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Abstract

The Metropolis algorithm is a widely used procedure for sampling from a specified distribution on a

large finite set. We survey what is rigorously known about running times. This includes work from statistical

physics, computer science, probability and statistics. Some new results are given ae an illustration of the

geometric theory of Markov chains.

1. Introduction.

Let % be a finite set and m(~) > 0 a probability distribution on %. The Metropolis algorithm is a

procedure for drawing samples from X. It was introduced by Metropolis, Rosenbluth, Rosenbluth, Teller,

and Teller [1953]. The algorithm requires the user to specify a connected, aperiodic Markov chain 1<(z, y)

on %. This chain need not be symmetric but if K(z, y) >0, one needs 1<(Y, z) >0. The chain K is modified

by auxiliary coin tossing to a new chain M with stationary distribution m. In words, if the chain is currently

at z, one chooses y from 1{(z, y). Let

(1) A(z, y) =
7r(y)K(y, x)

7r(z)K(2, y) “

If A(z, y) ~ 1, the chain moves to y. If A(z, y) <1, flip a coin with probability of heads A(z, y). If the coin

comes up heads, the chain moves to y. If the coin comes up tails, the chain stays at x. Formally,

{

K(x, y) if A(x, y)~l and y#x

(2) M’(z, y) = ~<(z, y)A(z, y) if A(z, y) <1

1<($, y) + ZZ:A(O,Z)<l A’(z, z)(l – A(z, z)) if y=z.

The following lemma says that the new chain has r as its stationary distribution:

LEMMA 1. The chain M(z, y) at (2) is an irreducible, aperiodic Markov chain on ~ with

(3) T(z)M(~, y) = T(y)M(y, Z) for all x, y.

In particular, for all x, y

limM”(z, y) = m(y).

PROOF: Equation (3) is easily verified directly: if A(x, y) >1,

T(z)M(z, y) = T(z)K(x, y) and A(y, *) <1 so ~(y)~<(y, z)A(y, x) = T(z)M(z, y).

The same conclusion holds if A(x, y) = 1 and if A(z, y) ~ 1. The chain is clearly connected and is aperiodic

by assumption. Now, the basic convergence theorem for Markov chains, see e.g., Karlin and Taylor [ ],

implies the result. c1
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REMARK: In applications, 2 is often a huge set and the stationary distribution m is given as m(z) w e-~(”)

with H(z) easy to calculate. The unspecified normalizing constant is usually impossible to compute. Note

that this constant cancels out of the ratios A(z, y) so that the chain JM(z, y) is easy to run.

The limit result (4) is unsatisfactory in applied work, one needs to know how large n should be to have

A/fn (x, y) suitably close to r(y). One standard quantification of “close to stationarity” is the tota,l variation

distance:

ll&f~ - m[l = ~mlitf”(z, A) - T(A)I, with T(A) = ~ m(y)

yGA

If this dist ante is small, then the chance that the chain is in a set A is close to T(A), uniformly. The techniques

described below give fairly sharp bounds on convergence in terms of the size I*I, and the geometry of a graph

with vertex set X and an edge from x to y if lvf(z, y) >0.

Section 2 describes a collection of examples where very sharp results are known. These include a chain

on the symmetric group drawn from our joint work with Phil Hanlon, a variety of birth and death chains

drawn from thesis work of Eric Belsley, and results for independence sampling base chains drawn from work

by Jun Liu. The analysis requires a high degree of symmetry, but at least gives a collection of examples

where the correct answer is known, so different bounds can be compared with the truth.

Section 3 describes work on statistical physics models widely used in image analysis. These include

the Ising model and many variations. In low dimensions, away from “critical temperatures” and “phase

transitions” the results show that order n log n steps are necessary and suffice where n is the number of

lattices sites. In phase transition regions, the running time can be exponential in n. The main work here

here is due to Martinelli, Schoneman, Stroock, Zegalinski, and their co-authors.

Section 4 gives an overview of the geometric theory. This consists of Poincar6, Cheeger, Nash, Sobolev,

and Log Sobelev inequalities.

Section 5 describes work on sampling from log concave densities on convex sets. This work has been

developed in computer science by Frieze, Kannen, Lovasz, Shimonovitz and their co-authors in connection

with the celebrated problem of computing the volume of a convex set.

Section 6 describes some new work which allows sharp bounds for Metropolis chains on low-dimensional

grids. This work is presented as an introduction to the geometric theory of Markov chains developed in [ , ,

, ]. It gives matching upper and lower bounds (up to good constants) for problems like sampling from

m(i) M i(n – i) or 7r(i) a e–(i–:)’

on {1, 2, . . n – 1}, with the base chain being reflecting random walk.

The final section attempts to survey other literature, extensions to general state spaces, and some of

the many improvements on the Metropolis algorithm which (currently) seem beyond rigorous analysis.

Real applications of the Metropolis algorithm are widespread. If the reader needs convincing, we rec-

ommend the three discussion papers in the journal of the Royal Statistical Society, Series B, 55 (1993), No.

3, these give many illustrations and pointers to the huge applied literature.

We have made no attempt to cover closely related work on annealing or the Gibbs sampler. We have

attempted to give a complete picture of what is rigorously known about the Metropolis algorithm.

2. Examples. This section reports work on examples where symmetry allows careful analysis.

Example 1. A walk on the symmetric group. Let S. denote the permutations of n items. In psycho-

physical experiments (rank these sounds for loudness), taste-testing, and preference studies, a variety of non

uniform distributions on S~ are used. One family, the Mallows-model through the metric ~, h= form

(2.1) 7rf?(u) = @~o’’’”z/z.

with d(., .) a metric on sn, and U. a centering permutation. We take O <0<1 and Z(O, ao) a normalizing

constant. Thus, if 6 = 1, T@ is the uniform distribution. If O < 1, the distribution peaks at the permutation

a. and falls off exponentially as a moves away from uo. A variety of metrics are in use. For example,

(2.2a) d(u, uo) = ~ la(i) – uo(i)j (Spearman’s footrule)
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(2.2b) d(a, UO) = min. number of transpositions required Cayley distance to bring

a to al).

Detailed discussion can be found in Diaconis [1988; Chapter 6], Critchlow [1985], or Fligner and Verducci

[1993].

For n large (e.g., n = 52) the normalizing constant is impossible to calculate and samples from ire would

routinely be drawn using the Metropolis algorithm from the base chain of random transpositions. Thus, if

the chain is currently at a, the chain proceeds by choosing i, j at random in {1,2,... , n} and transposing,

forming u’ = (i, j)a. If d(u’, Co) < d(u, CTO), the chain moves to a’. If d(a’, Uo) > d(cr, Uo) a coin is flipped

with probability e-~(’J’ IUO)-d(uIOO). If this comes out heads, the chain moves to u’. Otherwise the chain stays

at u.

The running time of this chain for the Cayley distance was analyzed in [ ]. The following result shows

that order n log n steps are necessary and suffice for convergence.

THEOREM 2.1. For fixed O < L9< 1, let M~ be the kth power of the Metropolis chain (2.1), starting at the

identity, with the Cayley metric (2.2b). Suppose

k=anlogn+cn, with a = ~ + ~(~ –6), and c > 0,

Then

llMk- T8]I< f(~,c)
for f(O, c) an explicit function, independent of n, with $(0, c) \ O as c / cm.

Conversely, if k = in log n – cn,

REMARKS: 1. We conjecture that this chain has a sharp cutoff in its variation distance at an log n. The

result gives quite precise sense to ‘(n log n steps are necessary and suffice”.

2. The proof of Theorem (2.1) depends in crucial ways on the choice of d as Cayley’s metric. It uses delicate

estimates of all eigenvalues and eigenvectors, available through symmetric function theory.

3. We conjecture that order n log n steps are necessary and suffice for any reasonable metric (e.g., 2. la).

At present, the best that can be rigorously proved is that order n! steps suffice and order n log n steps are

necessary.

4. The paper with Hanlon gives several other special cases where such careful analysis can be carried out –

Metropolis algorithms on the hypercube and families of matchings. In these cases, the Metropolis chains (as

at 2.1) give a one-parameter family of deformations of transition matrix of the base chain having interesting

special functions as eigen functions. Ross and Xu (1995) have made a fascinating connection between some

of these twisted walks and convolution of hypergroups.

5. Belsley ( ) has carried out a delicate analysis of a related case: changing the base chain of random walk

on a path to a geometric distribution. His results are described further in section 6.

Example 2. Independence base chains. Let m be a probability on the finite set %. Consider as the

base chain repeated independent samples from a fixed probability p(z) on %. Thus K(z, y) = p(y) for all

z. Jun Liu (1995) has explicitly diagonalized the Metropolis chain in this case. To describe his results, let

W(Z) = n(x)/p(z). The chain can be written

{

p(y)min{la} if y#z

(2.3) M(z, y) =

P(~)+ XmP(z)rnax{O,l - *} if y=..

Such a chain arises naturally when comparing the widely used schemes of importance and rejection sampling

with the Metropolis algorithm. In these schemes an independent sample is drawn from p. In importance

sampling, averages of functions with respect to x are estimated by weighting the sample value x by W(Z). In
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rejection sampling, sample values z are kept in the sample with probability w(s) and thrown away otherwise.

These are close cousins to the Metropolis algorithm.

TO describe Liu’s results, let the states be numbered (without 10SS) so W(zl ) ~ W(LZ2) >. ~ . ~ w (x1x1).

Write w(i) = W(zi), r(i) = n(izi), etc. Let

s=(k)= 7r(2,k)+ ~. + fi(qq)), Sp(k)= p(z,k)+ , ~, -tp(qq).

THEOREM 2.2. (Liu) The Metropolis chain (2.3) has eigenvalues 1 = ,BO > ~1 . ..> ,Olxl_l > –1 with

T(i)

‘j =gw(i)- w(j) )“.
Further, the variation distance for the chain with starting distribution p is bounded above by

(2,4)

For the chain stated at x,

(2.5) 411M: - Tly < ir(z)-lpl.

PROOF: With hindsight, it is quite straightforward to verify the result discovered by Liu: with states

numbered as above, an eigenvector corresponding to eigenvalue ~k is

(0,... ,0, sT(k+ 1),-m(k),. ~~,–m(k))

where there are (k – 1) zero entries. For reversible Markov chains, the Cauchy-Schwartz inequality and the

spectral theorem give

(2.6)

with ~j an orthonormal basis of right eigenfunctions for the matrix M. See e.g. [Lemma ]. Normalizing the

eigenfunctions and straightforward computation give (2.4) while (2.5) follows from the rightmost inequality

of (2.6).

Here is a simple example for comparison with later examples: take

X= {0,1,2,. n- 1}, ir(j) = $j/Z, with Z = ~ and O < L9< 1 fixed. Take the base chain uniform on

Z : p(j) = 1/rz. Thus the states are naturally ordered and w(j) = rim(j). From the theorem,

n-1

/3i=-y(:-_
n:;;)) = 1- 1(1+ (1 -qn 1–6’

jzl

the upper bound (2.5) gives
2 zk

411M;_~ – T112 < O-n(l – ;) .

This shows that k of order n2 steps suffice to achieve stationarity. Use of all the eigenvalues, as at (2.4)

shows that order n steps actually suffice for any starting state. It is clear that at least n steps are necessary:

even if the chain starts at O, the most likely state, it takes order n steps to have a good chance of moving

once.

Liu uses the the results above to compare importance sampling, rejection sampling and the Metropo-

lis algorithm for estimating expected values like YL(z)T(z). Using the criterion of mean square error, he

concludes, roughly speaking, that the Metropolis algorithm and rejection methods have essentially the same

115



efficiency, but importance sampling can show big gains. Of course, this application of the Metropolis al-

gorithm is far from the original motivation: importance sampling assumes we can compute, or at least

approximate, normalizing constants while the Metropolis algorithm can proceed without them.

3. Models from statistical physics.

Statistical physics has introduced a variety of models which are also used to analyze spatial data and

model images in vision and image reconstruction. In this description, we restrict attention to binary spatial

patterns in a portion of a lattice. For simplicity, we also restrict attention to the Ising model. The references

cited apply to much more general situations.

Thus let Abe a finite connected subset of the lattice Z2. Let % = {z : A ~ 222}. We think of Zz = {+1}

and X as the set of two colorings of the sites in A. If {+} is replaced by {O, 1}, we may think of an element

of % as a picture. Let s be a two-coloring of the boundary of A (points in Z2 – A at distance 1 from points

in A). This is a specified set of boundary conditions.

The Ising model is a probability distribution on X specified by

(3.1)

where the first sum is over neighboring pairs in Z2 with one or both of i, j in A and the second sum is over

i in A. Here /3 > 0 is called inverse temperature and h, –m < h < m is called the external field strength.

With ~, h,s fixed, (3.1) is a well specified probability measure on %. In applications, A is usually a square

grid of size, e.g. 64 x 64 or 128 x 128 and it is clearly impossible to calculate the normalizing constant

implicit in (3.1).

The Metropolis algorithm gives an easy way to generate from ir; as base chain, let us take the following:

pick i in A at random (uniformly) and change z, to –~i. This gives a connected chain on 3. Call this

random single site updating. This chain is periodic, but the Metropolis algorithm clearly has some holding

probability so the chain Lfn (z, g) converges to ~(y).

There is a huge rigorous literature on properties of the stationary distribution m as a function of@, h,

and s. Simon (1993) gives a careful extended discussion. We will not review this here but merely mention

that there are regions of the /3, h plane where the behavior ofs matters (phase transitions occur) and regions

where the behavior does not matter. Phase transitions occur for h = O and /3 < PC and not otherwise. As

will be described, the Metropolis algorithm converges rapidly for (~, h) away from the critical values (order

roughly 1A 12log IA] steps suffice). It takes an exponential number of steps to converge for (~, h) critical

values. The behavior of the constants involved as (/3, h) approach the critical values is currently under active

study. Schonmann (1993,1995) gives a review of this fascinating subject.

To state a precise result an annoying periodicity problem must be dealt with. Let

(3.2) li?(x,y) = :(1+M(z, y))
.4

be a modified Metropolis chain.

THEOREM 3.1. (Martinelli-Olivieri-Schonmann (1993)) Let A be a square grid in .Z2 with IA[ = n. Then,

for ~, h not on the critical segment and any s, the Metropolis chain (3.2) for ~ defined at (3.1) based on

random single site updating satisfies

with A, B explicit functions of/3, h which do ot depend on n or s.

REMARKS: 1. A very similar result was proved earlier by Stroock and Zegarlinski (1992). Their result

holds for somewhat fewer values of ~, h (e.g., Ihl ~ 4 is required) but is stronger in holding uniformly for all

A (not just square grids). They also give results which hold for larger dimensions while the techniques of

Martinelli-Olivieri-Schonmann lean heavily on the assumption of Z2. A detailed comparison is in Frigessi,

Martinelli-Stander (1993).
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2. For ~, h on the critical segment, things change drastically. Results of Martinelli (1993) and Thomas

(1989) combine to show that the chain E takes order .Bn’” steps to converge. Again, B is a function of /3, h

and now s; indeed in the critical segment the stationary distribution ~ depends strongly on the boundary

conditions which now do not wash away for large grids.

The proofs of the theorems above depend on detailed study of stationary distribution m and build

on years of work by the statistical physics community. There is not much hope of carrying them over in

any straightforward way to other high-dimensional uses of the Metropolis algorithm such as the permutation

distributions of section 2. There is one very useful ingredient which is clearly broadly useful, the Log Sobolev

inequality. The next section gives a brief description of this emerging technique.

4. Geometric techniques.

A hierarchy of technical tools have emerged for studying powers of Markov chains. At present, these go

well beyond bounds on eigenvalues. The geometric tools are named after cousins from differential geometry

and differential equations: inequalities of

Poincar6, Cheeger, Sobolev, Nash, Log Sobolev.

It is beyond the scope of this paper to give a thorough introduction to these; we give a brief outline and

pointers to good expositions. Basic references are [ , , ] with Sinclair [ ] a useful recent book.

For simplicity, we work in the context of reversible Markov chains although one of the exciting break-

throughs (see Fill [ ] and [ , ]) is that much can be pushed through in the non reversible case.

Let X be a finite set, K(z, y) an irreducible, aperiodic Markov matrix on %. Let m(z) be the stationary

distribution and suppose ~, Ii is reversible (so T(z) li(z, y) = m(y)K(y, z)). Define an inner product on real

functions from + by (~lg) = ~ ~(z)g(~)~(x). Then reversibility is equivalent to saying the operator Ii

which takes ~ to l<~(z) = ~ K(x, y)~(y) is self adjoint on 12 (so (l<~lg) = (~[f<g)). This implies that K

has real eigenvalues

l=po>pl”>ppq-1>-l

and an orthonormal basis of eigenvectors ~i (so li~i = pi ~i).

One aim is to bound the total variation distance between I{n (x, y) and 7(y). This is accomplished by ~

using the Cauchy-Schwarz inequality to bound

(4.1) 411A’:

with @* = min(/31, l~lxl-11)

This final bound is clearly proved by Jerrum and Sinclair [ ]. See also [ , Sec. 6].

Thus one can get bounds on rates of convergence using eigenvalues. Next, one needs to get bounds on

eigenvalues. This can be accomplished by using the minimax characterization. This involves the quadratic

form

:(.flf) = ((1 – A-)f[f) = ; ~(f(x) – f(y)) 2T(z)K(z, y).

C)Y

Then

(4.2)

Because of (4.2), bounds of var(~) in terms of ~(~lj)

var(~) s AS(f\~)

or equivalently, bounds on the 42 norm on functions with ~ = O:

11.fll~ s A~(.fl.f)
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give bounds ~1 s 1 – ~. Such bounds are called Poincark inequalities. An illustration of these techniques

is given in Section 6A below.

In [ ] a simple technique for proving a Poincar6 inequality is given using paths ycy from z to y in a graph

with vertex set % and an edge from z to w if K(.z, w) > 0. These paths had been suggested earlier by work

of Jerrum and Sinclair to bound eigenvalues using conductance (see our discussion of Cheeger’s inequality

below). It emerged that whenever paths were available, their direct use in Poincar6 inequalities was preferable

to their use via conductance. For example, Jerrum and Sinclair’s pioneering work on approximation of the

permanent used paths and conductance to give a bound for the second eigenvalue of the underlying chain

Using just their calculations, and replacing conductance by Poincar6, [ ] shows

Sinclair [ ] then went through several other arguments (problems of generating graphs with given degree,

dimmer problems) and obtained substantial improvements in every case.

Cheeger’s inequality bounds eigenvalues by considering

(4.3)

Bounds on eigenvalues are obtained via

(4.4)

These ideas were introduced into combinatorial work by Alon and his coworkers for building expander graphs.

There, the quantity h is of interest, one builds graphs where group theory can be used to bound @l and

this gives bounds on h. The idea of getting bounds on ~1 by getting bounds on n directly is an important

contribution of Jerrum and Sinclair.

An interesting class of problems where graphs can be embedded in Euclidean space and then tools

from continuous geometry (Payne Weinberger inequalities) can be used to give direct bounds on h has been

intensively studied in computer science by Dyer, Frieze, Kannan and Lovasz, Shimonovitz. This leads to

remarkable bounds for problems like approximating the volume of convex sets. These seem unobtainable by

other methods at present writing.

Roughly, these bounds proceed by taking a fine mesh (the underlying graph) in an ambient Euclidean

space. Then, the eigenvalues of the graph Laplacian are shown to be close to the known eigenvalues of the

combinatorial Laplacian. A superb survey was given by Kannan [ ]. A recent very interesting effort along

these lines is given by Chung and Yau [ ].

Cheeger and Poincar6 inequalities are fairly basic tools in modern geometry. More refined results are

obtainable by using Nash, Sobolev, and Log Sobolev inequalities to which we now turn, Details for the

following can be found in [ , ].

While Poincar6 inequalities bound the 12 norm in terms of the quadratic form, Nash inequalities ask for

more, a bound on a power of the 12 norm. In terms of the form, this appears as

(4.5)

where f is restricted to have 41 norm one. In (4.5), B, D and N are constants which enter into any conclusions.

In [ ] it is shown that (4.5) is equwalent to the conclusion that powers of the kernel &fn decay like

C/nD for 1 ~ n ~ N2. This gives crude bounds: “the Nth power is roughly flat” from which one can then

use eigenvalue bounds. It is a little like finding the maximum of a function. One first uses a crude global

tool to get into a neighborhood of the maximum and then uses something like Newton’s method.
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When applicable, Nash inequalities allow elimination of the T(a)- 1 term in the upper bound (4.1). Here

is an example of what can be done. Let C be the lattice points inside a convex compact set in R2. Assume

that two points in C can be connected by a lattice path within C. A random walk proceeds by uniformly

choosing one of the 4 possible neighbors of z E C. If the neighbor is inside C, the walk moves to the chosen

point. If the neighbor is outside C, the walk stays at z. This gives a Markov matrix

{

l/2d for z # y neighboring points in C

(4.6) A’(x, y) =

g(x)/2d forx=yin C.

where g(z) is the number of neighbors of z that do not belong to C. This is a connected, irreducible chain

with the uniform distribution r(z) as reversible measure. The following result is proved in [ ].

THEOREM 4.1. For the chain (4. 6), let y >1 be the euclidean diameter of C. There are universal constants

al, a2 > 0 such that for any x E C,

Further, there are universal constants as, aq >0 such that

for some x in C.

Roughly, Theorem 4.1 says order (diameter)2 steps are necessary and suffice to approach stationarity.

In [ ] a very similar theorem is proved for the natural random walk on contingency tables, and natural

walks on

{ze N@: Mx=y}

with ibf an a x b totally unimodular matrix, y a given vector of integers. Further, preliminary calculations

show that the same conclusions ((diameter)2 steps are necessary and suffice) hold for the Metropolis algorithm

with base chain nearest neighbor random walk on a low-dimensional grid if the stationary distribution is of

polynomial type: e.g., proportional to i(n – i) on {1,2, ~~. , n – 1}. Section 6B carries this out in some detail.

Techniques for proving such Nash inequalities that use paths in a local fashion (local Poincar& inequali-

ties) are given in [ ]. These techniques seem broadly useful for problems in which the underlying graph has

polynomial growth. One drawback; the constants involved grow exponentially in the dimension parameter

D.

Sobolev inequalities are essentially equivalent to Nash inequalities. They ask for bounds of form

where q >2 and C, T are constants.

See [ ] for the equivalence of Sobolev and Nash inequalities. See Chung and Yau [ ] for a development

of Sobolev inequalities on graphs.

Log Sobolev inequalities give a tool that is not plagued by the curse of dimension. Indeed, these

inequalities were invented by analysts in trying to get results in infinite dimensions. A splendid introduction

and survey to the continuous work is in Gross [ ]. The volume this is contained in has further useful articles.

A careful account of Log Sobolev inequalities for finite problems is in [ ] from which the present account is

drawn.

We say a chain K satisfies a Log Sobo[ev inequality if

t(f) < Ct(fl.f) for some c >0 and all .f

with
f2(x)

L(j) = ~ j-’(z) log(—

x
,,fl,; )~(x)”
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The best constant will be denoted C* in the sequel.

If such an inequality is available, then

1
411K~ – ~[[Z’v ~ (1 + 2e2)112e-’ for n Z ~ log log —

c

+ 1 –PI*I-1
+ 1,

7r(x)
C>o.

This inequality should be compared with (4.1) where the quantity log ~ appears instead of log log ~.

Above, ,61Xl_1 is needed to guard against periodicity problems. This is seldom a problem (see [ , Sec. ],

for techniques for bounding ~lzl- I).

Going from Poincar6/Cheeger inequalities to Nash/Sobolev inequalities necessitates more sophisticated

use of available information: paths must be used locally and additional information such as polynomial

growth of the underling graph must be incorporated.

Good Log Sobolev inequalities are yet more difficult to prove. The situation is not all bad; Log Sobolev

inequalities with poor constants can be extremely useful. Furtherj many mathematicians are working hard

on these problems and there is much progress.

One of the key ideas is hypercontractivity. To explain, observe that applying a Markov kernel is a

smoothing operation that flattens a point function into the stationary distribution after sufficiently many

operations. One way to quantify this smoothing is to look at the norm of the kernel from one space of

functions to another, e.g., for 1< p, q < co

ll~ll,+q = minA such that l/K~llg S A1l.fllp.

For reversible chains, one can prove

THEOREM 4.2. If l/Kn/lz+g ~ 1 for all n ~ O, 2 s q < co with e4pn 2 q – 1, then

There is also a fairly sharp converse. Thus smoothing bounds with interrelated n and q are equivalent

to Log Sobolev inequalities.

In [ ] these ideas are used to give useful bounds on a variety of problems.

It is worth pointing out that it is extremely difficult to give the exact Log Sobolev constant. In fact,

essentially the only non-trivial finite case where this value is known by direct argument is simple random

walk on a two point space. See Gross [ Ex. 2.6] for this not entirely trivial calculation. Getting the correct

value for a path of length 3 is an open problem.

However, the Log Sobolev inequality for the direct product of two Markov chains follows easily from

this inequality for the factors. This gives the Log Sobolev for the hypercube Z;.

All of the proofs for the Metropolis algorithm for Ising models cited in section 3 use Log Sobolev

inequalities. In particular, Stroock and Zegalinski [ ] show that if a chain is built up step by step with an

approximate product structure, e.g., mild dependence, then one can draw useful conclusions for the large

chain.

5. Sampling from log concave densities and volume approximation.

Let K be a compact, convex set in Euclidean space Rd. Let ~(x) be a probability density on K.

Consider the problem of sampling from $(x). This problem has been intensively studied in recent years in

close connection with the problem of approximations to the volume of K. A comprehensive survey is given

by Kannan [ ]. We here focus on the parts of the work having to do with the Metropolis algorithm.

A. Discrete algorithms. Frieze, Kannan, and Poison (1994) discretized the problem, dividing Ii?d into

hypercubes of size 6, and running the Metropolis algorithm on a graph with vertices the centers of cubes

intersect ing K, with an edge between vertices if t he cubes are adj scent. The weight at center x is the average

of f over the cube containing x.

They assume available an approximation ~(c) (defined only on the cube centers) which satisfies the

following approximation and continuity requirements: for some Q >0,

(5.1) (1 + a)-l~(z) < ~(y) < (1+ cr)~(x) for adjacent points
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(5.2)

For c(z), c(y) cubes having c(a) (l c(y) of dimension d – 1

With these assumptions, it is sufficient to analyze the Metropolis algorithm with weight ~(x) at x.

We state here a special case of their result where K = B(R), the Euclidean ball of radius R centered

at O, and where ~ satisfies the following assumption on its support: consider the half line LU = {m : rid?+}

with u c Rd. Let h(r) = rn–lf(ru) be defined on LU. This is a log concave function of r if ~ is log concave.

The following assumption says that the tails of ~ are at the boundary of B(R).

(5.4) For all R, R~rs r’, h(0) ~ h(R) ~ h(r) ~ h(r’).

With these assumptions, the following result can be stated.

THEOREM 5.1. (Frieze, Kannan, Poison) Let f be a log concave probability density which is positive on I/d

and satisfies (5. 1 - 5.4]. Let M(x, y) be the Metropolis algorithm on the centers of cubes of side 6 which

intersect the ball B(R). Assume 6 ~ R. Then

where

for -y the Euclidean diameter of the set of cubes involved (the greatest distance between two such cubes),

The final approximation holds as a \ O, tifi /’ ~ -0.

REMARKS:

1.

2.

3.

4.

This result is remarkable even in fixed dimensions for a Gaussian density. Then it basically says that a

natural algorithm converges exponentially fast, in a useful sense, that is, with good constants.

In high dimensions, observe that the constants do not get bad.

The above is a special case of the arguments. The restriction to balls or the restriction (5.4) are not

required. The final result is more complicated to state.

In the end, the argument rests heavily on properties of convex sets in Euclidean space. It does not seem

easy to adapt the tools involved to more general graphs. One interesting technical development which

does seem broadly useful: a technique is introduced for dealing with a small “bad” set of the stated

space where, e.g., m(z) is very small. This should not affect things, since basically the chain does not

visit small sets. However, the usual conductance approach involves an infimum over all sets. A different,

useful approach for eliminating a small bad set appears in Lovasz and Simonovitz [1993].

B. Continuous algorithms. Loviisz and Simonovits have introduced a series of techniques for analyzing

a Metropolis algorithm for sampling from a log concave density $ on a compact convex set. A convenient

recent reference is [ ]. Their work analyzes the following natural algorithm: suppose the chain is at z. Pick

y from the uniform distribution on a ball of radius 8 centered at x. If y is not in K, the walk stays at z.

If y k in A’, and .f(U)/~(z) > 1, the walk moves to Y. For .f(Y)/_f(z) < 1. the usual Metropolis coin flip is

executed. The chain moves to y or stays at x depending on the outcome.
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This walk is analyzed without discretization. They extend the tools of conductance to general state

spaces. This must prove useful. The heart of the argument is the same set of ideas about convex geometry

in Euclidean spaces that are used by Frieze, Kannan and Poison. These have evolved from the original work

of finding polynomial algorithms for volume computation due to Dyer, Frieze, and Kannan ( ).

One main focus of [ ] is getting good bounds on the complexity of volume computation (they get an

order n7(log n)3 algorithm). The Metropolis algorithm enters as a tool: for a convex body K, let p(z) be the

smallest number t for which z ~ t~i. Set ~(x) = e-~(z). Then, VO/(K) = ~ ~Rn f(~)dz. Further sampling

from ~ gives an algorithm for approximating K.

Meyn and Tweedie [1994] have begun work on extending the tools of Harris recurrence to get useful

quantitative results. They develop the theory for abstract spaces but do try a simple example of the

Metropolis algorithm for sampling from the normal distribution on R, the base chain being discrete time

steps from a different normal.

6. Low-dimensional examples.

This section treats two classes of low-dimensional examples: probability distributions on a low-dimensional

grid with nearest neighbor random walk “metropolized” to the given stationary distribution.

Recall that nearest neighbor walk in a grid of side length n takes order n2 steps to reach stationarity in

any fixed dimension. If the target distribution has an exponential (or faster) fall off from a central peak, our

analysis shows that the Metropolis chain reaches st ationarit y in order n steps. This is the fastest possible:

the chain has to travel order n steps to go between opposite corners of the grid. If the target distribution

has polynomial fall off from a certain peak, the analysis shows that order n2 steps are necessary and suffice

to reach stationarity.

The analysis is described in some detail as an illustration of geometric methods described in section 4

above. In the exponential case, one novelty is the use of different weights in the Cauchy-Schwarz inequality.

This suggestion of Alan Sokal is shown to give improved results. In the polynomial case, the Nash inequalities

of [ ] are the driving tool.

A, Exponential fall off. To fix ideas, consider a one-dimensional grid: 35 = {o,l,2,... ,1},},

Let the base chain be nearest neighbor random walk with holding $ at both ends. Represent the stationary

distribution as

(6.1) r(i) = z(a)a~(i) O < a < 1, z = z(a) the normalizing constant.

We assume

(6.2) h(i+l)–h(i)~c>l, O~i~n–2.

Thus m(i) falls off exponentially from 0. Example are h(i) = i b, for b ~ 1. Here, the Metropolis chain

becomes

M(i, i– 1)=;
~h(t+l)-h(,)

M(i, i)=+- ~ M(i, i+ 1) = “(’+;-’(’) , 1< i < n – 2

(6.3)

M(o, o) = 1 – “’(2);’(0) M(o, 1) = “’(2);’(0) M(n–l, n–2)=M(n–l, n– 1)= +,

The main result is the following bound for the second eigenvalue of the chain:

PROPOSITION 6.1. Assume (6. 1-6.3). Then, the second eigenvalue of the chain satisfies

REMARKS: Thus the eigenvalue is bounded away from 1 uniformly in the size of the state space. This will

be used to show that order n steps are necessary and suffice for total variation convergence.
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PROOF: The argument uses the path techniques of [ ] in a novel way. We have

with the min taken over non-constant ~, varj = ~ ~Z ~(f(z) — f(y))2 T(.z)m(y) and the Dirichlet form
-,

~(.flf) = i X.,v(.f(Z) – f(Y))Q(z, Y) for Q(z, Y) = ~(x)~(%, Y). Choose paths: for x < y, ~ZV = (~, x +
1, z + 2, ~. . . y). The same path is used backwards to connect y to z. Then,

(6.4)

The inner sum will be bounded by the Cauchy-Schwarz inequality. Usually, this is done with weights taken

as 1 which gives a factor of IYCY 1. The novelty here is to use weights depending on the stationary distribution.

For the edge e, the weights are chosen as Q(e)d. Subsequent calculations show that any fixed O in (O, ~) will

do, e.g., O = ~. To bring this out, we keep O as a parameter. Multiply and divide ~(ey) – ~(e - ) in (6.4) by

Q(e)O. Writing ly~gl~ = ~ee~my Q(e)-2H, we have

with

To bound A, observe first that Q(i, i + 1) = Q(i + 1, i) = ~. Next, the dominant term in [YZY [~ is

Q(Y – 1, Y). Pu1l this out and bound the ratio with the other terms using (6.2):

Suppose that e = (i, i + 1). The quantity to be bounded is

(1 - a2cd)-’Q(e)2@-l ~ r(j) T(k)l-26.

O<j<i
i+l-<r<n

The sum in k is bounded above by
7r(i + 1)1-20
~ _ ~C(l_2@) The sum in j is bounded above by 1. Combining bounds,

we have
A < 228-1(1 _ ~c(l-ze))(l – ~2c~)

—

choosing O = ~ gives the bound announced. •1

REMARKS: 1. In Proposition 6.1 the stationary distribution was chosen to have its maximum at O. The

same argument works if the maximum is taken on at any point in ~. Thus h(i) decreases up to Z. and

increases past Z.; the analog of (6.2) is assumed.

2. The easiest upper bound for total variation using the eigenvalue bound of Proposition 6.1 is as follows.

First, bound the smallest eigenvalue ~n_l ~ –1 + 2 min(J4(i, i) ~ –1 + 2(+ – $) = a’. Thus
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Now, the upper bound at (4.1) gives, for any z E X

This is correct (up to constants) when h(z) = z; it says order n steps are necessary and suffice to reach

stationarity for any starting position. If h grows faster, e.g., h(x) = Z2, the bound shows that for a walk

starting at z = O, order n steps suffice. For walks starting at n — 1 the bound shows order h(n — 1) steps are

sufficient. This is off. The following argument shows how to conclude that for total variation convergence

order n steps suffice for any starting position provided h satisfies (6.2). The walk started at n – 1. Essentially

stays still or goes left. It is straightforward to show that the chance that the walk hits O in the first 3n steps

is exponentially close to 1, with constants depending only on (1 – a). Once the walk hits zero, the argument

above shows it is close to st ationarit y in at most order n further steps. This shows order n steps suffice for

variation dist ante convergence. We do not know how many steps are required to make the 42 norm small

but suspect it maybe order h(n – 1).

3. The argument for Proposition 4.1 is fairly robust and will handle many variations. It does depend on

the roughly unimodal nature of n. There are techniques in Deuschel and Maza (1994) and Ingrassia (1994)

for bounding essentially arbitrary m. While these bounds are sharp, in the sense that there are examples

where they cannot be improved in nice examples, such as those of Proposition 4.1, they can be very far off,

suggesting that exponentially many steps are needed. Much remains to be done in giving useful tools for

natural examples.

4. When h(i) = i, Belsley ( ) has given very sharp upper and lower bounds on the second eigenvalue.

We are presently surprised that the general path techniques give results quite close to the truth for this

case. Belsley works out much sharper asymptotic for variation convergence for this case. He shows that

2n + c(a)fi steps are necessary and suffice: if c(a) is large and positive, the variation distance is close to

zero. If c(a) is large and negative, the variation distance is close to one.

5. The restriction c 21 in (6.2) is made for simplicity. If h(i + 1)– h(i) 2 c, then * – ~ ~ 1 and

the chain with a replaced by a’ and h replaced by h/c satisfies the conditions. This leads to the bound

h <1 _ (1 - ac2/2)2/2
for c >0.

6. The argument goes through more or less as above for two-dimensional versions with h(i, j) falling

at least linearly from a single peak. Here one chooses paths which move from z to y, first making the first

coordinates equal, then the second coordinates equal, and so on. We hope to carry out a detailed analysis

of the multimodal case on grids in low dimension.

7. For the one-dimensional case, it is worth pointing out that Cheegers inequality can be used to give

results similar to those in Proposition 6.1. See [ ], section 3 for details. For higher-dimensional grids, we

find paths much easier to work with.

8. In light of the results for sampling from log concave distributions in the continuous case (section 3

above), it is natural to inquire how this type of condition works in Proposition 6.1. While natural examples

ar easy to treat, the following shows that some care is needed. Consider the symmetric binomial distribution
~(i) = ~~1)/2n–l on {0,1, 2,.., , n — 1}, with base chain reflecting random walk, the Metropolis chain

is easily comparable to the classical Ehrenfest chain. The analysis shows the Metropolis chain has ~ ~

1 – ~1 ~ ~ for explicit constants c1, c’. The difference is this: the binomial falls off from its peak at ~

exponentially, but at scale W. It is (roughly) flat in a @ neighborhood of ~. The exponential treated by

Proposition 4.1 fall off exponentiation at scale 1.

B. Polynomial Fall Off. Consider % = {1,2,... , n}, with the base chain of nearest neighbor random walk

with holding ~ at both ends. Take the stationary distribution

(6.5) 7r(i) = zi, 1< i < n, Z–l = n(n+ 1)/2.

Thus n(i) rises linearly from 1.
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The Metropolis chain becomes

M(i, i– 1)=+ &f(~,~)=+_~

(6.6)
M(i)i+l)=+ 2<i<n–1

M(l,l) = M(1,2) = + M(n, n– l)=@ M(n, n)=l–y.

The following result shows that the walk (6.6) reaches stationarity in order n2 steps. This is the same rate

as the base chain.

PROPOSITION 6.2. There are explicit positive constants A, B, C, D such that the Metropolis chain (6.6)

satisfies

Ae–Bk/n2 ~ llM~ – ~11 ~ ce-Dk/n2

for all positive integer k, n.

PROOF: We apply the geometric tools of [ ], Consider % as a graph with an edge from i to j + 1, 1 ~

i ~ n – 1. Write Iz – yl for the graph distance between z and y. Let B(x1 r) = {y : lx – yl s r} and

v($) ~) = z@@) ~(y). The diameter of % is ~ = n.

A graph and stationary distribution have (A; d) moderate growth. If V(S, i) z ~(~)~ for all z 6 X, and

r’={o, l,... , -y}. An elementary verification shows that the Metropolis chain has (2,2) moderate growth.

For a real function f defined on Z and integer r, set

f,(z) = ---J-
V(x, r)

~ f(Y)~(Y).

gEB(c,r)

We will verify below that the chain satisfies a local Poincar6 inequality:

(6.7) Ilf - fill: s ar2wl.f) with a = 4.

Finally, the smallest eigenvalue satisfies /3- ~ –1 + 2 min(kf [;,i) ~ –1 + ~,

For reversible chains satisfying moderate growth and local Poincar6 inequalities, order (diameter)2 steps

are necessary and suffice for convergence. The following [ Theorem 5.10] makes this precise.

THEOREM 6.3. Let K, ~ be a reversible Markov chain on a finite set X. Assume that (K, m) has (A; d)

moderate growth and satisfies a local Poincak inequality with constant a. Assume further that P- >

–1 + ~. Then

with al = (2e(l + d) A)l/2(2 + d)d/4 and a2, a3 explicit constants depending oniy on (A, d, a).

This result gives Proposition 4.2. Thus it only remains to verify (6.7). For this, using paths locally, one

has (see [ Lemma 5.2])

11.f- All: s v(~)~(flf)
T(x) fT(y)2 ~ l~xylV(z, r) ‘with q(r) = max—

e Q(e) ~=y~e

/x-y\<T

~From (4.6) for the edge e = (i, i + 1), Q(e) = m(i)M(i, i + 1)= y. We must bound, for all i, r,

(6.8)
2 r(j)ir(k)

~ lk-~1 V(j,r) “
Q(i, i + 1)

lk–jl~r,j~i

We may bound \k – jl. By r, consider two cases, i < 2r, i ~ 2r.
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Case 1. i < 2r. Then, for j ~ i,

Using this, the quantity in (4.8) is bounded above by

2
T x

jk = ~(r’ + 2ir) < 4r2.
zr

j<i

i+l<k<i+r-1

Case 2. i ~ 2r. Then, for j ~ i,

V(j, r) 2 V(i – r,r) >
2 2 e ~ :;.;5;;n(n + 1) .=i_2r

Using this we bound (4.8) by

2r

E

r

4i(ir + r’) ~_r<j<i = 8i(ir + r’)
(2ir – r2)(2ir + r2) < ~i(~~2~3r2) < ~.

i+l<h<i;r-1

❑

REMARKS: 1. Very similar bounds can be obtained for stationary distributions of form r(i) = zp(i), for

positive polynomial p.

2. Preliminary computations indicate that similar bounds hold for higher-dimensional grids. Even for

multimodal polynomials. As is evident from Proposition 6.2, the constants need to be kept track of carefully.

Nevertheless, it appears that for multimodal densities with polynomial peaks and valleys on low-dimensional

square grids order (diameter)’ steps are necessary and sufficient to reach stationarity.

7. Final Remarks.

The Metropolis algorithm is one way of carrying out Monte Carlo Markov chain techniques for sampling

from a given stationary distribution. Hastings [ ] gave the following extensions: they have the same form

(1.1) as the Metropolis algorithm, but the extra coin flip A(z, y) has form

A(x, y) =
S(Z,y)

l+ T(z, y)

where T(z, y) = m(x)l<(z, y)/~(y)K(y, z), and S(Z, y) ~ O is symmetric, subject to the sole requirement

that O ~ A(z, y) ~ 1.Two special choices:

{

l+ T(z, y)
S(x, y) =

if T(y, z) ~ 1

1 + T(y, z) if ‘T(y, z) < 1

gives the usual Metropolis algorithm. Choosing S(z, y) = 1 for all z, g gives a method called Barker dynamics.

It is natural to ask whi~h of these procedures works best. Pesk&

acterization of the Metropolis algorithm in this class of chains. For ~

limiting variance of the usual estimate of the mean value of ~ is

[ ] gives an elegant extrernal char-

:3 ~ R a function of interest, the
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where X1 ,X2,... is a realization of the chain.

Consider two chains PI, P2 with the stationary distribution r. Call PI better than P2 if az(~, Pl) <

02 (~! ~z) for all ~. Peskun (1973) proves that the Metropolis algorithm is best in Hastings class of chains.
His proof uses the following elegant theorem: Let PI, P2 be irreducible, reversible Markov chains with respect

to m. If PI (z, y) < P2 (z, y) for all z # y then PI is better than P2. This is a careful way of saying that an

algorithm that holds less gets random faster.

It is natural to compare the various dynamics in simple examples to see how their rates of convergence

compare. As an example, in unpublished work, Jeff Silver has shown that any of Hastings variations can be

analyzed from the base chain of simple random walk on an n-point path. The analysis of section 6A goes

through without criminal difficulties to give the bound

We thus see that the convergence is (roughly) as quick for any of these chains.

Heuristically, one wants to choose the base chain K so that its stationary distribution is close to m. It

is natural to try to estimate ~, and change the base chain as information about m comes in. Gilks, Best, and

Tan is an early interesting effort in this direction. There is much to do here.

We have not attempted to survey other, closely related algorithms for sampling from ~. To begin with,

for low-dimensional examples such as those of section 6, there is a large body of competitive technology.

See Devroy [ ] for a comprehensive survey. In high dimensions, Glauber dynamics (know as the Gibbs

sampler) is a closely related method that is beginning to have some useful finite sample convergence result.

See Rosenthat [ ] and the references cited there. There are many further ideas in the statistical physics

literature. Goodman and Sokal (1989) develop multigrid Monte Carlo methods as well as giving a useful set

of pointers to the physics literature. Browsking through recent years of the Journal of Statistical Physics

will reveal hundreds of other methods and variations.

All of these are fair game for careful mathematical analysis.
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