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COMPARISON TECHNIQUES FOR RANDOM WALK 

ON FINITE GROUPS 


Harvard University and Universite' de Paris VI CNRS 

We develop techniques for bounding the rate of convergence of a 
symmetric random walk on a finite group to the uniform distribution. The 
techniques gives bounds on the second largest (and other) eigenvalues in 
terms of the eigenvalues of a comparison chain with known eigenvalues. 
The techniques yield sharp rates for a host of previously intractable 
problems on the symmetric group. 

1. Introduction. This paper develops techniques for bounding the rate of 
convergence of a symmetric random walk on a finite group. Let G be a finite 
group of order IGI = g. Let id denote the identity of G. Let E be a symmetric 
set of generators: E-' = E. This E can be used to define a random walk with 
steps chosen uniformly from E. 

Familiar examples include simple random walk on the integers (mod m )  
where E = {l ,  -11, the Ehrenfest walk on the cube ~ , d ,  where E = 

{e,: 1Ii I dl ,  e, = the i t h  standard basis vector, or the random walk on the 
symmetric group S ,  which proceeds by repeated random transpositions where 
E = {(i, j) :  1I i <j I n}. 

These examples have all been analyzed using Fourier analysis on the 
appropriate group. Diaconis [(1988), Chapter 31 gives background and details. 
Fourier analysis gives all the eigenvalues of the associated Markov chains in 
terms of the characters of the group. The main results of this paper show how 
these eigenvalues can be used to get good bounds for less symmetric measures. 

As a running example, consider G = S ,  and the random walk generated by 
a transposition and an n-cycle: 

(1.1) E = { i d , ( l , 2 ) , ( n , n - 1 , n - 2  , . . . , 1 ) , ( 1 , 2, . . . , n)} .  

In Section 3 we show that order n3 log n steps suffice to achieve randomness 
for this walk and that order n3 steps are necessary. This result follows from 
comparison with the walk generated by random transpositions. The same 
techniques work for a host of other walks that have defied previous analysis: 
two different models for the familiar overhand shufTle and some "two-dimen- 
sional" shufTles where the deck is arranged in a k x 1 grid, a card is chosen at  
random, and switched with one of its nearest neighbors. These are developed 
in Section 4. 
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Section 2 lays out preliminaries on norms, eigenvalues and the two quadratic 
forms we use. It gives bounds for standard distances such as total variation in 
terms of eigenvalues. 

Section 3 gives upper and lower bounds for eigenvalues by comparison. One 
can always compare with the uniform distribution and the bounds are shown 
to specialize to known results giving bounds on the second largest eigenvalue 
in terms of the diameter of the group in the generators E. These techniques 
are illustrated in example (1.1) and for a class of examples on Z,, the integers 
mod m. 

Section 5 treats natural product random walks. 
The techniques of this paper can be supplemented by volume growth 

estimates to give sharp results for random walks on nilpotent groups such as 
the Heisenberg group. This is carried out in Diaconis and Saloff-Coste (1992). 
Comparisons can also be carried out for reversible Markov chains where they 
offer a supplement to the geometric techniques of Diaconis and Stroock (1991). 
We use them to get sharp bounds on the eigenvalues of the simple exclusion 
process treated by Fill (1991) in Diaconis and Saloff-Coste (1993). 

The techniques in this paper often seem to give the correct order [viz. 
O(n3 log n)  in example (1.111. They usually do not give sharp lead term 
constants and so do not lead to proofs of the cutoff phenomenon that so often 
occurs. 

2. Norms, forms, and eigenvalues. This section gives preliminaries on 
distances from uniformity, the two basic quadratic forms to be used and some 
comparison inequalities. The main result is Lemma 5 from uniformity which 
gives upper bounds on the L2 distance, of one probability in terms of a second 
probability in the presence of a comparison between their Dirichlet forms. The 
results are elementary, but we hope it is convenient to have them collected 
together. 

Norms. Given real-valued functions c p ,  4 on G ,  their convolution is the 
function cp * I) defined by 

cp * * ( X I  = Ccp(xy - l )* (y )  = C P ( Y ) * ( Y - ~ X ) .  
Y Y 


We denote by T the operator Wcp)= cp * rC, and by c p ( n )  the convolution powers 
of cp .  Let U be the operator associated with u ( x )  = l / IGI.  Thus U(cp) is the 
mean of cp over G .  There is one exception to our notation: The function equal 
to one at  id and zero elsewhere is denoted S , ,  (the Dirac mass at  id). The 
associated operator is the identity I. 

For 1 I s 5 co, let 

denote the usual l h o r m s  of a function .cp. Recall that for 1 I s' I s I co: 
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The variation distance Ilp - fill^^ = max, ,,{lp( I )  - f i (  I ) I } between two prob-
abilities p,  f i  is just half the 1' norm of p -6.  The operator norm of T from 
1"' to 1 is denoted I I T 1 I ,I -s. The following classical inequalities are useful: 

1 1 
IITlIs,, = Ilqlll+s= I l + l l s  for all 1 5 s 5 a ~ ,- + = = 1.  

S S 

In particular, for s = 2 we get I1411z = IIT\I/llz+m= IIT\l+z. 
Throughout this paper, p denotes a symmetric probability on G. We are 

interested in bounding the rate of convergence of the convolution powers p(") 
to the uniform distribution u .  We concentrate on bounds for total variation. 
However, these are achieved by bounding the 1' norm by the l 2  norm using 
the Cauchy-Schwarz inequality. More precisely, if we define a normalized 
distance 

our bounds on total variation are obtained from 

and bounding d,(n)  by eigenvalue estimates. In other words, all the bounds on 
lip'") - ullTv stated in this paper are in fact bounds on (1/2)d,(n) .  This is also 
true of the bounds obtained by Fourier analysis in Diaconis (1988). The 
distance d l  is twice the total variation distance while dm is the maximum 
relative error. It turns out that in many interesting examples good bounds on 
d ,  yield good bounds on total variation (however, see Example 1 below and 
Example 1 of Section 5) .  Note also that d,(n)  5 dm(n)and dm(2n)5 d; (n ) ,  
whereas it is not possible in general to obtain good bounds on d ,  or dm from 
bounds on total variation. 

Eigenvalues. Because p is symmetric, the matrix { p ( y -lx)},,, , has real 
eigenvalues 1 = n-, 2 .rrl 2 . . . 2 %-I 2 -1. We set .rr, = max{n-,, I.rr,-ll}. 
The importance of n-, comes from 

IIP - Ullz-z = 7,. 

Note that > - 1 as soon as p( id )  > 0. Indeed: 

PROOF.The result is true if p ( i d )  = 0. If p( id )  > 0, let q = ( 1  -
id))-'(^ -~ ( i d ) i 3 ~ , ) .This is a symmetric probability with smallest eigen-

value bounded below by - 1, that is, -15 ( 1  - p ( i d ) ) ~ ' ( ~ - ,- p(id)) .  This 
gives the result. 

Let us also consider the continbous time semigroup Ht = e-t('-P) and its 
convolution kernel 

m t n  
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The eigenvalues of H, are the numbers e-t" where hi = 1- ri are the 
eigenvalues of I - P and 

The eigenvalues n-, and h1 give simple estimates on the distance to 
uniformity as follows: 

LEMMA2. Let p be a symmetric probability on a finite group G. Let n-, be 
the second largest eigenvalue in  absolute value. Then 

(2 .1)  d , ( n )  = 211p(")- u l l ~ vI g1/211p(")- ~ 1 1 2= d 2 ( n )  I gl/',rr$, 

(2 .2 )  gllp(") - ull, = d,(n) I g,rr$. 

The same estimates hold if we replace p(") by h ,  and n-",y ePt". 

PROOF.For (2.1),write 

g1/211p(")- u1I2 = g1/211(P"- U ) s i d112 = g 1 / 2 1 1 ( ~ - u ) " s i d112 

-< g1/211p- u11g-~116~~11~= g 1 / 2 r $ .  

For (2.2),use (2.1)and 

I I P ( " + ~ ) - u I I , I Ilp(") - ~ l l z l l p ' ~ '- ullz. 

The argument for h ,  is similar. 

EXAMPLE1. Usually, bounds that use only r ,  are crude. To study this, for 
0 I 0 I 1, let u ,  = ( 1  - O)Sid  + Ou be a probability on G. Then 

u?) = ( 1  - 0 ) " 6 ~ ,+ ( 1  - ( 1  - 0 ) " ) ~  

and T ,  = 1 - 0. It is easy to check that 

Thus the bounds (2.1) and (2.2) for the d ,  and d ,  norms are essentially 
equalities but the bound for the d l  norm can be far.wrong if g is large. 

The 1' norms have the clearest connection to eigenvalues. We have 
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The continuous time process is often used to avoid parity problems. The 
bounds (2.4) show that negative eigenvalues .rri are important for bounding 
lip(") - ul12 while they only appear in a minor way for the continuous time 
processes. Most examples worked out in the sequel are for discrete time and 
apply throughout to continuous time versions. In general, there is no .easy 
transfer of information between h ,  and p(") except for the following simple 
result. 

LEMMA3. Let p be a symmetric probability on a finite group G.  Then 

PROOF.The first statement follows from (2.4) and the inequality 1- x 
e-". In more detail, 

The second statement follows from (2.4) and the inequality 1- x 2 e P z Xfor 
0 5 x 5  1/2. 

In this paper, eigenvalues are used to study convergence to stationarity. Let 
v i  = 1/(1 - T,), 15 i I g - 1.Let a random walk start at  a uniformly chosen 
point. Let r be the first hitting time to a previously specified point. Aldous 
(1989) shows E(r)  = v1 + v2 + + + +vgP1.Thus bounds on hitting times fol-
low from bounds on eigenvalues. 

Forms. The eigenvalues of symmetric probabilities can be characterized 
using quadratic forms. Let 

The form 6 is called the Dirichlet form. It  can be used to get lower bounds 
on the eigenvalues hi = 1- 7 ,  of I - P. The form 3 is useful for getting 
lower bounds on negative eigenvalues T,.  

The eigenvalues can be characterized by the minimax principle, which we 
briefly recall [see, e.g., Horn and Johnson (1985), page 1761. Let V be a real 
finite-dimensional Hilbert space and Q a symmetric linear operator on V with 
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eigenvalues q, I q, I . . . . Given a subspace W of V, set 

m(W)  = min((Qf, f ) / ( f ,  f ) :  f E W}, 

M(W) =max((Qf,  f ) / ( f ,  f ) :  f € W } .  
Then 

q, = m a x ( m ( ~ ) :dim(W I) = i} = min{M(W): dim(W) = i + I } .  

The next lemma follows immediately from the minimax principle. 

LEMMA4. Let p and fi be two symmetric probabilities on a finite group G 
with eigenualues T, and 7ji If 21 A B  then .rri I 1- (1 - +,)/A. If 91A F ,  
then 7, 2 -1+ (1 + +,)/A. 

Lemma 4 coupled with the previous discussion gives the following bounds 
which are the principal results of this section. 

LEMMA5. If 21 AB, then 

2 - 2 
(2.9) llht - ullz I I l h t / ~- ~112. 

If 21 AB, and 91A F ,  then 

(2.10) - ull; I e-n/A + l l f i ( L n / 2 A I )  - ~ 1 1 ; . 

PROOF.All results follow from (2.4), Lemma 4 and the inequalities 1-
x 4 e-', 1- x 2 eC2', 0 I x I 1/2. For example, from (2.4), 

By hypothesis, .rri = 1- A i  4 1- ~ J AI e-ii/A. This yields 

which is the first claimed inequality. The second follows from (2.6). The proof 
of (2.9) is similar. For (2.10), set I = {i; I + , l  < 1/21 and note that our 
hypothesis and Lemma 4 imply that 1- IGil I A(l - Then write 1~~1) .  
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REMARKS. (a) If p,, p, are symmetric probabilities, set p = (p,  + p2)/2. 
The estimate (2.10) yields 

1lp(n) - Ulli5 e-nl2 + min llpl'n/4J)- 2uIIz. 
i = 1 , 2  

We do not see how to prove such a comparison directly. 
(b) Although the form F is useful in bounding negative eigenvalues, it is 

sometimes harder to use than 8.Here is a trick that shows that the negative 
eigenvalues other than do not play much of a role. Indeed, observe that 

g-1 


0 5 gp(2n+1)(id)= 	C T:~+', 

0 

It  follows that 

Hence, we can bound I l p C N )  - ulli by writing N = n + n' + 1and 
/ \ 

From this, we deduce as before the following: 

LEMMA6. I f  81A&, we have for N = n + n' + 1, 

Examples that use this lemma are given in subsections 4A, 4B and 4C. 

REMARK. In Lemmas 3, 5 and 6 we used rg-,to bound the negative 
eigenvalues of p .  When p has no negative eigenvalues, can be replaced 
by 0 in these lemmas. 

3. Comparison of forms and first examples. This section develops 
bounds of the type 8 s A& for Dirichlet forms associated with symmetric 
probabilities j j  and p on a finite group G. The constant A is an average length 
which can often be usefully bounded in examples of interest. The techniques 
are illustrated for the chain generated by a transposition and an n-cycle, for a 
class of walks on Z, and for the Ehrenfest walk. 

Let E be a symmetric set of generators of the finite group G. For y E G, 
write y = z1z2 . . . z, with zi E E.'The smallest such k is called the length of 
y and denoted l yl = Iy By definition the identity id has length 0. Let 

N( z, y ) = number of times z E E occurs 
(3.1) 	

in the chosen representation of y.  



2138 P. DIACONIS AND L. SALOFF-COSTE 

Clearly 

(3 .2)  

THEOREM Let f i  and p be symmetric probabilities on a finite group G. Let 1. 
E be a symmetric set of generators. Suppose that the support of p contains E. 
Then the Dirichlet forms defined in  (2.7) satisfy 

21 A B  
with 

PROOF. Given x ,  y E G ,  suppose y = zlz ,  . . . z, with zi E E. Then 

- + (cp(xz1)4 x 1  - P ( X Y )  = ((44 ( ~ ( ~ 2 1 ) )  - c p ( ~ ~ 1 ~ 2 ) )  

+ " '  +((0(xz1 " '  Z k - l )  - cp(xy))}.  

Squaring both sides and using the Cauchy-Schwarz inequality, 

Summing in x gives 

C (cp(x)  - P ( X Y ) ) ~5 I Y  C (cp(x)  - ~ ~ ( X ~ ) ) ~ N ( Z , Y ) .  
x E G  x t G  

z t E  

The result follows after multiplying both sides by fi(y), summing over y E G ,  
and dividing by 2. Then the left-hand side is 2(cp,c p )  while the right-hand side 
is 

Before developing further bounds we give some examples. The first result 
follows by choosing f i  = u ,  the uniform distribution: 

COROLLARY Let G be a finite group and E a symmetric set of generators. 1. 
Let p be any symmetric distribution with support. of p containing E. Let 
77 = min,,. p(z) ,  r = max{lyl: y E GI. Then 

Versions of this inequality have been given by Aldous (1987),Babai (19901, 
Gangolli (1991)and Mohar (1989). 
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EXAMPLE1. For our running example, G = S,, E = {id, (1,2), (1 ,2 , .  . . ,n), 
(n ,  n - 1,. . . , I)) .  Then 7 = 1/4. I t  is straightforward to show that the gener- 
ators (1,2), (1,2, .  . . ,n)  require at  worst 3 steps to represent any permuta- 
tion. The idea is to work from the bottom up. If the bottom i cards are in the 
correct order, with the i + 1st card somewhere above them, move cards .from 
top to bottom until this i + 1st card is at  the top. Then, transpose and shift 
repeatedly to bring this card just next to the original bottom block of i.  Then 
cut these i + 1cards to the bottom. Thus r I3n2/2 and .rrl I1- 1/(9n4). 
This will now be improved to 1- c/n3 by comparison with a measure sup- 
ported on transpositions. 

Let $(id) = l / n ,  $(s) = 2/n2 for s any transposition and $(.rr) = 0 other-
wise. Diaconis and Shahshahani (1981) analyzed this chain, determining all 
the eigenvalues using Fourier analysis on the symmetric group. The bound 
(3.3) gives 

The last inequality follows because any transposition can be written with at  
most 3n generators. Diaconis and Shahshahani (1981) showed el = 1- 2/n. 
Using this in Lemma 4 gives 

To see that this bound is of the right order, consider p(.rr) as the circular 
distance between .rr-'(1) and .rr-l(2). If permutations are associated to ar- 
rangements of n cards in such a way that .rr(i) denotes the label of the card at  
position i, then .rr-'(i) is the position of the card labeled i and p(.rr) is the 
circular distance between cards labeled 1and 2. Now the minimax characteri- 
zation of eigenvalues gives 

It is straightforward to show that Ilp - ~ p l l i- n2n!/48. On the other hand, 

& ( p , p )  = :C ( 4 4  - p(xy)12 $4(n - I)!.

;:s 
These bounds give 

To finish this example, observe that use of just the second eigenvalue 
together with .rrg-, 2 - 1/2 (from Lemma 1 of Section 2) shows that order 
n4 log n steps suffice to drive the variation distance close to zero. This can be 
improved by making full use of the comparison as in (2.8). 
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THEOREM2. Let p be the uniform distribution on E = {id,(1, 2), 
(1,2, .  . . ,n), (n ,  n - 1,n - 2 , .  . . , I )}  in the symmetric group S,. If k = 

36n3(log n + c), then, for c > 0, 

l i p ( ' )  - ullTv 4 aePc  

for a universal positive constant a. 

If k = cn3, then 

with f(c) tending to zero as c tends to zero. 

PROOF. Compare with 6, the random transposition measure. The upper 
bound follows from 24 36n2B, 2 -1/2 (from Lemma 1of Section 2), 
and (2.8). Diaconis and Shahshahani (1981) showed that g l l ~ ? ' ~ )- ulli I peCZc 
for an explicit universal P > 0 when m = (1/2)n(log n + c). 

For the lower bound, consider cp(.rr), the circular distance between .rr-l(l) 
and ~ ~ ' ( 2 )as above. This takes values in {1,2,. . . ,n/2}. I t  changes by at  most 
1,doing this only when at  least one of the cards labeled 1or 2 is on top or in 
the second position. Elementary considerations, comparing with random walk 
on an interval with.geometric wait size, show that this distance requires order 
n3 steps to have an appreciable chance of being of order n ,  its size under the 
uniform distribution. Further details are omitted. 

We turn next to bounds involving the form Fdefined in (2.7). The results 
here use paths in the following way: If x and y are elements of G and 
y = zlz2 . . . z, with k odd, then 

Thus, let 1 y 1 ,be the length of the shortest representation of y as a product of 
an odd number of generators (if the identity is in E, then 1 y 1 ,I 1 y l + 1).We 
set lyl, = cc, if y cannot be so expressed. Now, lidl, > 0. The function 
N,(z, y) is defined as in (3.1). With this notation, the proof of Theorem 1goes 
through word for word to give the following: 

THEOREM3. Let 6 and p be symmetric probabilities on a finite group G 
with support ofp containing E ,  a symmetric set of generators. Then the forms 
9,Fdefined in (2.7) satisfy 

@ I A * F  

with 
1 

A ,  = max- C I Y I * N * ( ~ , Y ) ~ ~ ( Y ) .  
z ~ EP(Z)  y=G 
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Choosing fi as the uniform distribution gives a lower bound for the smallest 
eigenvalue: 

COROLLARY Let G be a finite group and E a symmetric set of generators. 2. 
Let p be a symmetric probability with support of p containing E. Let q = 

min,,. p(z) and  r, = max{lyl,: y E GI. Then 

REMARK. It  follows from Corollaries 1and 2 that 7, (p)  I 1- q/r:. 

EXAMPLE2. Take G = Z,, the integers modulo m with m odd. Take 
E = {I,  - I} with p(1) =p(-  1) = 1/2. This is the classical gambler's walk. 
Compare with the uniform distribution. Clearly A, I (2/m)~,lyliI 2m2, 
so 7rm-, 2 -1+ 1/2m2. For this walk the eigenvalues are cos(2rj/m), 0 I 
j 5 m. Thus the smallest eigenvalue is cos(r - 7r/m) = -1+ 7r2/2m2 + 
O(l/m4). Thus the bound is of the correct order for large m. Upper bounds on 
7, for this example are discussed in Example 4 below. 

EXAMPLE 3. Consider G = S,  and E = {(I, 2), (1, 2, . . . , n), (n ,  n -
1,.. . , 1)) with p uniform on E. This is example (1.1) with the identity deleted. 
To avoid parity problems, suppose n is odd. Compare with the random 
transposition measure p described before Theorem 2. The quantity A ,  is 
bounded above by 

The first term in curly brackets comes from the identity, the second term 

comes from the (2) transpositions. Diaconis and Shahshahani (1981) found 
ii,-, = -1+ 2/n. Now Theorem 3 yields 2 -1+ 1/15n3. An upper 
bound for A (see 3.3) follows as in Theorem 2. Using these results and Lemma 
5 of Section 2 shows that order n3 log n steps suffice for this set of generators. 

The next two examples show how the function N(z ,y) enters the bounds. 

EXAMPLE4. Let G = Z,. Let a E G with a I ml/' and choose E = 

{ - a ,  - a  + 1,. . . ,a). Take p uniform on E ,  so p(x) = 1/(2a + 1) for x E E 
and zero otherwise. We derive bounds on the second eigenvalue 7rl using 
Theorem 1. We show that, for a universal c > 0, 

this result being uniform in la1 I m1I2. Here, Fourier analysis can be used to 
show that (3.5) is an equality up to a constant. 
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For definiteness, suppose m and a are even. Break Z, into right and left 
halves working symmetrically with the two parts. Identify the right half with 
0 ,1 , .  . . ,m/2. For y in the right half, write y = a a  + P, 0 _< P < a .  Represent 
Y as 

a terms 
A 

y = 

, 
(0 + a )  + ( 1  + a  - 1) + . . . + ( j + a  - j )  

. 
+ p .  

Here, if a > ah, the terms repeat cyclically. For example, if m = 27 and 
a = 3, represent 13 = (0 + 3) + (1 + 2) + (0 + 3) + (1 + 2) + 1. This is not 
the minimum length description but lyl in the definition of A in (3.3) (with 
j5 = U )  can be defined as 2a + 1and the bound goes through as stated. This 
representation of y may use pairs (0, a) ,  (1, a - 1) . . . cyclically, and of course 
a given pair may need to be used many times. With these conventions, consider 

(2a + 1) m - l  
A = max C IYIN(Z,Y) 

z y = o  

For any z, N(z, y) 5 N(a, y) + 1. For y = aa + p, a = ly/a] and N(a, y) = 

[a /a ]  Iy/a2 + 1. The sum over y in the right half is thus bounded above by 

This implies that A I Cm2/a2 (recall that a I ml/'), which leads to the 
bound (3.5). Using more naive paths: 

a terms 

& + a +  + . . + a + P  

leads to a bound of the wrong order of magnitude for a large. 

EXAMPLE5. Let G = Z: be the "cube" and choose E = {ei, 1I i Id} 
with ei the usual i t h  basis vector. Take p uniform on E so p(x) = l / d  for 
x E E and zero elsewhere. There is a unique minimum length path up to order 
and for any choice of z E E, 

Corollary 1gives 
4 

T , I l -
d ( d  + 1) ' . 

As is well known [see, e.g. Diaconis (19881, Chapter 31, n-, = 1- 2/d so that 
the bound is "off" by a factor of order d .  Diaconis and Stroock (1991) show 
how to use paths on a collapsed chain to get the correct answer. 

REMARKS. (a) There has been considerable work in the computer science 
community deriving diameter bounds for groups. For example, Driscoll and 
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Furst (1987) show that the diameter of a permutation group of degree n 
generated by cycles of bounded degree is 0(n2). Babai, Hetyii, Kantor, Lubotzky 
and Seress (1990) contains a survey. Babai, Kantor and Lubotzky (1989) give 
generating sets of size less than 7 for the classical families of finite simple 
groups. Their paper contains many examples where one generating set is 
written in terms of a second. 

(b) Comparison bounds can be developed for reversible Markov chains. 
Such bounds are used in Diaconis and Saloff-Coste (1992b) to get sharp rates 
for a variety of exclusion processes. The bounds specialize to those given here 
when the Markov chain is symmetric random walk on a group and give a 
geometric interpretation to A as a measure of "bottlenecks" along the lines of 
Diaconis and Stroock (1991). 

4. Examples in the symmetric group. This section presents analysis of 
shuffling schemes on the symmetric group. They are arranged as: shumes 
involving transpositions, shuffles involving cycles, overhand shuffles and other 
shumes. A few of the shuffles have been analyzed before so we can evaluate the 
new techniques on problems with known answers. Many results below repre- 
sent the first analysis of a natural shuffling scheme that has previously defied 
analysis. In most cases the new techniques give the right answer up to small 
numerical constants (e.g., 3n log n where the right answer is n log n). We 
have not attempted to get the sharpest possible constants. 

A. Shufles involving transpositions. Let 9 be an undirected graph on 
{1,2,.. . ,n} with edge set E. Each edge (i, j )  can be thought of as a transposi- 
tion in the symmetric group S,. It is well known that a set of transpositions 
generates S, if and only if 9 is connected. For example, any spanning tree 
gives rise to a set of generators. A random walk on S, generated by 9 can be 
described as follows. To start, place cards labelled 1 ,2 , .  . . ,n at  the vertices of 
9.At each stage, an edge is chosen at  random and the two cards at  the ends of 
the edge are switched. 

The main result of this section gives bounds on the rate of convergence to 
the uniform distribution in terms of the geometry of the underlying graph. 
The results follow by comparison with known results for the complete graph. 

To describe things, for each pair x, y let yx, be a path from x to y in 9. 
Sometimes the choice of such paths is forced, as when 9 is a tree, but in 
general, it is still a matter of art to choose good paths. Let 

y be the length (number of edges) of the longest path, 

The comparison bound may be formalized as follows. 

THEOREM1. Let J be a connected graph on {1,2,. . . ,n) with edge set E. 
Define a probability p on the symmetric group S, by p(id) = l / n ,  p(i, j )  = 
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(n - 1)/IEln for (i, j )  E E a n d p ( ~ )= 0 otherwise. Let 

k = {81Elyb/(n - 1) + n)( logn + c) ,  c > 0. 

Then there is a universal constant a > 0 such that 

PROOF.Let fi be the random transpositions measure corresponding to the 
complete graph. The comparison Theorem 1of Section 3 gives 21 A 8  where 

I 

A = max- C lylN(e,y)fi(y). 
e s E  p (e )  y s S ,  

Here p(e) = (n  - l)/(nlEl), fi(y) = 2/n2 for y a transposition. Any transposi-
tion (i, j )  can be realized by transposing successive pairs corresponding to 
edges in yij, starting at  i,  and then reversing all but the final transposition. 
This gives I(i, j)l 5 2Iyijl I 2y. A fixed edge e appears at  most twice in such a 
series of moves, so N(e, y) I 2. Using these bounds gives 

Further, all paths described above have odd length. Considering further id 
leads to 

A < 
81Elyb + 1.* - n ( n  - 1) 

Using (2.10) and results of Diaconis and Shahshahani (1981) for random 
transpositions completes the proof. 

REMARK.The quantity yb of Theorem 1 can be replaced by A = 

< yb.m a x e e ~Cyxy3el~xyl-

EXAMPLE1. Let 9 be a "star" with E = {(I,j) :  2 Ij I n). This corre-
sponds to the random walk on S ,  which transposes a random card with the 
first card. This walk has been treated using Fourier analysis by Flatto, 
Odlyzko and Wales (1985), Diaconis (1989) and Diaconis and Greene (1989). 
These authors show that n log n + cn is the right number of steps, the 
variation distance tending to zero for c large, and tending to one for c small. 
The geometric bounds give the right answer "up to constants": This graph is a 
tree, so paths are forced. Clearly y = 2, b = 2(n - I), IEl = n - 1.This shows 
that for k = 33n(log n + c), Ilp'" - U I I T V  I aePc. 

' 

.EXAMPLE2. Let 9 be a "path" with E = {(i,i + 1): 1I i 5 n - 1). This 
corresponds to the random walk on S ,  which begins with the cards in a row, 
picks a position 15 i I n - 1at random and transposes the card there with 
the card to its right. This graph is a tree with y = n - 1= =Eland b I 2(n/2I2. 
Proposition 1shows that if k = n(4n2 + l)(log n + c), I l p ( k )  - u1lTv 5 aePc. 
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A lower bound showing that the total variation distance is bounded away 
from 0 if k = cn3, for c fixed, follows from considering a fixed card (say the 
card labelled 1). This performs a nearest neighbor random walk with steps 
occurring at  rate l / n .  As is well known, random walk takes >> n2 steps to get 
random on a path of length n ,  so this entails >> n3 steps. We conjecture that 
order n3 log n steps is the correct answer for this problem. 

EXAMPLE3. Let 9 be a "double star": Take n = 2m and E = ((1, m), 
(2, m), . . . , (m - 1,m), (m,  m + 11,(m + 1,m + 2), . . . , (m + 1,n)). This 
graph is a tree with y = 3, IEl = n - 1, and b = 2m2. Proposition 1 shows 
that for k = n(12n + l)(log n + c), 

A lower bound showing that order n2 log n steps are required follows from 
the following rough argument. Consider vertices {1,2, . . . , m) as forming "urn 
1" and vertices {m + 1,.. . , n)  as forming "urn 2." Transfer between the two 
urns occurs at rate l / n .  The transfer process is essentially the Bernoulli 
Laplace process analyzed by Diaconis and Shahshahani (1987). Their results 
imply that (n/4)(log n + c) transfers must occur to ensure that the propor- 
tions in each urn are close to 1/2. This shows that for k = k(n) = 

(n2/4)(log n + c ) with c fixed, liminf,,,llpck) - ullTv > 0. 

EXAMPLE4 (A two-dimensional shuffle). Consider n cards in an I x m 
grid. A random walk proceeds by picking a card at  random and transposing it 
with one of its nearest neighbors. Observe that this walk has a dimensional 
aspect: If I = 1, it reduces to random transpositions on a "path" treated in 
Example 2. As shown below, the extra dimension speeds things up. 

To write things out, identify the grid with the integer lattice points in the 
positive quadrant between (0,O) and (I - 1,m - 1). The lattice points in the 
grid will be denoted v = ( x ,y). Each edge on the graph gives a transposition. 
Let E be the associated set of transpositions. Thus IEl = (I - l )m + (m - 1)1 
transpositions are involved altogether. The measure p ,  described above is not 
uniform on E. Rather, for neighboring (v, v'), 

5 / (6n) ,  if v is a corner and v' is an edge cell or vice versa, 

2 / (3n) ,  if v and v' are both edge cells, 
p1(v7 ") = I 7/(12n), if v is an edge and v' is an internal cell or vice versa, 

1/(2 n ) , if v and v' are internal. 

To avoid parity problems, let 
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THEOREM2. Let 1 and m be positive integers with lm = n.  Define a 
measure p on S ,  by (4.1). Let k = ( B  + l)n(log n + c) with B = 16(1 + 
m)max(l, m)  and c > 0. Then, there is a universal constant a > 0 such that 

PROOF. The result essentially follows from Theorem 1. The measure at  
(4.1) is slightly different from the measure of Theorem 1, but we omit the 
details. 

REMARKSFOR THEOREM2. (a) When 1 = n and m = 1, this shows order 
n310g n steps are enough as in Example 2. For 1 = m = 6 it gives order 
n2 log n steps. The two walks have a comparable number of generators 
(order n). This provides a sense in which there is "more freedom" in two 
dimensions. 

(b) The technique of following a single card gives a lower bound showing 
that for fixed c > 0, k = cn(max(1, m))2 steps do not suffice. For 1 = m = 6, 
this shows order n2 steps are not enough. We conjecture that order n2 log n is 
the right answer. 

(c) The argument can clearly be generalized to higher dimensions. In 
particular, take n = 2d, and use the graph of the "cube." Theorem 1 shows 
that order n(1og n)2 steps suffice to achieve randomness. Following a single 
card gives a lower bound of order n(1og n)(log log n). 

(d) Pemantle (1992) has used the techniques of the present paper to study a 
different two-dimensional shuffle in which random subrectangles of a grid of 
cards are rotated in place. 

GENERALREMARKS.(a) It is possible to show that for any tree on n 
vertices, 4(n - 1) 1 yb I (n - l)n2/2, the minimum occurring for a star, as 
in Example 1,the maximum occurring for a path, as in Example 2. 

(b) Preliminary considerations indicate that a random tree has yb concen-
trated near n5/2. 

(c) For trees, a coupon collector's analysis of the number of fixed points 
shows that k = (n/2)(log n - c) steps can never be enough to drive the 
variation distance to zero. 

(d) Trees exist for which the bound is of order f(n), with n log n I f (n)  I 
n3. Take a path of length m connected to a star of size n - m. These have 
IEl = n - 1,y of order m, and b of order m(n - m). By appropriate choice of 
m, essentially any bound occurs. 

(e) There is another random walk classically associated with a graph 9. 
This has a single particle hopping around on the graph by choosing its nearest 
neighbor. Call this the classical walk on 9.There are several connections 
between the walks. For simplicity, suppose the graph is regular. Following a 
single card in the permutation walk gives a classical walk run at  rate 2/n. If 
Kc,K, denote the smallest k such that variation distance is smaller than l /e  
for the two walks, this shows K, 2 (n/2)Kc. 
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Random Insertions. A different class of walks can be associated with a graph, 
and the same analysis applies. Let c, be the permutation in S, resulting from 
taking card i and inserting it into position j. Thus for i <j, cij = ( j ,  j -
1,. . . , i)  and for i >j, cjj = c,;'. Given a connected graph, a walk can be 
performed by choosing an edge {i,j )  at  random and performing cij or cji with 
probability 1/2. For the complete graph this is essentially the random to 
random shuffle. For a star with vertex 1at the center, this becomes random to 
top or top to random (with probability 1/2 each). Even a star with a different 
vertex at the center has resisted analysis. For a path, it becomes the nearest 
neighbor transposition walk analyzed in Example 2. 

THEOREM3. Let 9 be a connected graph on {1,2,.. . ,n)  with edge set E.  
For cij  defined above, let q(id) = l / n ,  q(cij) = (n  - 1)/21Eln for {i,j )  E E 
and q = 0 otherwise. With b and y defined as in Theorem 1, let 

k = (8IElyb/(n - 1) + n)(log n + c) 

with c > 0. Then, there is a universal a > 0 such that 

PROOF. The first step is to bound the rate of convergence (and Dirichlet 
form) for the random insertion process based on the complete graph. Here, a 
random card is removed and inserted in a random position. A straightfoward 
comparison with random transpositions shows that this process requires order 
n log n steps to achieve randomness. Bounds for more general graphs now 
follow by comparison with random insertions based on the complete graph: 
choosing paths, cij can be represented by a sequence of insertions along the 
paht from i to j. There is no need to "clean up" afterward. The stated bounds 
follow from these considerations. 

We have not investigated lower bounds except in a few instances where we 
found the results sharp "up to constants." Observe that c,, and c,, generate 
S, so the graph need not be connected. We have not investigated this direc-
tion. 

B. Overhand shuffles. The second most popular way of mixing cards is the 
overhand shuffle in which one drops small packets of cards from hand to hand 
reversing the order of the packets. A realistic model of this shuffle was 
analyzed by Pemantle (1989) who showed that order, n2 log n of his shuffles 
suffice while order n2 are not enough to achieve randomness. We here analyze 
two different models with neater shuffles. The results are somewhat surpris-
i ng  neater shuffles mix cards faster. 
Neat overhand shuffle. Let ti be the permutation that reverses the top i cards 
in place. Thus 
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Here t, is taken as the identity. Define 

, f o r n - = t i , 1 < i 5 n
P(T) = n 

0, otherwise.I' 
THEOREM4. For p defined by (4.2) let k = 48n(log n + c) for c > 0. Then 

there is a universal constant a > 0 such that 

PROOF. Let us compare with p,  the measure based on "transpose random 
with top" analyzed in Example 1. The permutation tj-,tj (first perform tj, 
then perform tj-,) has the effect of bringing the top card to position j .  It 
follows that (1, z )  = ti-,ti-,ti-,ti for 3 I i I n while (1,2) = t,. The quantity 
A becomes 

n 

A I m v  4 N ( t i , ( l ,j ) ) .  
2 j j = l  

Since each ti is involved in at  most three transpositions (1, j )  and 
N(ti, (1, j)) 5 2, A 5 24. The result now follows using Lemma 6 of Section 2 
and known results for p .  

REMARK.A lower bound of order n log n follows by considering T(T), the 
number of i such that I.rr(i) - n-(i + 1)l = 1. Under the uniform distribution, 
T(T) is approximately Poisson(2) by standard arguments. If k = n log n - cn 
shuffles are performed for c = c(n) tending to m arbitrarily slowly, the coupon 
collector's problem shows T(T) > 0 with probability approaching 1. 
Crude overhand shuffle. Here is a second simple model for an overhand 
shuffle. For 1I a Ib 5 n ,  let t(a, b) move cards as in the following picture: 

~ h ; sthe top a cards are cut off and placed on the table. Then a packet of size 
b - a is cut off and placed on the original top packet. Finally, the remaining 

n - b cards are placed on top. There are ( "  ') possible choices. These are 
made by choosing a uniformly in 15 a I n and choosing b uniformly in 
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a s b s n. Thus 

This implies id) = l / n .  

THEOREM5. For p defined by (4.3), let k = 672n(log n + c). Then there is 
a universal a > 0 such that 

- u l l ~ vs cuepC. 

If k = (n/2)(log n + c), then 

1 - e - c  

I I P ( k )  - u IlTv 2 7- e + o(1).
e 

PROOF. The following elegant argument uses paths suggested by Pemantle. 
The argument is based on comparison with the measure associated to random 
transpositions Ij(id) = l / n ,  Ij(.rr) = 2/n2 if .rr is a transposition. Transposi- 
tions are represented by first representing "a to bottom" and "b to top" and 
their inverses. There are many ways to do this and the different choices must 
be taken in a balanced manner to get a good bound. The steps are easy but we 
find it helps to have a deck of cards on hand to check details. 

The cycle "a to bottom" can be represented as 

( n , n - 1 ,  . . . ,a )  = t ( n - b + l , n - a + l ) t ( a - l , b )  
f o r a n y b , 2 s a s b s n ;  

the cycle "b to top" can be represented as 

(1 ,2, . . . ,b ) = t ( n - b , n - ( a + l ) ) t ( a , b )  f o r a n y a , l s a s b s n .  

To avoid bottlenecks, transpositions (i,  j )  are split into 2 groups: 

GroupI: i + j s n ;  GroupII: i + j > n .  

In Group I, for 1I i <j s n ,  the transposition (i,  j )  can be represented by 
the following: 

(a) Move card i to bottom by t(n -j + 1,n - i + l)t(i - 1,j). 
(b) Move card i to position j by t(i, n -j + l)t(j - 1,n - i - 1). 
(c) Move card j to bottom by t(i + 1,n -j + 2)t(j - 2, n - i). 
(d) Move card j to position i by t(n -j - 1,n - i + l)t(i - 1,j). 

Observe that when choice was possible in a representation, the second variable 
was used to make the choice. Clearly, in Group I, I(i, j)Js 8 and no generator 
appears in more than seven transpositions. Further, N(t(a, b), (i, j ))  s 3. In 
Group 11, for i <j, the transposition (i, j )  can be represented by the following: 

(a) Move card i to top by t(n - i ,  j - l)t(n -j, i). 
(b) Move card i to position j by t(n -j, n - i + l)t(i,  j).  
(c) Move card j to top by t(n -j + 1,n-- i - l)t(i,  j - 1). 
(d) Move card j to position i by t(n - i ,  j + l)t(n -j, i). 
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Again, in Group 11, I(i, j)l 5 8 and no generator appears in more than seven 
transpositions. Using these observations, 

2 n ( n  + 1- a )
A Imax 336 = 672. 

a n2 

Using this and the known results for random transpositions in Lemma 6 of 
Section 2 completes the proof of the upper bound. 

For the lower bound, let T(n-1 = I{i: I d i  + 1) - n-(i)l = 111. Under the 
uniform distribution, T(T) has a limiting Poisson(2) distribution. In particu-
lar, u{T(.rr) = 0) = eP2+ o(1). On the other hand, each shuffle breaks at  most 
two "bonds" where pairs (1,2),(2,3) . . . (n - 1,n)  are initially considered 
bonded. An easy variant of the coupon collector's problem shows that 
pck){T(~)= 0) Ie-"' + o(1) for h = (1/2)n(log n + c) with c < 0. This 
proves the lower bound. 

Both overhand shuffles analyzed above require order n log n repetitions. 
This is perhaps surprising in light of Pemantle's results: he analyzed a shuffle 
with many more underlying generators (order 2") yet found at  least n2 
repetitions were needed. 

C. Other shuffles. The next example solves a problem posed by Borel and 
Chhron [(1940), pages 8-10 and 254-2561. 
Borel shuffle. The basic step in this shuffle may be described as follows: 
Remove a random packet and place it on top. More precisely, for any a ,  b, 
15 a 5 b 5 n, let rubbe 

1 2 . . .  b - a + l  b - a + 2  . . .  b b + l  b + 2  . . .  n 
a a + 1 . . .  b 1 . . . a - 1  b + l  b + 2  . . .  n 

Let 

I ) ,  i f? i  = ?i,, for some a , b ,
P(..> = 

\ 0, otherwise. 

Observe p(id) = 2/(n + 1). 

THEOREM6. Let p be defined by (4.4). Let h = 16n(log n + c) for c > 0. 
Then, there is a universal constant a > 0 such that 

I I P ( k )  - ullTv 5 ae-c. 

If h = (1/2)n(log n + c) for c < 0, 

Thus, the variation distance does not tend to zero. 

PROOF. The upper bound is achieved by comparison with the shuffle 
associated with removing a random card and inserting it at  a random position. 
Here, for 15 a ,  b 5 n ,  let cab be the cycle (b, b - 1 , . . . , a )  if a 5 b, 
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and (b, b + 1,. . . ,a )  if a 2 b. Define P ( r )  = l /n2  if r = cab for some 
a ,  b with $ ( r )  = 0 otherwise. Theorem 3 of this section implies that if m = 

4n(log n + c), 

For the comparison, write cabin terms of .rr,, as 

Here, 

Clearly Irl 2 2 and any fixed .rr,, appears in the expression of at  most two 
cCd7s,whence N(.rr,,, r )  is 1for two different terms in the sum. These bounds 
give A I 2(1 + l /n).  Using this, rg-,2 -1+ 4/(n + I), and (4.5) in Lemma 
6 of Section 2 proves the upper bound. 

For the lower bound, take T ( r )  = I{i: Ir(i + 1) - r(i) l  = 111. Under the 
uniform distribution, T ( r )  has an approximate Poisson distribution with 
mean 2. In particular, u{T(r)  = 0) = eP2+ o(1). On the other hand, for 
k = (1/2)n log n + cn, p('){T(r) = 0) = e-e-c + o(l), 

A rapidly mixing shuffle with small support. This example gives a probability 
supported on six permutations which achieves randomness extremely rapidly. 
The generators were developed by Babai, Hetyii, Kantor, Lubotzky and Seress 
(1990) for group-theoretic algorithms. They can be described as the two types 
of perfect shuffles of an even deck together with a single transposition. More 
precisely, suppose n is even. Let S, act on the n set X = Z,-, u {m). Let 
r , :  x * 2% and 7,: x * 2x + 1be two permutations of X (both fix m). Let 
r2= (0, m). Take 

E = { i d , r o , r ; 1 , r l , r ; 1 , r 2 } .  

Define 

(4.6) p ( r )  = 1/6 if r E E and zero otherwise. 

THEOREM7. Let p be defined by (4.6). Let k = 24n(log n)2(logn + c) for 
c > 0. Then there is a universal constant a > 0 such that 

PROOF. Babai et al. (1990) show that for any fixed j, 0 Ij I n - 2, there 
is a product of at  most log n terms involving r, and r1 that gives a 
permutation uj taking j to position 0. Thus, 'r2uj = ( j ,m). Thus any 
transposition (j,m) can be written using at  most 210g n + 1 generators. 
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Comparing with $(id) = P ( j ,  w) = l / n ,  0 Ij I n - 2, 

1 
A = max -x l ( j , w ) I N ( ~ ,( j ,w))$( j ,w)  I 12(log n + 1) log n .  

" E E  ~ ( 7 7 )  

Now, use of (2.8) together with known results for fi give the result. 

REMARK. Any fixed number of generators require order n log n steps. 
Thus, up to logarithmic factors, this is as fast as possible. We do not know if 
part (or all) of the extra log2 is necessary. 

5. Products. Random walk on the hypercube (Example 5 of Section 3) is 
an example of a natural walk on a product group. In this section we analyze 
two natural walks on the d-fold product of an arbitrary group. We were led to 
study them because they are natural problems where comparison techniques 
do not work well (see Example 1below). Our analysis is based on elementary 
use of eigenvalues combined with Lemma 6 of Section 2 in which the corre-
sponding continuous time process is crucial. No comparison argument is used. 
However, the walks we analyze here can be used to study other walks on 
products by comparison. We had been unable to get the results of this section 
(in particular, Example 2) by Fourier analysis or any other technique. 

Let Go be a finite group with IG,I = go. Let u, be the uniform probability 
on Go: u, = giL.For d 2 1, let G = ~ , dbe the product of d copies of Go. 
Also let u = u t d  = gid be the uniform probability on G. 

Given an arbitrary symmetric probability p, on Go,consider the symmetric 
probability on G defined by 

1 d 

p = - aid 8 " '  8 p o  8 " '  8 aid ,  
d i = 1 - - -

i - 1  d - i  

when S,, is point mass at  id in Go.The probability p has a simple interpreta-
tion: Pick a coordinate at random and put a random choice from p, in that 
coordinate. 

Define 

Let T, = 1 2  r12 . . .  2 2 -1be the eigenvalues of p, and let pi be 
the eigenfunction associated with T;. We make the following observation: 

The eigenvalues of p are the g,d numbers 

whereas the eigenvalues of q are the g,d numbers 
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Both 7, and y, are associated with the eigenfunction q I ( x l , .. . ,x d )= 

qi,(xl)a a a qid(xd)where I = (i , ,  . . . ,i d ) .  
A bound for q follows easily. 

THEOREM1. Assume that g,1/211p$,k)- u 0112 I aePCfor some a > 0 and 
lz = Bo(Bl  + c), for all c > 0. Then, for K = Bo(Bl  + (1/2)log d + c),  c > 0, 
we have 

PROOF. Using eigenvalues and the inequalities 

we see that 

In order to study p, consider first the semigroup kernels 

and 

Observe that ht  = h 0 , t / d  8 . 8 hO,t / d .  Indeed, this can be checked on eigen-
functions. Note also that the smallest nonzero eigenvalue of aid- p is Al/d,  
where A,  = 1- T ,  is the smallest non zero eigenvalue of aid- po. 

THEOREM2. Assume that g,1/211ho,t- uol12 I cue-" for some constant cu > 0 
and all t = Bo(Bl  + c),c > 0. Then, for T = dBo(Bl + (1/2)log d + c),c > 0, 
we have 

211hT - u l l ~ ~r g1/211hT- ull2 r e f f 2 /2 - c .  

PROOF. Using the above observation and eigenvalues, write, for T = sf  + s, 

By hypothesis, we have A ,  2 l / B o  and h0,,,,/,(id) < g r l ( l  + a2eC2'), for 
sr/d = B,(Bl + C )and any C > 0. Take st = dBo(B,  + (1/2)log dl ,  s = dBoc. 
Putting this in the above estimate yields the desired result. 
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THEOREM3. Assume that gt/211pbk' - u ,112 < ae-' for some constant a > 0 
and k = B,(B,  + c),  for all c > 0. Then,  for 

we have 

PROOF. Lemma 3 of Section 2 and the hypothesis implies that 
2gollho,,k - uolli s goePzk+ g o l l ~ ( k '- ~ 0 1 1 2  

- 2 k  + a 2 e - 2 k 'a goe 
for k = B,(B,  + k ' ) ,  k' > 0. Reasoning as in the proof of Theorem 2, we get 

gllh,, - ull: a ( 1  + g o e - 2 k / d+ a 2 e 2 k ' / d ) d e - 2 s / d B ~  

for t = k + s ,  s > 0. This gives 
2 l + n 2 - 2 cgllhZKl- ull2 I e 

for K ,  = dB,(max{ B,, B ,  10g(g; /~)}+ log d + c). Next, the smallest 
-eigenvalue of p is ( l / d  )c!= l.rrgo- - rgo-,, which satisfies Irgo-l l  a e-l/Bo. 

Now, the argument for Lemma 6 of Section 2 shows that 

where N = n + n' + 1. Hence, 

g l l ~ ' ~ '-
2 2n 2 2n 2ullz r g - 1  + gllhnl - ~ 1 1 2 ~ ~ - ~+ gllhN - ~ 1 1 2 .  

Using .rr,-,= rgo- and K as defined gives 
2 - 2 d c  + e l + n 2 - 2 d cg l l ~ ' ~ )- u l l ~  e + e ~ + 0 2 - 2 c  

EXAMPLE1. When p ,  is uniform on G o  (i.e., p,  = u,), one finds that the 

eigenvalues of p are the numbers i / d  with multiplicity - I)"', 
i = 0, . . . ,d .  In this case, it follows from direct consideration of eigenvalues 
that there is a > 0 such that 

2gllp") - ull2 a cuepC 

where K = (1/2)d{log(d(go- 1)) + c}, c > 0. This is of the same order of 
magnitude as the value given by Theorem 3 in this case. Also, 

Thus, order d log(dg,) steps are necessary and sufficient to drive the d 2  
distance to zero. 

Note that, in this case, the random walk associated with p proceeds by 
choosing a coordinate at  random and picking a random element of Go.  The 
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first time that each coordinate has been chosen is a strong stationary time in 
the sense of Aldous and Diaconis (1986). Thus, the coupon collectors' bounds 
give universal a > 0 such that 

I I P ( ' )  - ullTv I for k = d(1og d + c) .  

Here total variation converges more quickly than d 2  distance when gogrows 
with d .  This gives an example where the usual use of Cauchy-Schwarz is 
"off" for bounding total variation. [See Stong (1991) for more of this.] 

EXAMPLE2. Take Go = Z,, po(0) = Po(+ 1) = 1/3. Here, the eigenvalues 
are known to be 1/3 + (2/3)cos(2~j/m), 0 I j I m - 1.This yields 

m2 
mllpbh' - u o I l 22 -< a2e-2pk/m2when k > -,

P 
for universal a,p > 0. Theorem 3 yields 

3 -cIIp(') - U I I T V  I~e , 
where k = 26-lm2d[(1/2)log d + max(a, P) + cl, c > 0. This is sharp, up to 
constants. 

EXAMPLE 3. Take Go = S,, po(id) = l / n ,  po((i, j ))  = 2/n2 (random 
transpositions). I t  is known that gollpbk)- uolli I a2e-2c for k = 

(1/2)n(log n + c). Theorem 3 yields 

I I P ( ' )  - ullTv I d l  + 2e1+uze-c 

when k = (3 /2 )nd( l0~(nd l /~)+ c) + 1,c > 0. 

REMARKS. (a) Our original approach to bounding I l p ( ' )  - u l l T v  used com- 
parison with the version of p having p o  replaced by u ,.We later realized that 
all the eigenvalues of p were available and could be used to get sharper 
results. 

(b) The techniques and results of this section carry over to products of 
reversible Markov chains: Bounds on the rate of convergence of components 
give bounds on the rate of convergence of the product. See Diaconis and 
Saloff-Coste (1993). 

(c) One can interpolate between p and q:  For 1Ij I d ,  define p j  on G$ 
by choosing a random subset of j indices out of {1,2, . . . ,dl, placing indepen- 
dent, identically distributed elements in these coordinates, and the identity in 
the remaining coordinates. Arguing as at  the beginning of this section, for each 

I E (0, 1,. . . ,go- l Id  there is an eigenvalue T, = I/.(?. 1T,~I!=,T,~~with the 
sum over subsets s = {s, . . sj) of size j from the set {1,2,. . . ,d)  and the 
product over the coordinates of I = (i,, . . . ,id), determined by this subset. 
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