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Abstract

We consider the problem of assigning transition probabilities to the edges of a path,
so the resulting Markov chain or random walk mixes as rapidly as possible. In this note
we prove that fastest mixing is obtained when each edge has a transition probability
of 1/2. Although this result is intuitive (it was conjectured in [7]), and can be found
numerically using convex optimization methods [2], we give a self-contained proof.

In [2], the authors consider the problem of assigning transition probabilities to the edges
of a connected graph in such a way that the associated Markov chain mixes as rapidly as
possible. We show that this problem can be solved, at least numerically, using tools of convex
optimization, in particular, semidefinite programming [9, 3]. The present note presents a
simple, self contained example where the optimal Markov chain can be identified analytically.

Consider a path with n ≥ 2 nodes, labeled 1, 2, . . . , n, with n− 1 edges connecting pairs
of adjacent nodes, and a loop at each node, as shown in figure 1. We consider a Markov chain
(or random walk) on this path, with transition probability from node i to node j denoted
Pij. The requirement that transitions can only occur along an edge or loop of the path is
equivalent to Pij = 0 for |i− j| > 1, i.e., P is a tridiagonal matrix. Since Pij are transition
probabilities, we have Pij ≥ 0, and

∑

j Pij = 1, i.e., P is a stochastic matrix. This can be
expressed as P1 = 1, where 1 is the vector with all components one.

We will consider symmetric transition probabilities, i.e., those that satisfy Pij = Pji.
Thus, P is a symmetric, (doubly) stochastic, tridiagonal matrix. Since P1 = 1, we have
(1/n)TP = 1/n, which means that the uniform distribution, given by 1T/n, is stationary.
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Figure 1: A path with loops at each node, with transition probabilities labeled.
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The eigenvalues of P are real (since it is symmetric), and no more than one in modulus
(since it is stochastic). We denote them in nonincreasing order:

1 = λ1(P ) ≥ λ2(P ) ≥ · · · ≥ λn(P ) ≥ −1.

The asymptotic rate of convergence of the Markov chain to the stationary distribution, i.e.,
its mixing rate, depends on the second-largest eigenvalue modulus (SLEM) of P , which we
denote µ(P ):

µ(P ) = max
i=2,...,n

|λi(P )| = max {λ2(P ), −λn(P )}.

The smaller µ(P ) is, the faster the Markov chain converges to its stationary distribution.
For example, we have the following bound:

‖π(t)− 1T/n‖TV ≤
√
nµt,

where π(t) = π(0)P t is the probability distribution at time t, and ‖ · ‖TV denotes the total
variation norm. (The total variation distance between two probability distributions π and
π̂ is the maximum of |probπ(S)− probπ̂(S)| over all subsets S ⊆ {1, 2, . . . , n}.) For more
background, see, e.g., [6, 4, 1, 2] and references therein.

The question we address is: What choice of P minimizes µ(P ) among all symmetric
stochastic tridiagonal matrices? In other words, what is the fastest mixing (symmetric)
Markov chain on a path? We will show that the transition matrix

P ? =



















1/2 1/2
1/2 0 1/2

. . . . . . . . .

1/2 0 1/2
1/2 1/2



















(1)

achieves the smallest possible value of µ(P ), cos(π/n), among all symmetric stochastic tridi-
agonal matrices. Thus, to obtain the fastest mixing Markov chain on a path, we assign a
probability of 1/2 of moving left, a probability 1/2 of moving right, and a probability 1/2
of staying at each of the two end nodes. (For the nodes not at either end, the probability of
staying at the node is zero.) This optimal Markov chain is shown in figure 2.
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Figure 2: Fastest mixing Markov chain on a path.

For n = 2, we have µ(P ?) = cos(π/2) = 0, which is clearly the optimal solution; in one
step the distribution is exactly uniform, for any initial distribution π(0). For n ≥ 3, P ? is
the transition matrix one would guess yields fastest mixing; indeed, this was conjectured
in [7]. But we are not aware of a simpler proof of its optimality than the one we give below.

Before proceeding, we describe another context where the same mathematical problem
arises. We imagine that there is a processor at each node of our path, and that each link
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represents a direct network connection between the adjacent processors. Processor i has a
job queue or load qi(t) (which we approximate as a positive real number) at time t. The
goal is to shift jobs across the links, at each step, in such a way as to balance the load.
In other words, we would like to have qi(t) → q as t → ∞, where q = (1/n)

∑

i qi(0) is
the average of the initial queues. We ignore the reduction in the queues due to processing
(or equivalently, assume that the load balancing is done before the processing begins). We
use the following simple scheme to balance the load: at each step, we compute the load
imbalance, qi+1(t)− qi(t), across each link. We then transfer a fraction θi ∈ [0, 1] of the load
imbalance from the more loaded to the less loaded processor. We must have θi+ θi+1 ≤ 1, to
ensure that we are not asked to transfer more than the load on a processor to its neighbors.
It can be shown that if θi are positive, and satisfy θi + θi+1 ≤ 1, then this iterative scheme
achieves asymptotic balanced loads, i.e., qi(t) → q as t → ∞. The problem is to find the
fractions θi that result in the fastest possible load balancing.

It turns out that this optimal iterative load balancing problem is identical to the problem
of finding the fastest mixing Markov chain on a path, with Pi,i+1 = θi. In particular, the
evolution of the loads at the processors is given by q(t) = P tq(0). The speed of convergence
of q(t) to q1 is given by the second-largest eigenvalue modulus µ(P ). By the basic result in
this paper, the fastest possible load balancing is accomplished by shifting one-half of the load
imbalance on each edge from the more loaded to the less loaded processor. More discussion
of this load balancing problem can be found in [7].

We now proceed to prove the basic result.

Lemma. Let P ∈ Rn×n be a symmetric stochastic matrix. Then we have

µ(P ) = ‖P − (1/n)11T‖2,

where ‖ · ‖2 denotes the spectral norm (maximum singular value).

Proof. To see this, we note that 1 is the eigenvector of P associated with the eigenvalue
λ1 = 1. Therefore the eigenvalues of P − 11T/n are 0, λ2, . . . , λn. Since P − 11T/n is
symmetric, its spectral norm is equal to the maximum magnitude of its eigenvalues, i.e.,
max{λ2,−λn}, which is µ(P ).

Lemma. Let P ∈ Rn×n be a symmetric stochastic matrix, and suppose y, z ∈ Rn satisfy

1Ty = 0, ‖y‖2 = 1, (2)

(zi + zj)/2 ≤ yiyj for Pij 6= 0. (3)

Then we have µ(P ) ≥ 1T z.

Proof. For any P , y and z that satisfy the assumptions in the lemma, we have

µ(P ) = ‖P − (1/n)11T‖2

≥ yT
(

P − (1/n)11T
)

y

= yTPy

=
∑

i,j

Pijyiyj
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≥
∑

i,j

(1/2)(zi + zj)Pij

= (1/2)(zTP1 + 1TPz)

= 1T z.

The first inequality follows from the assumption ‖y‖2 = 1 and the first lemma. The second
inequality follows from the assumption (3), and Pij ≥ 0.

Theorem. The matrix P ?, given in (1), attains the smallest value of µ, cos(π/n), among
all symmetric stochastic tridiagonal matrices.

Proof. The result is clear for n = 2. We assume now that n > 2. The eigenvalues and
associated orthonormal eigenvectors of P ? are

λ1 = 1, v0 = (1/
√
n)1

λj = cos

(

(j − 1)π

n

)

, vj(k) =

√

2

n
cos

(

(2k − 1)(j − 1)π

2n

)

,
j = 2, . . . , n

k = 1, . . . , n.

(See, e.g.,[8, §16.3].) Therefore we have

µ(P ?) = λ2 = −λn = cos(π/n).

We show that this is the smallest µ possible by constructing a pair y and z that satisfy
the assumptions (2) and (3) in the second lemma, for any symmetric tridiagonal stochastic
matrix P , with 1T z = cos(π/n).

We take y = v2, so the assumptions (2) in the second lemma clearly hold. We take z to
be

zi =
1

n

[

cos
(

π

n

)

+ cos

(

(2i− 1)π

n

)/

cos
(

π

n

)

]

, i = 1, . . . , n.

It is easy to verify that 1T z = cos(π/n).
It remains to check that y and z satisfy (3) for any symmetric tridiagonal matrix P . Let’s

first check the superdiagonal entries. For i = 1, . . . , n− 1, we have

zi + zi+1

2
=

1

n

[

cos
(

π

n

)

+
1

2

(

cos

(

(2i− 1)π

n

)

+ cos

(

(2i+ 1)π

n

))/

cos
(

π

n

)

]

=
1

n

[

cos
(

π

n

)

+ cos
(

2iπ

n

)]

=
2

n
cos

(

(2i− 1)π

2n

)

cos

(

(2i+ 1)π

2n

)

= yiyi+1.

Therefore equality always holds for the superdiagonal (and subdiagonal) entries. For the
diagonal entries, we need to check (zi + zi)/2 = zi ≤ y2

i , i.e.,

cos
(

π

n

)

+ cos

(

(2i− 1)π

n

)/

cos
(

π

n

)

≤ 2 cos2
(

(2i− 1)π

2n

)

= 1 + cos

(

(2i− 1)π

n

)
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for i = 1, . . . , n, which is equivalent to

[

1− cos
(

π

n

)]

[

1− cos

(

(2i− 1)π

n

)/

cos
(

π

n

)

]

≥ 0, i = 1, . . . , n.

But this is certainly true because

cos

(

(2i− 1)π

n

)

≤ cos
(

π

n

)

, i = 1, . . . , n.

This completes the proof.
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