T(II 41V - 7rr(i) ?i ~ E, iiPk(i, )-r(.)|12v _< 4p(p) 2 k (11) 

where pk (i, .) is the conditional distribution of the chain at step k starting from i E E and 

I II TV denotes the total variation norm. 
The isoperimetric constant of a subset S C E is defined as 

(S) EiE js, s a(i, j) (12) 
7r(S) 

where nr(S) = >iEs T(i). This quantity represents the conditional probability under station- 

arity that the chain exits from the set S in a single step given that it starts in S. The symmetric 
isoperimetric constant of S is defined as 

(S) )(13) 
1 -7r(S) 

The global symmetric isoperimetric constant is equal to 

0 = min (S), (14) 
ScE 

where the minimum runs over the proper subsets of E (S : 0 and S A E). In the literature 
about Markov chains, the most studied eigenvalue is X2. Lawler and Sokal [16] and Sinclair 
and Jerrum [21] have given a bound on the second eigenvalue in terms of the isoperimetric 
constant. Lawler and Sokal's bound is as follows 

-2 

X2 < 1--. (15) 
8 

This bound parallels a previous result of Cheeger in Riemannian geometry [3]. To apply this 
result to convergence issues, many authors consider the modified transition matrix 

P' = 1+(1 -)P, O <0 < 1 (16) 

which is still reversible. If 0 is carefully chosen, the eigenvalues of P' are non-negative, and 
p(P') = X2. To avoid the computation of Xn, some authors recommend 0 = . However, this 
choice seems inefficient with regard to practical implementations (the dynamics slow down). 
A clever choice of 0 may demand some knowledge about Xn. Although it might be interesting 
to deal with this issue, we will not develop it further in this paper. 

Diaconis and Stroock [6] should be mentioned here. This reference gives nice and useful 
bounds on the second and last eigenvalues by using geometric methods. Their technique has 
been inspired by Poincare's inequalities (see for example [19]). However, a drawback of 
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0. FRANCOIS 

their approach is that two different bounds must be compared in order to obtain an inequality 
for p(P). The comparison often involves several geometric quantities which are difficult to 
estimate (see [15]). The aim of the present paper is to use the isoperimetric constant to bound 
I n I as well as A.2, in order to avoid the heavy computations sometimes required by Poincare's 
inequalities. 

In [7], a result related to those presented in this article has been proved. Assuming that 
there exists an i, E E such that r (i,) > 2, one has 

p(p)2 < 1- (2 - ) ?2. (17) 

In this equation, the constant 0 has been defined as 

= min (S) (18) 
SCE 

where the minimum runs over proper subsets of E. However, [7] also emphasizes that the 
bound is not accurate, even when r (i,) is close to 1. Its application to the Metropolis-Hastings 
dynamics leads to very rough estimates for the convergence rate. In addition, it has been 
observed that 0 would yield better estimates. 

2.2. Main results 

Our first result can be stated as follows. Let 

v = (19/27+ /33/9)1/3 + 19/2 (19) 

and let i, E E be such that 

r(i) > v,. (20) 

Let X < 1 be an eigenvalue of P. Then the following bound holds (Theorem 3.1): 

2 < 1 - K,22, (21) 

with 

K, = 1 - /I - 7r(i)(1 + V/ (i)). (22) 

This result can be easily translated into a bound on the convergence rate of the chain towards its 
stationary distribution (Corollary 3.1). Note that the value v2 is approximately equal to 0.701, 
and hence defines a suitable level of confidence for implementing a Monte Carlo minimization 
method. 

The second result presented in this paper generalizes the former to the comparison of two 
Markov chains. A generic idea in comparison is to bound the eigenvalues of a chain by using 
the isoperimetric constant of another chain for which explicit calculations can be done. Let P2 
denote the transition matrix of the reference chain while P1 denotes the transition matrix of the 
chain of interest. Let i, e E be as in Equation (20) and X < 1 be an eigenvalue of P1. Then, 
we obtain the following bound (Theorem 3.2): 

x2 < 1- K*222/A2, 

18 
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where 02 is the isoperimetric constant associated with the transition matrix P2. In this bound, 
A is a new geometric constant computed from Pi, P2 and a fixed subset of finite trajectories 
for P1. 

The precise statement and proof of Theorems 3.1 and 3.2 will be given in Section 3. 
Theorem 3.1 is inspired by Cheeger's result, whereas Theorem 3.2 uses both Cheeger's and 
Poincare's techniques. 

Theorems 3.1 and 3.2 are appropriate to study the Metropolis-Hastings dynamics. These 

dynamics are frequently used in the context of minimization by simulated annealing [2, 11, 
15, 5]. They correspond to the reversible transition matrix PT which is defined as follows. 
Let Q be an arbitrary symmetric aperiodic and irreducible transition matrix on E, such that 
q(i, i) = 0 for all i E E. Let 

Iq(i, )F( r(i) ) if rT() > 
( )(i) 

Vi j, pT(i, j) (24) 

q(i, j)7r() ( 7rT(i)) otherwise, 
rrT(i) 7Tr(i) 

and 

pT(i, i) = 1 - PT (i, j), (25) 
j#i 

where F is an arbitrary function such that 0 < F(x) < 1 for 0 < x < 1. (The standard 
Metropolis dynamics is obtained for F = 1.) Let a be such that 

v2 < a < 1, (26) 

and 

T < mini:i* H(i) (27) 
log(a(n - 1)/( - a)) 

Our third result involves a constant m called the least total elevation gain [13] (a definition 
will be given in Section 4). Let XT < 1 be an eigenvalue of the transition matrix PT. Then, we 
have (Theorem 4.1) 

)2 < 1- K2e-2m/T (28) 

with 

K l min F(x) min q (k, e) 
abr x (k-+e) 

where br is a geometric constant to be defined in Section 4, minx F(x) runs over all possible 
values of the ratio x = rrT(j)/7rT(i), and (k -> t) is an edge of the transition graph. 

In comparison with the results obtained from Poincare's inequalities [15], the main advan- 
tage of this approach is its robustness with respect to 

= min IH(i) - H(j). (29) 
(i-+j); 

H(i)AH(j) 

When T is fixed and 8 is small, the estimates given by [15] may become very inaccurate. In 
contrast, the previous bound may be applied with small regard to the constant 8. 
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3. Geometric inequalities for the eigenvalues of a reversible Markov chain 

3.1. Cheeger-like estimates 

As usual, the space of functions defined on E is endowed with a Hilbertian structure. This 
space is denoted by L2(7r) and 

n 

Vf, g E L2(r), (f, g) = E T(i) f(i)g(i). (30) 
i=l 

The transition matrix P is reversible if and only if P is self-adjoint as an operator of L2(7r). 
In this section, the following result is proved. 

Theorem 3.1. Let P be the transition matrix of a reversible Markov chain on E and i* e E 
be such that 7r(i*) > v2, where v. is given by Equation (19). Let X < 1 be an eigenvalue of P. 
Then we have 

1 - > K2, (31) 

where K* = 1 - /1 - 7r(i*)(1 + VI-Tr(i)). 

Corollary 3.1. Let P be the transition matrix of an ergodic reversible Markov chain on E and 
i* e E be such that n (if) > v2. Then we have 

Vi ,2 1 - w(i) Vi E, Pk (i, .) -7(.)2TV < 7(i) (1 -K22 )k. (32) 
47r (i) 

Proof This is an obvious consequence of Theorem 3.1 and Equation ( 11). 

The proof of Theorem 3.1 starts with a lemma on the eigenfunctions of the chain. 

Lemma 3.1. Let P be the transition matrix of a time-reversible Markov chain. Let X < 1 be 
an eigenvalue of P and f an associated eigenfunction satisfying (f, f) = 1. Then we have, 
for all i E E, 

n 

(j)lf (j) -/1 -< (i)(l + / (i)). (33) 
j=l 

Proof First, f is orthogonal to the constant 1. Thus, 

(i) f (i) = - r(j)f (j). (34) 
j'i 

By elevating to the square and applying Cauchy-Schwarz's inequality, we obtain 

f2(i 1 {2 1 ( f (i)= 2(i) 7r(j)f(j) < 
l 2 (J) f2(jj 

j 2(i) (jiIJ#i 
1 - (i) (1 - 7r(i)f2(i)). (35) 

7r 2(i) 
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Therefore 

f2(i)< - 1, Vi E. (36) 
- r(i) 

Again making use of the Cauchy-Schwarz inequality, we obtain 

n n 

7r(j)lf(j)l = L7r(j)lf(j)l + 7r(i)lf(i)I 
j=1 j1i 

< (t r(j) r(j)f2(i)) + r(i)If(i)l. (37) 

To conclude, it follows from Equation (36) that 

=7t(i)If(i)I < V1 -7(i) + T(i)) (iJ -1 

= v1 - 7(i)(1+ 7r(i). (38) 

A lemma from probability theory is also needed. 

Lemma 3.2. Let X and Y be two i.i.d. random variables such that E[X] = 0 and var(X) = 1. 
Then 

E[IX2 Y2] > 2(1 - E[IXI]). (39) 

Proof. See [16], Proposition 2.2 (Equation (2.28)), p. 563. 

The proof of Theorem 3.1 can now be given. 

Proof of Theorem 3.1. Let f be an eigenfunction associated with the eigenvalue X < 1 and 
satisfying (f, f) = 1. Reordering the elements of E, we assume that 

f2(1) < f2(2) <... < f2(n). (40) 

For all real t > 0, we denote 

Uf(t) = E a(i, j)l(f2(i),f2(j))(t) (41) 
i<j 

and 

Vf(t) = 
7r(i)7r(j)l(f2(i)f2(j))(t), (42) 

i<j 

where l(a,b) denotes the indicator function of the interval (a, b), a < b. According to [19], 
the Dirichlet form associated with P is given by 

8(f, f) = a(i, j)(f (i) - f(j))2. (43) 
i<j 
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By Cauchy-Schwarz's inequality, we obtain 

(La(i, j)lf2(i) - f2(ij)[) < (2 a(i, j)(f (i) + f(j))2) (f, f) 
'<j i,j=l 

=1 - x2. (44) 

On the left-hand side, we have 

2(n) 

a(i, j)f2(i) - f(j) = Uf(t) dt 
I 

JO i<j 

f2(n) Uf (t) 
~= / ~Vf (t) dt 
f2(l) Vf(t) 

> - L (i)r(j)(f2(ij)- f2(i)) 
i<j 

n n 
= 2 (i)rc()lf2(j)- 2(i). (45) 

i,j=l 

Applying Lemma 3.2 yields 

a(i, j)lf2(i) - f2(j)l > (1- E () ) (46) 
i<J j=1 

Before applying Lemma 3.1, note that 

/1 - r(i,)(1 + r(i,)) < 1 (47) 

if and only if 

7T(i*) > v,. (48) 

Finally, 

v1 - X2 > 0(1 - v1 - r(i*)(l + v(i,))). (49) 

It can be seen from the special case of two-state transition matrices that the bound given 
in Theorem 3.1 is not sharp, but differs from the true result by the power two. For instance, 
consider the Metropolis independence base chain, whose transition matrix M is given by 

Vi := j,m(i, j) l/n if 7r(i) < r(j), 

(j)/n7r(i) otherwise 

m(i, i) 1 - , m(i, j), (51) 

.i i 
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where we assume that Jr(1) > 0.702. This chain is a particular case of the Metropolis 
algorithm, and it will play a significant role in the proof of our third result. The spectrum 
of this chain can be entirely described [5]. The constant p(P) is given by 

1 
p(P) = 1- 1 (52) 

The isoperimetric constant 0 is close to 1/n if 7r(1) is close to 1. The bound obtained in 
Theorem 3.1 behaves as (1 - 1/n2)1/2. This does not give the correct order of convergence 
rate. However, this drawback is well known in the Cheeger-like approach. A more significant 
example will be studied in Section 4. In this perspective, the comparison results presented in 
the next section will be useful. 

3.2. Comparison of two chains 

In this section, the Cheeger-like approach is merged with Poincare's method used in [6, 4], 
in order to give new estimates for the eigenvalues of reversible Markov chains. In what follows, 
P2 denotes the transition matrix of a reference chain while P1 denotes the transition matrix of 
the chain of interest. Both chains are reversible with respect to the same probability distribution 
r. For all i, j E E, denote by yij a path of Pi from i to j without loops (irreducibility 

warrants the existence of such a path), that is, a sequence io = i, ik,..., ir = j such that 
P1(ik, ik+l) > 0 and ik {io, ... , ik-l}. An edge of the transition graph between k and e, 
k : fe is denoted by (k ->. ), still with respect to Pi. Let r be an arbitrary set of paths of P1 
consisting of one path Yij for all i < j in E. Assume that F is symmetric. If yij E r, then 
r also contains Yji, which is obtained by reversing the sequence yij. The following result is 
proved. 

Theorem 3.2. Let P1, P2 be the transition matrices of reversible Markov chains on E and let 
i, E E be such that n(i*) > v*2, where v, is as in Equation (19). Let X < 1 be an eigenvalue 
of Pi. Then we have 

1 - 2 > K,222/A2 (53) 

where 

A =max r(i)p2(i, j) 
(54) 

(k-+) r (k) pl (k,e)54) 
Yij (k-->) 

and 02 is the isoperimetric constant associated with the transition matrix P2. 

Proof Let f be an eigenfunction of Pi associated with the eigenvalue X < 1 and satisfying 
(f, f) = 1. Reordering the elements of E as before, we assume that 

f2(1) < f2(2) <... < f2(n). (55) 

Denote 

Vi, j e E, a(i, j) = 7r(i)ps(i, j), s = 1,2. (56) 

Following the same lines as in the proof of Theorem 3.1, we obtain 

?k2(1 - 1 - r(i*)(1 + v/r))) < E a2(i, j)lf2(i) - f2(j). (57) 
i<j 
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Introducing the set of paths r, and using the triangle inequality 

a2(i, j) f2(i) - f2(j)l = a2(i j) f2() f2(k) 
i<j i<j (k-f)EYij 

- al(k, f) i<j (k---,->)Eyij 

< I , a2(i, j)) If (f) 2 
-2 k.al Yij(k-4) ) al (k, 2(f)) - f2(k)l 

< A(1 - x2)1/2. (58) 

An obvious way to obtain a new bound on the spectrum of the chain PI is to choose 

Vi, j E E, p2(i, j) = r(j). (59) 

This gives rise to the following result. 

Theorem 3.3. Let P be the transition matrix of a reversible Markov chain on E and let i4 e E 
be such that r (i ) > v2. Then we have 

p(P)2 < 1 - K2/rl2, (60) 

where 

~/- 
max Jr (i)jr(j) = max L. (.7r(j(61) 
(k) ) (k)p(k, )) 

Yij D(k- e) 

Proof Check that A - r/and 02 = 1 when P2 is defined as in Equation (59). 

Since 

- < 0, (62) 

the previous bound is always less accurate than (31). However, r7 may be easier to compute 
than 0, and such a bound may sometimes be useful. 

4. Application to the Metropolis-Hastings dynamics 

This section provides new results for the Metropolis-Hastings dynamics, built upon the 

geometric inequalities established in Section 3. The transition matrix P = PT is defined as in 

Equation (25) and PT = P(PT). The graph associated with PT has E as the set of vertices, 
and the set of edges is given by the pairs {i, j} such that q (i, j) > 0. 

The Metropolis chain has been studied in great detail [15, 5, 10, 9]. At low temperatures, 
Ingrassia [15] has applied Poincare's inequalities, following the method initiated by [13]. In 
these references, the convergence rate of the Metropolis dynamics is expressed in terms of a 
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parameter m called the least total elevation gain. For each path Yij between i and j (with 
respect to PT), the elevation is defined as 

elev(yij) = max{H(ik)}, (63) 

where the maximum runs over all vertices in Yij. Let Hij be the lowest possible elevation 
between i and j over all self-avoiding paths Yij from i to j. Then, the least total elevation gain 
is 

m = max{Hij - H(i) - H(j)}. (64) 
iJEE 

Asymptotic results for Markov chains with rare transitions [8, 1] show that 

PT = X2(T) (65) 

for small T, and 

1 - 2(T) - Ce-m/T as T -> 0, (66) 

where C is a positive constant. The results obtained in this section necessitate the use of the 

Comparison Theorem 3.2. To apply this theorem, the set of admissible paths r is defined as 
follows. As in [13], yij is an admissible path (yij E F) if 

elev(yij) - H(i) - H(j) < m. (67) 

The maximal number of paths which contain a fixed edge e is denoted by 

br= max #{y E r s.t. y 3 e}. (68) 
e=(k--+t) 

To start with, a lower bound on PT can be given at low temperatures. According to the 
variational formula for eigenvalues, one has, for each proper subset S C E, 

PT > 1 - ?(S). (69) 

For a proof of this result, see for example [6]. According to Equation (69), a lower bound on 
PT can be obtained by considering the subset S C E defined below (actually, the same as [15], 
p. 357). Let io and jo be two elements in E such that 

Hiojo- H(io)- H(jo) = m (70) 

and H(io) < H(jo). Consider the subset 

S = {i E E s.t. Hioi < Hiojo. (71) 

Then, io E S and j0 g S. When T is small enough, one has 

n2 
PT > 1 - max q(k, e) maxF(x) -em/, (72) 

(k--*?) x 4 

where x = 7rT(j)/lT(i), i, j e E. 
As upper estimates are concerned, the next result establishes a robust bound on the spectral 

gap. 
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Theorem 4.1. Let 1 > a > v2, and 

T< 
min (73) - 

log(a(n - 1)/(1 - a)) 

Then the constant PT associated with the transition matrix PT given in Equation (25) satisfies 

P2 < 1 - K2e-2m/T (74) 

with 

1 - ,/1 - (I + d) 
K min F(x) min q(k, e), (75) 

abr x (k-if) 

where minx F(x) runs over the values of the ratio x = TrT(j)/rT(i). 

Proof. In general, the symmetric isoperimetric constant 0 cannot be evaluated explicitly. 
The bound is obtained by comparison with another chain (the independence base chain) ac- 
cording to Theorem 3.2. First of all, let 

mini/i, H(i) 
T < (76) - log(a (n - 1 ) / ( - a)) 

Then 

log((l-a)/a(n- 1)) > - minii, H(i) (77) T 

Hence we have 

> + (nl)exp( minii, H(i)) >ZT (78) 

and 

TT(i,*) > v2. (79) 

To apply Theorem 3.2, we choose as reference the Metropolis independence base chain MT. 
Thus, we need to estimate the quantity 

,1 . (k) pT (k, t) E 
7T T(i)M T (i j). (80) 

7rT (k)PT(k, ) i) Yij 3(k-- ) 

For all k - e, one has 

nrT(k)pr (k, e) = q (k, ) min{WrT(k), rT(f ) main{rr(k) r(e)} 
T 

(81) 
maxi{7rr (k), 7r (f)} 

Letting c = max(ke) q(k, ?)-, 

c min{JrrT(i), 7rrT()} F min{7rT(k), 7r(f)} A < - max E min (k, ( ) } (82) 
n (k-e) m n{rT(k), r T(t)} max{Trr(k), Trr(e)} 

exp(m/ T), (83) 
< c'exp(m/T), (83) 
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where 

c' = br(n min F(x) min q(k, ))1. (84) 
x (k--t) 

According to Equations (52) and (69), one has 

MMT > 1-P(MTr)= (i (85) 

The result is obtained by applying Theorem 3.2. 

5. Discussion 

This section discusses the meaning of the confidence level introduced in Equation (4), and 
provides comparisons with other results concerning the Metropolis dynamics [15]. 

In this article, the main results have been established under the assumption that Equation 
(19) is satisfied. When zrT is a Gibbs distribution, it is crucial to determine the temperature 
below which this condition holds. The condition (27) is universal, and corresponds to the worst 
situation (H(i) = h > 0, for i := i.). The upper bound in (27) may be improved when specific 
minimization problems are considered, but this issue is beyond the scope of this paper. 

In general, the confidence level a can be chosen higher than 0.701. It does not seem 
necessary to choose this level very high (although a reflex would induce a = 0.95). Indeed, 
it is well established that ergodic Markov chains satisfy large deviation bounds of Chemoff's 
type for the probability 

P(n -E f (Xk)-7r(f) > 
t), 

nk=0 

where f is a function defined on E, and Xk is the state of the chain at step k. The results in 
[17, 19] give quantitative bounds for this probability. According to these results, the number 
of visits to i. before step N can be estimated under stationarity by Nir(i,), to the extent that 
N is large compared to (1 - X2)-1. In this situation, a user can easily identify the absolute 
minimum. In view of specific applications (such as hard combinatorial problems), it would be 
useful to obtain analogous results at lower confidence levels (e.g. 0.5), but this issue deserves 
further work. 

Next we turn to the comparison with the results obtained in [15]. Theorem 4.1 gives a 
convergence rate towards equilibrium which is roughly 1 - K'e-2m/T (for some K' > 0) as 
T goes to 0. However, the true order is 1 - Ce-m/T, for some C > 0. In this perspective, 
the results established by [15] regarding the Metropolis dynamics are more powerful. But, the 
approach of [15] has a weakness. Recall that 

= min IH(i) - H(j)I. (86) 
(i0-j); 

H(i)AH(j) 

In [15], the temperature below which the inequality 

PT < 1 - K"e-m/T (87) 

holds is 

(nlog n ) (A+ B)'1 (8 
T7= min m, log 2b (88) 

\ Ibryr ' log2 ' 
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The definitions of the quantities yr, A and B are quite long. The interested reader may refer 
to [15], p. 359. For instance, let 8 be very small and T > T.. Then inequality (87) cannot be 
used, and the estimation of PT obtained by [15] may be inaccurate. 

In contrast, the constant 8 does not significantly affect the probability rrT(i*). Applying 
Theorem 4.1 to the Metropolis chain leads to the following bound (a > v2): 

p2r <I- ? 1- q /1 - a(1 + /-)) ) 
2 

p2 1 ( I lVl(l ))2 e- 2m/T (89) 

with q = min(k-) q(k, f). Clearly, this bound improves on [15] when 8 is small. In addition, 
this inequality avoids the computation of yr, A and B, and is thus simpler than [15]. 
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