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LOGARITHMIC SOBOLEV INEQUALITIES
FOR FINITE MARKOV CHAINS

BY P. DIACONIS AND L. SALOFF-COSTE

Harvard University and CNRS, Universite Paul Sabatier´
This is an expository paper on the use of logarithmic Sobolev inequali-

ties for bounding rates of convergence of Markov chains on finite state
spaces to their stationary distributions. Logarithmic Sobolev inequalities
complement eigenvalue techniques and work for nonreversible chains in
continuous time. Some aspects of the theory simplify considerably with
finite state spaces and we are able to give a self-contained development.
Examples of applications include the study of a Metropolis chain for the
binomial distribution, sharp results for natural chains on the box of side n
in d dimensions and improved rates for exclusion processes. We also show
that for most r-regular graphs the log-Sobolev constant is of smaller order
than the spectral gap. The log-Sobolev constant of the asymmetric two-
point space is computed exactly as well as the log-Sobolev constant of the
complete graph on n points.

1. Introduction. Logarithmic Sobolev inequalities were introduced in
1975 as a way of isolating smoothing properties of Markov semigroups in
infinite-dimensional settings. Pointers to the literature are given at the end of
this Introduction. This paper presents a reasonably self-contained treatment
of logarithmic Sobolev inequalities in the context of finite Markov chains. It
shows how these inequalities can be used to obtain quantitative bounds on
the convergence of finite Markov chains to stationary.

We work with a finite state space XX and an irreducible Markov kernel
Ž . Ž .K x, y G 0, Ý K x, y s 1. The continuous time semigroup associated to Ky

Ž Ž .. xŽ . Ž .is H s exp yt I y K . Its kernel is denoted by H y s H x, y which ist t t
the distribution at time t ) 0 of the process started at x. It has a unique

xŽ . Ž .stationary measure p and H y ª p y as t tends to infinity. The object oft
this paper is to get quantitative bounds on this convergence, for instance, in

5 x 5total variation distance H y p . The reader will find the proofs of mostTVt
of the results stated in this Introduction in Section 2 and in the rest of the
paper.

One route that has proved successful in many examples bounds total
variation by the l 2 or chi-squared distance with respect to p as

x x5 51.1 2 H y p F H rp y 1 .Ž . Ž .TVt t 2, p
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This l 2-norm can be represented as an operator norm,

x 5 51.2 max H rp y 1 s H y E ,Ž . Ž . 2 ª`t t2, p
x

where E: f ª Ef is the operator that associates to f its mean with respect to
p . Now, for any decomposition t s t q t , t , t G 0,1 2 1 2

5 5 5 5 5 51.3 H y E F H H y E .Ž . 2 ª` 2 ª` 2 ª 2t t t1 2

Here, we are free to choose an appropriate value for t . The 2 ª 2 norm1
appearing above can be usefully bounded in terms of the second eigenvalue
Ž .i.e., the spectral gap

EE f , fŽ .
1.4 l s min ; Var f / 0Ž . Ž .½ 5Var fŽ .

with the Dirichlet form EE and the variance defined by

1 2< <EE f , f s f x y f y K x , y p x ,Ž . Ž . Ž . Ž . Ž .Ý2
x , y

1 2< <Var f s f x y f y p y p x .Ž . Ž . Ž . Ž . Ž .Ý2
x , y

One widely used bound is

12x y2 lt5 51.5 4 H y p F e ,Ž . TVt p#

Ž . Ž . Ž .where p# s min p x . This bound follows from 1.1 ] 1.3 by choosingx
Ž .t s 0. We show how to improve upon 1.5 by picking more effective positive1

t ’s. To this end, we need bounds on the decay of1

5 5 5 x 5H s max H rp2 ª` 2t
x

as a function of t. Logarithmic Sobolev inequalities give useful estimates of
this decay. A logarithmic Sobolev inequality is an inequality of the form

1.6 LL f F CEE f , f ,Ž . Ž . Ž .
Ž .where the entropy-like quantity LL f is defined by

< < 2 < < 2 5 5 2LL f s f log f r f p .Ž . Ž .Ý 2

Ž . Ž .In analogy with 1.4 , define the log-Sobolev constant a of the chain K, p by

EE f , fŽ .
1.7 a s min ; LL f / 0 .Ž . Ž .½ 5LL fŽ .

Ž .Then 1ra is the smallest constant C such that 1.6 holds for all f. This
constant a always satisfies a F lr2 and is sometimes equal to lr2. Section
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3 shows that a can be used to bound convergence to stationarity through the
inequality

12x y2 a t5 51.8 2 H y p F log e .Ž . TVt ž /p#

Ž .More precise results are given in Section 3. Roughly speaking, 1.8 is an
Ž .improvement upon 1.5 when

1 1 1 1
log G log log .

l p# a p#

� 4dFor instance, for the chain K on the hypercube XX s y1, 1 which, at each
step, flips a coordinate chosen at random, l s 2rd, a s 1rd, p# s 2yd and
Ž . Ž .1.8 improves greatly upon 1.5 in this case. Actually a more careful use of a

1Ž .see Sections 3 and 4 shows that t ; d log d suffices for approximate4

stationarity in this example, and this is the right answer.
Another way to express the relation between the log-Sobolev constant a

and convergence to stationarity is to introduce the parameter

xt s inf t ) 0: sup H rp y 1 F 1re .½ 5t 2
x

Classical inequalities assert that, for reversible chains,

w x1 2 q log 1rp#
F t F ,

l 2l

whereas we will prove here that

w x1 4 q log log 1rp#
F t F .

2a 4a

In this precise sense a is more closely related to convergence to stationarity
than l is.

Ž .The variational formula 1.7 defining a is important because it shows
Žthat a can be bounded by comparison between different chains see Lemmas

. w x3.3 and 3.4 . The papers 12, 14, 17 give examples of complicated chains
which are analyzed by comparison with simpler chains. The use of log-Sobo-
lev constants can often produce important improvements on rates of conver-
gence.

One of the keys to understanding the decay of H x is the equivalencet
between logarithmic Sobolev inequalities and a certain property of the semi-

Ž .group called hypercontractivity. Namely, for reversible chains, a at 1.7 can
also be defined as the largest constant b such that

5 5 4b tH F 1 for all t ) 0 with q t s 1 q e .Ž .2 ª qŽ t .t

Hypercontractivity will be shown to be equivalent to a log-Sobolev inequality
Ž .in Section 3. We use this equivalence together with 1.3 to get improved rates

Ž .for chi-square convergence and maximal relative error in Theorem 3.7 and
Corollary 3.8. To give a feel for the topic, consider the following illustrative
example.
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EXAMPLE 1.1. Metropolis algorithm for the binomial distribution. The
Metropolis algorithm is a widely used tool in simulation. There has been little

Ž w x .rigorous analysis of time to stationarity see 18 for a survey . Consider
yn n� 4 Ž .XX s 0, 1, . . . , n and p x s 2 . The Metropolis chain begins with a basež /x

Ž . Ž .chain K x, y on XX which is modified to a new chain M x, y by an auxiliary
Ž .randomization. The new chain has stationary distribution p . Indeed, M x, y

Ž . Ž . Ž . Ž .is constructed so that p x M x, y s p y M y, x for all x, y g XX . For the
present example, take the base chain to be nearest neighbor random walk

K x , x q 1 s K x , x y 1 s 1r2, 1 F x F n y 1Ž . Ž .
K 0, 1 s K 0, 0 s K n , n y 1 s K n , n s 1r2.Ž . Ž . Ž . Ž .

Ž w x.The standard Metropolis construction see e.g., 18 gives
1.9Ž .

¡1 y s x q 1 and 0 F x F n y 1 r2,Ž .
, if ½ y s x y 1 and n q 1 r2 F x F n ,2 Ž .

x
, if y s x y 1 and 1 F x F n q 1 r2,Ž .

2 n y x q 1Ž .
n y xŽ .

, if y s x q 1 and n y 1 r2 F x F n y 1,Ž .
2 x q 1Ž .~M x , y sŽ .
n y 2 x q 1Ž .

, if y s x and 0 F x F n y 1 r2,Ž .
2 n y x q 1Ž .
2 x y n q 1Ž .

, if y s x and n q 1 r2 F x F n ,Ž .
2 x q 1Ž .
2

, if y s x s nr2 n even .Ž .¢ n q 2Ž .
Ž . ynIn Section 3 we show l s l M G 1rn. Clearly, p# s 2 . Using these

Ž . 2ingredients, the bound 1.5 shows that t of order n suffices to have the
chain close to stationarity. For this example, we can also show that a s
Ž . Ž .a M G 1r 2n and this gives us the following result.

Ž .THEOREM 1.1. The Metropolis chain 1.9 and the binomial distribution
yn nŽ .p x s 2 satisfyž /x

n
l 1yc5 5M y p F e for l G log n q 2c , c ) 0.Ž .TVx 2

Conversely,
1 n

l5 5max M y p G q o 1 for l F log n.Ž .TVx 4 8x

A short description of the paper is as follows. Section 2 gives a careful
development of preliminaries needed from Markov chain theory and elemen-



LOGARITHMIC SOBOLEV INEQUALITIES FOR MARKOV CHAINS 699

tary functional analysis. We show how discrete time theorems follow from
continuous time results for reversible chains.

Section 3 gives self-contained proofs of the basic results concerning loga-
rithmic Sobolev inequalities. It proves a F lr2, shows that logarithmic
Sobolev inequalities are stable under taking products and proves the equiva-
lence between hypercontractivity and log-Sobolev inequalities. Theorem 1.1 is
proved as a rumming example. Finally, the relations between the log-Sobolev
constant a and convergence to stationarity are explained in Theorems 3.6
and 3.7 and Corollary 3.8.

Section 4 describes examples and applications. We present what is known
about the log-Sobolev constants for simple random walk on Z , for randomm
transpositions in the symmetric group S and for random r-regular graphsn
and expanders. We also show that natural walks on the box of side length n
in d dimensions reach stationarity after order n2d log d steps. This result is
sharp and we do not known of any other proof except for some special walks
having a product structure. We also present application to the simple exclu-
sion process.

The last section is an Appendix which presents the exact computation of
the logarithmic Sobolev constant of the two-point space with stationarity
measure u , 1 y u . This is probably the simplest example where one can prove

Ž w x.that l / ar2 the first example of this sort was given in 30 .
There has not been much previous work on logarithmic Sobolev inequali-

w xties on finite state spaces. The work of Stroock and Zegarlinsky 48 can be
seen as proving log-Sobolev inequalities for the Metropolis algorithm for
simulating from Ising-like models on a finite grid.

w xA second example is the work of Lu and Yau 32 bounding the log-Sobolev
constant of simple exclusion on a grid. Their bound is of the right order of
magnitude and improves, in the case of a grid, upon the bound stated at the

w xend of 12 and in Section 4.4, which is more widely applicable.
We have used log-Sobolev techniques to study a challenge problem of

w xAldous 17 . This problem also appears in a much used algorithm for manipu-
lating elements on large finite groups. Briefly, let G be a finite group. The

n Ž .walk takes place on a subset of G . One picks a pair of coordinates i, j and
multiplies the group element in the ith coordinate by the group element in
jth coordinate or its inverse. Extensive empirical work suggests that this
walk mixes extremely rapidly. We can prove versions of rapid mixing for fixed
G and large n. The argument compared this chain with a natural walk on the
product group. Use of the log-Sobolev constants yields improved rates of
convergence in this example.

This paper represents a synthesis and translation of a huge body of
previous work by others into the language of finite Markov chains. The
hypercontractivity literature begins with Nelson’s proof of the existence of a

5 5time t at which H - ` for the Ornstein]Ulhenbeck semigroup. Gross2 ª 4t
developed the general theory, introducing logarithmic Sobolev inequalities as
an equivalent method of proving hypercontractivity. From here, there were a
huge number of applications, careful work on special cases and technical
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w ximprovements. These are reviewed in the following surveys: Gross 25 gives
a survey of the entire field with many elegant proofs and a comprehensive
bibliography. His paper appears in a volume which also contains a survey of

w xStroock 47 on his joint work with Zegarlinsky. This work gives remarkable
bounds on convergence to stationarity for stochastic Ising models using

w xlog-Sobolev constants. Bakry 5 has written a comprehensive survey in
course note form, which contains complete proofs and much that is new. It

w xfeatures a development of the Bakry]Emery technique 4 for proving log-
ŽSobolev inequalities using notions of curvature unfortunately, this technique

. w xseems useless in the finite setting . Related material can be found in 7 and
w x8 .

2. Preliminaries. This section introduces notation and reviews classical
facts that are useful in the sequel. Following basic definitions, some conse-
quences of reversibility are deduced. This is followed by a description of
Dirichlet forms for nonreversible chains and the development of various
technical lemmas needed in the sequel. Next, a variety of distances to
equilibrium are introduced and related. Finally, some elementary results
concerning product Markov chains are established. All of this material is
elementary, but present versions are difficult to find in available literature.

2.1. Notation. A Markov chain on a finite state space XX with cardinality
< <XX can be described through its kernel K, which is a function on XX = XX
satisfying

K x , y G 0, K x , y s 1.Ž . Ž .Ý
ygXX

The associated Markov operator, also denoted by K, acts on any real function
f by

Kf x s K x , y f y .Ž . Ž . Ž .Ý
ygXX

The iterated kernel K n is defined by

K n x , y s K ny1 x , z K z , y .Ž . Ž . Ž .Ý
zgXX

It corresponds to the operator K n. We will also use the notation

K n y s K n x , yŽ . Ž .x

when it is convenient. Let p be an invariant probability measure for K, that
is, a probability satisfying

p x K x , y s p y .Ž . Ž . Ž .Ý
xgXX

Such a measure always exists and, under a mild irreducibility condition, p is
unique. We assume throughout that p charges all the points in XX .
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It will be useful to consider the operator K acting on the space of
p pŽ .real-valued functions l s l p , 1 F p F q`, equipped with the norm

1rp
p5 5 5 5 < < 5 5 < <f s f s f x p x , f s max f x .Ž . Ž . Ž .Ýp , p p `ž / xx

Let
5 5 5 5K s sup Kfpª q q

5 5f F1p

denote the operator norm of K from l p to l q. Set

5 5 2Ef s E f s f x p x , Var f s Var f s f y Ef .Ž . Ž . Ž . Ž .Ý 2p p
x

We will often consider E as an operator acting on functions. Introduce also
the entropy

Ent f s Ent f s f x log f x p xŽ . Ž . Ž . Ž . Ž .Ýp
x

Ž .of a nonnegative function f such that E f s 1. Note that this is equal to the
relative entropy of the probability measure m s fp with respect to p and we
will abusively write

m xŽ .
Ent f s Ent m s m x log .Ž . Ž . Ž .Ýp p p xŽ .x

We now turn to the description of the adjoint of K. The invariance of p is
U 2Ž .equivalent to the fact that the adjoint K of K in l p is also a Markov

operator. Indeed, let
K x , yŽ .

k x , y sŽ .
p yŽ .

be the kernel of K with respect to p and set

K n x , yŽ .
n nk x , y s k y s .Ž . Ž .x p yŽ .

The adjoint KU is given by

KU f x s KU x , y f y s kU x , y f y p y ,Ž . Ž . Ž . Ž . Ž . Ž .Ý Ý
y y

where
K y , x p yŽ . Ž .

U UK x , y s , k x , y s k y , x .Ž . Ž . Ž .
p xŽ .

Thus,
KU1 s kU x , y p y s k y , x p yŽ . Ž . Ž . Ž .Ý Ý

y y

1
s K y , x p y s 1.Ž . Ž .Ý

p xŽ . y
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Because K and KU are Markov operators, they constract l`; thus, by
1 1Ž . pŽ .duality, they contract l s l p and, by classical interpolation, any l p ,

1 F p F q`. This fact will be used throughout without further notice. Alter-
natively, the last statement can be obtained from Jensen’s inequality which
implies

< < p < < pKf x F K f xŽ . Ž .Ž .
5 5 5 5for all p G 1 and x g XX . Since p is invariant, it follows that Kf F f .p p

For important technical reasons, this paper mainly deals with the continu-
ous time semigroup H associated with K and defined byt

n` tKŽ .yt ytŽ IyK .H s e s e .Ýt n!0

We set
` nt

x yt nH x , y s H y s e K x , yŽ . Ž . Ž .Ýt t n!0

and
` nH x , y tŽ .tx yt nh x , y s h y s s e k x , y .Ž . Ž . Ž .Ýt t p y n!Ž . 0

Ž . nŽ . xŽ .REMARKS. i Introducing the quantities k y and h y is useful andx t
natural as soon as one intends to use functional analytic methods involving

pŽ .the space l p since these quantities are the densities of the probability
measures K n and H x with respect to p .x t

Ž .ii One usually defines the action of K on probability measures by setting

w xmK u s m KuŽ . Ž .
for any probability measure m and all functions u. Now, if m s fp , that is, if f
is the density of m, this means that mK has density KU f. In particular, if
m s fp , the measure m s mH has density HU f.t t t

Ž . Ž . Ž .2.2. Reversibility. We say that K, p is reversible if K x, y rp y s
Ž . Ž . Ž .K y, x rp x . In other words, K, p is reversible if k is symmetric. This

2Ž .amounts to the fact that K is a self-adjoint operator on l p . In this case, K
has real eigenvalues

y1 F b s b F ??? F b F b s 1min < XX <y1 1 0

Ž . < XX <y1and we fix an orthonormal basis c of real eigenfunctions such thati 0
< XX <y1 2Ž . Ž .Kc s b c and c ' 1. Note that Ý c x s 1rp x . Also, we set l si i i 0 0 i i

1 y b , so that the eigenvalues of H are the exp y tl ’s with the samei t i
corresponding eigenfunctions. Of main interest are the two parameters

< <2.1 b s max b , b and l s l .� 4Ž . min 1 1

The latter will be referred to as the spectral gap of the Markov chain K. With
this notation, we have the following lemma.
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Ž .LEMMA 2.1. If K, p is reversible, it satisfies:

< <XX y1
n ni k x , y s b c x c y ,Ž . Ž . Ž . Ž .Ý i i i

0

< <x y1 1 y p xŽ .2 2n 2 n 2 n5 5 < <k y 1 s b c x F b ;Ž .Ý2x i i p xŽ .1

< <x y1

ii h x , y s exp ytl c x c y ,Ž . Ž . Ž . Ž . Ž .Ýt i i i
0

< <XX y1 1 y p xŽ .2 2x5 5 < <h y 1 s exp y2 tl c x F exp y2 tl .Ž . Ž . Ž .Ý2t i i p xŽ .1

This is, of course, a classical result. A short proof in the spirit of our
w x 5 n 5 5 x 5presentation is given in 12 . The inequalities on k y 1 , h y 1 gener-2 2x t

alize to nonreversible chains; see Lemma 2.3. The following simple result
gives a useful way of transferring results between discrete and continuous
time.

Ž .COROLLARY 2.2. Assume that K , p is reversible and set b sy
� 4max 0, yb . Then:min

12 2x yt w tr2x5 5 5 5i h y 1 F e q k y 1 ;Ž . 2 2t xp xŽ .
5 N 5 2 2 n 5 x 5 2 5 2 5 2 X

Xii k y 1 F b 1 q h y 1 q h y 1 for N s n q n q 1.Ž . Ž .2 2 2x y n N

Ž .PROOF. For part i , use Lemma 2.1,

2 n2 nb s 1 y l s exp 2n log 1 y lŽ . Ž .Ž .i i i

Ž . Ž .and the inequality log 1 y x G y2 x for 0 F x F 1r2. For part ii , observe
that

< <XX y1
22 nq1 2 nq1 < <k x , x s b c x G 0.Ž . Ž .Ý i i

0

This shows that

2 nq1 < < 2 2 nq1 < < 2y b c x F b c x .Ž . Ž .Ý Ýi i i i
i : b -0 i : b )0i i

Hence

2 nq2 < < 2 2 n < < 2b c x F b c x .Ž . Ž .Ý Ýi i i i
i : b -0 i : b )0i i
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Now, for those b that are positive, we havei

b 2 n s exp 2n log 1 y l F exp y2nlŽ . Ž .Ž .i i i

so that
2 n < < 2 5 x 5 2b c x F hŽ .Ý 2i i n

i : b )0i

and
2 n < < 2 5 x 5 2b c x F h y 1 . IŽ .Ý 2i i n

i/0
b )0i

Putting these pieces together, we get for N s n q nX q 1,
< <XX y1

2 2N 2 N5 5 < <k y 1 s b c xŽ .Ý2n i i
1

2 N < < 2 2 N < < 2s b c x q b c xŽ . Ž .Ý Ýi i i i
i : b -0 i/0i

b )0i

2 n 2 nXq2 < < 2 2 N < < 2F b b c x q b c xŽ . Ž .Ý Ýy i i i iž /
i : b -0 i/0i

b )0i

2 n 5 x 5 2 5 x 5 2
XF b h q h y 12 2y n N

2 n 5 x 5 2 5 x 5 2
Xs b 1 q h y 1 q h y 1 . IŽ .2 2y n N

This result yields a precise and rather sharp connection between the conver-
gence of K n and the convergence of H . Unfortunately, it depends on re-t

Žversibility. Note, however, that Lemma 2.1 and its corollary apply with
.obvious modifications when K is normal. As a direct application of the

second statement in Corollary 2.2, we have the following corollary which
allows us to separate out the effects of the smallest eigenvalue from those of
the spectral gap.

Ž . �COROLLARY 2.3. Assume that K, p is reversible and set l# s min l, 1 q
4b . Thenmin

1 1 c
n yc5 5k y 1 F 3e for n s log q q 1.2x 2l p x l#Ž .

EXAMPLE 2.1. Consider the chain K on the symmetric group XX s S withd
Ž . Ž < <. Ž y1 . � 4 �Ž . 4K s , u s 1r S 1 u s , where S s id j i, j : 1 F i - j F d . This corre-S

sponds to randomly transposing pairs of cards with the identity thrown in
w xwith equal weight. Using results from 19 , the lowest eigenvalue b is ofmin

order y1 q 1rd2. The second largest eigenvalue b is of order 1 y 2rd. If we1
apply the bound of Lemma 2.1, we find that order d3 log d steps are sufficient
to reach stationarity. If instead we employ Corollary 2.3, we find that order

2 2 Ž .d log d steps are sufficient. Indeed, here l ; 2rd, l# ; 1rd and p x s
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Ž . 21r d! . The right answer is that order d steps are necessary and sufficient
for K n to reach stationarity. Observe that the continuous time semigroup

yt Ž IyK . Ž w x.H s e reaches stationarity after a time of order d log d see 16, 41 .t

2.3. Dirichlet forms. The notion of Dirichlet form is crucial in the sequel.
For a given chain K with invariant measure p , define

² :EE f , g s I y K f , g ,Ž . Ž .
where f and g are two real-valued functions. This satisfies

K q KU

EE f , f s I y f , f .Ž . ¦ ;ž /2
Hence,

1 k x , y q k y , xŽ . Ž .2< <EE f , f s f x y f y p x p yŽ . Ž . Ž . Ž . Ž .Ý2 2x , y

1 2< <s f x y f y k x , y p x p yŽ . Ž . Ž . Ž . Ž .Ý2 x , y

1 2< <s f x y f y K x , y p x .Ž . Ž . Ž . Ž .Ý2 x , y

The first equality is the classical formula for the Dirichlet form of the
1 UŽ .reversible Markov kernel K q K . To summarize, for any real-valued2

function f ,

K q KU

² :EE f , f s I y K f , f s I y f , fŽ . Ž . ¦ ;ž /2

1 2< <s f x y f y K x , y p x .Ž . Ž . Ž . Ž .Ý2 x , y

2.2Ž .

Ž .Strictly speaking, EE is a Dirichlet form only when K, p is reversible.
Ž .Further, when K, p is reversible, EE also satisfies

² :EE f , g s I y K f , gŽ . Ž .
1s f x y f y g x y g y K x , y p x .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý2

x , y

2.3Ž .

REMARK. When working with complex-valued functions, it is convenient
to use the definition

² :EE f , g s Re I y K f , g .Ž . Ž .Ž .
With this definition it is still true that

K q KU 1 2< <EE f , f s I y f , f s f x y f y K x , y p x .Ž . Ž . Ž . Ž . Ž .Ý¦ ;ž /2 2 x , y
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To illustrate the use of EE we give a proof of the following well known
Ž .result. Define the spectral gap l of K, p by

EE f , fŽ .
l s min : Var f / 0Ž .½ 5Var fŽ .2.4Ž .

5 5s min EE f , f : f s 1, E f s 0 .� 4Ž . Ž .2 p

Ž .LEMMA 2.4. Let K, p be a Markov chain on a finite state space XX . Then

5 5 2 y2 tlH y E f F e Var fŽ . Ž .2t

for any function f.

5 5 2 Ž .PROOF. By elementary calculus, ­ H f s y2 EE H f , H f and this2t t t t
shows that

5 5 2 5 5 2­ H y E f s y2 EE H y E f , H y E f F y2l H y E f .Ž . Ž . Ž . Ž .Ž .2 2t t t t t

Hence

5 5 2 y2 ltH y E f F e Var f . IŽ . Ž .2t

Ž .REMARKS. i The quantity 1 y l is the second largest eigenvalue of the
1 UŽ .self-adjoint operator K q K .2

Ž . 5 5ii Taking the supremum over all functions f such that f s 1 in the2

conclusion of the lemma yields

5 5 yl tH y E F e .2 ª 2t

It can be shown that l is the largest positive number such that such an
inequality holds for all t ) 0.

Ž .iii In the computation above we can either restrict ourselves to real
functions or work with complex-valued functions. This does not affect the
definition of l.

To obtain a similar result in discrete time, define b G 0 by

5 52.5 b s K y E .Ž . 2 ª 2

5 n 5 nThen we obviously have K y E F b . Moreover, one easily shows that2 ª 2
2 U Žb is the second largest eigenvalue of the self-adjoint operator K K or

U .KK . In other words, b is the second largest singular value of K. Thus,
setting

² U :EE# f , f s I y K K f , f .Ž . Ž .
we can characterize b by

2 5 51 y b s min EE# f , f : f s 1, Ef s 0 ;� 4Ž . 2

w x w x w xsee 23 and 10 . Section 2 of 10 gives a detailed comparison of the forms EE
and EE# and gives examples of the use of EE#. Here, we will work only with EE.
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Ž .REMARK. When K, p is reversible, the definitions of l and b given in
Ž . Ž . Ž .2.4 and 2.5 are equivalent to 2.1 .

In the sequel, we will need some technical results about the Dirichlet form
ŽEE. These are collected here for convenience. They are used throughout e.g., in

showing that a log-Sobolev inequality implies exponential decay of the en-
.tropy distance to stationarity; cf. Theorem 3.5 .

Ž .LEMMA 2.5. For any chain K, p and p G 1, the Dirichlet form EE satis-
fies

p py15 5­ H f s ypEE f , fŽ .pt t ts0

for all nonnegative functions f. Further,

<­ Ent H f s yEE f , log f .Ž . Ž .ts0t p t

The proofs are obvious.

LEMMA 2.6. Let p G 2. For any chain K with invariant measure p and
any function f G 0,

2
py1 pr2 pr2EE f , f G EE f , f .Ž . Ž .

p

Ž .Further, if K, p is reversible, then

4 p y 1Ž .
py1 pr2 pr2EE f , f G EE f , fŽ . Ž .2p

for all 1 - p - `.

pr2 w wPROOF. When p G 2 the function t ª t is convex on 0, ` . Now, for
any smooth convex function f,

f a y f b G fX b a y b .Ž . Ž . Ž . Ž .
Ž pr2 pr2 . Ž . Ž pr2.y1Ž . pr2Hence, we have a y b G pr2 b a y b . Multiplying by yb ,

we get
p

pr2 pr2 pr2 py1b y a b F b b y a ,Ž . Ž .
2

for all a, b G 0. This gives

p
pr2 pr2 py1I y K f f F I y K f f .Ž . Ž .

2
Hence

2
py1 pr2 pr2EE f , f G EE f , f .Ž . Ž .

p
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For the second inequality, write for any a ) b G 0,
2 2pr2 pr2 aa y b p

pr2y1s t dtHž /ž /a y b 2 a y bŽ . b

2 a 2 py1 py1p p a y b
py2F t dt s .H4 a y b 4 p y 1 a y bŽ . Ž .b

This shows that

4 p y 1Ž . 2py1 py1 pr2 pr2a y b a y b G a y bŽ . Ž . Ž .2p

and the second inequality stated in the lemma easily follows from this and
Ž .2.3 . I

LEMMA 2.7. For any chain K with invariant measure p and any function
f G 0,

' 'EE log f , f G 2 EE f , f .Ž . Ž .
Ž .Further, any reversible chain K, p satisfies

' 'EE log f , f G 4 EE f , f .Ž . Ž .
PROOF. Since t ª ylog t 2 is a convex function, we have

2
2 2y log a y log b G y a y b ,Ž .Ž .

b

for all a, b ) 0. Multiplying by yb2 yields

b2 log a2 y log b2 F 2b a y b ,Ž .Ž .
for all a, b G 0. This shows that

''f x K y I log f x F 2 f x K y I f x ,Ž . Ž . Ž . Ž . Ž . Ž .

which yields the first stated result.
To obtain the improved inequality in the reversible case write, for a G

b G 0,
2 21r2 1r2 aa y b 1 dt

s H 1r2ž / ž /a y b 2 a y b tŽ . b

a1 dt 1 log a y log b
F s .H4 a y b t 4 a y bŽ . b

This gives
21r2 1r24 a y b F log a y log b a y b ,Ž . Ž . Ž .

Ž .which, together with 2.3 , yields the desired inequality. I
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REMARK. The difficulty in proving the statements of Lemmas 2.5 and 2.7
Ž .for nonreversible chains comes from the fact that 2.3 does not hold in

general.

2.4. Distances to equilibrium. One of the goals of this paper is to study
quantitatively the convergence of finite ergodic Markov chains to equilibrium.
This can be discussed using various ‘‘distances’’ between probability mea-
sures, including total variation, relative entropy or the chi-square distance,
the last being the most used in the present paper.

To start with, let us consider a notion of convergence that plays a very
2 2Ž .distinguished part: convergence in operator norm on l s l p . Let r denote

2 Žthe spectral radius of the operator K y E acting on l i.e., the smallest
radius of a circle centered at the origin and containing all the eigenvalues of

.K y E . Because K preserves the subspace of functions orthogonal to the
constants, r is also the spectral radius of K acting on this subspace. We have

5 n 51r nlim K y E s r .2 ª 2
nªq`

Also, let t be the maximum of the real part of the spectrum of K y E. Then

5 51r t yŽ1yt .lim H y E s e2 ª 2t
tªq`

Ž w x .and t F r. It follows from classical matrix analysis see 28 , page 322 that
any norm NN on matrices also satsifies

2.6 lim NN 1r n K n y E s r , lim NN 1r t H y E s eyŽ1 yt . .Ž . Ž . Ž .t
nªq` tªq`

Ž . < <As an example, this holds when NN M s max Ý M which correspondsx y x, y
to total variation. Thus, in this qualitative sense, r and t determine the
asymptotic rate of convergence to equilibrium in discrete and continuous
time, respectively, whatever norm is chosen. However, this general fact does
not give any clue for quantitative problems such as the following:

Given « ) 0, find N s N « such that NN K n y E F « for all n G N « .Ž . Ž . Ž .
Let us emphasize here that, in general, the answer ‘‘it takes roughly n s

Ž . n1r 1 y r for K to be close to stationarity’’ is just wrong.
Ž .Instead of r and t , consider the parameters b and l introduced in 2.4

Ž .and 2.5 . Using these parameters, we can replace the asymptotic statements
Ž .2.6 by the inequalities

5 n 5 n 5 5 yl t2.7 K y E F b , H y E F e ,Ž . 2 ª 2 2 ª 2t

which are more useful as answers to the question above. For comparison,
observe that

r F b , l F 1 y t .

w x Ž .Further, it can be shown that 1 y l F b ; see 29 . When K, p is reversible,
� < < 4we have r s b s max b , b and l s 1 y t s 1 y b .min 1 1
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The main flaw of the notion of convergence in l 2 operator norm is that it
has no sharp simple interpretation in terms of kernels. We next consider
convergence in total variation, which has a clear interpretation. For two
probability measures m, n , let

15 5 < < < <m y n s sup m A y n A s m x y n x .Ž . Ž . Ž . Ž .ÝTV 2
A;X x

Thus, in the case at hand,

5 n 5 < n < 5 n 52 K y p s K y y p y s k y 1 .Ž . Ž .ÝTV 1x x x
y

Jensen’s inequality shows that the total variation distance is dominated by
the chi-square distance, namely,

1r22nK yŽ .xn n5 5 5 52 K y p F k y 1 s y 1 p y .Ž .ÝTV 2x x p yž /Ž .y

5 n 5The chi-square distance k y 1 is, in turn, dominated by the relative error2x
< nŽ . <sup k y y 1 . Finally, observe that for reversible chains the maximaly x

< 2 nŽ . <relative error at time 2n, that is, sup k y y 1 , is equal to the squarex, y x

5 n 5 2maximal chi-square error sup k y 1 at time n. These observations hold2x x
without changes in continuous time if we replace K by H, k by h and n by t.

We end this discussion by considering yet another quantity that can be
Ž .used to analyze convergence to equilibrium. Recall that the relative entropy

is defined by
m xŽ .

Ent m s m x log .Ž . Ž .Ýp p xŽ .x

Elementary considerations show that
2 1 25 5 5 5 5 52.8 2 m y p F Ent m F m y p q mrp y 1 .Ž . Ž . Ž .TV TV p , 2p 2

For the upper bound, consider only the x where mrp G 1 and use the fact
1 2Ž . Ž .that 1 q u log 1 q u F u q u for u G 0. For the lower bound use the2

Ž .2 Ž .Ž .inequality ; u ) 0, 3 u y 1 F 4 q 2u u log u y u q 1 , the Cauchy]
Schwarz inequality and the fact that u log u y u q 1 G 0 for u ) 0. In his

w xPh.D. thesis, Su 49 observed that one also has

5 5 2Ent m F log 1 q mrp y 1 .Ž . Ž .Ž .2, pp

Very often, convergence is proved by showing that the chi-square distance
tends to zero; this gives bounds on both variation distance and entropy as
well as bounds on relative error. Let us now state the simplest and most basic
quantitative bounds on the chi-square distance.

LEMMA 2.8. Any finite Markov chain K with invariant probability p
satisfies

y1r2 y1r2n n x ytl5 5 5 5k y 1 F p x b , h y 1 F p x e ,Ž . Ž .2 2x t
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Ž . Ž .with l, b defined in 2.4 and 2.5 . In particular,

1 1 1
n yc5 5k y 1 F e for n s log q c , c ) 0.2x ž /1 y b 2 p xŽ .

Similarly,

1 1 1
x yc5 5h y 1 F e for t s log q c , c ) 0.2t ž /l 2 p xŽ .

Ž . Ž .PROOF. Define d y to be equal to 1rp x if y s x and zero otherwise.x
Observe that

KU n y E d y s KU n y , z y p z d zŽ . Ž . Ž . Ž . Ž .Ž .Ýx x
z

K n x , yŽ .
ns y 1 s k x , y y 1.Ž .

p yŽ .
Hence,

5 n 5 5 U n 5k y 1 s K y E dŽ .2 2x x

1r21 y p xŽ .1r2 n n5 5F Var d K y E F b .Ž . 2 ª 2x ž /p xŽ .
The proof of the corresponding result for h x follows the same line of reason-t

w xing. Compare with 23, 10 . This proof extends readily to any ergodic Markov
chain on a denumerable state space. It only uses the variational definition of
b or l and not the entire spectral decomposition. I

Ž . Ž U n . Ž . nŽ .REMARKS. i The formula K y E d y s k x, y y 1 and the factx
pŽ . 5 n 5that K* contracts l p for 1 F p F ` show that n ª k y 1 is a nonin-px

Ž 5 x 5 .creasing function similarly for t ª h y 1 . Dividing by 2, we get thept
same result for total variation.

Ž .ii The distances considered above belong to a larger family defined by
setting

1rqqrp
pn< <d n s k x , y y 1 p y p x ,Ž . Ž . Ž . Ž .Ý Ýp , q ž /ž /x y

where 1 F p, q F q` and obvious modifications when p or q are infinite. For
Žinstance, d which is nothing else than the Hilbert]Schmidt norm of2, 2

n . Ž .K y E can be of special interest because, when K, p is reversible,
1r2< <XX y1

2 nd n s bŽ . Ý2, 2 iž /
1

and thus depends only on the eigenvalues, whereas d depends on eigenval-2, `

ues and eigenfunctions. When a group acts transitively on X and preserves
K, d s d for all p, q; this happens in particular when K is the simplep, q p
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random walk on the Cayley graph of a group. Note that d F d X X F d forp, q p , q `

p F pX and q F qX. The distance d has a natural appearance in long runs of1, 1

a Markov chain when the chain is run n steps to stationarity, the output
used, the chain run again and so on.

Ž .iii Of course, the bounds in Lemma 2.8 are bounds on total variation as
well. Bounds that are specific to variation distance can also be obtained by

Ž .probabilistic arguments e.g., coupling, strong stationary times . In this con-
text, the maximum separation distance

d n s sup 1 y k n x , y� 4Ž . Ž .sep
x , y

Ž . w x w xno absolute value is of special interest. See 1 and 9 for details.
Ž . Ž .iv Lemma 2.8 justifies if necessary the amount of work devoted to

w xbounding b from above and l from below. For instance, 21 gives recent
w x w x w xresults and earlier references. Among others, 12 , 23 and 43 describe

w xapplications to complex combinatorial examples. See also 44 .
Ž . Ž Ž . Ž ..v Lemma 2.8 tells us that after n s ylog p x r2 1 y b the chain

started at x is close to equilibrium. In many nontrivial examples this is not
Ž .even roughly an optimal result. To illustrate this point, let us consider three
basic examples. For simple random walk on the finite circle ZrpZ, p odd, we

Ž . 2have p x s 1rp, 1 y b ; 1rp and the lemma predicts randomness after
p2 log p steps. In fact, order p2 steps are necessary and sufficient. For simple

d Ž . drandom walk on the hypercube Z , we get p x s 1r2 , 1 y b s 2rd and the2
12prediction is that order d steps are sufficient whereas d log d is the right4

Ž .answer. For random transpositions on the symmetric group S , p x s 1rd!,d
1 y b s 2rd and the lemma ensures randomness after order d2 log d steps.

1w xDiaconis and Shahshahani 19 have shown that the right answer is d log d.2
w x w x w xFor a precise analysis of these examples, see 9 . References 10 , 11 and

w x13 describe a host of other cases and develop techniques that yield improved
bounds. This is also the goal of the present work.

Ž .vi The preceding remark should be balanced with the following comment.
Fix an integer r and 0 - « - 1r2 and consider the nearest-neighbor random
walk on r-regular graphs. It can be shown that ‘‘most’’ r-regular graphs have

w x w x w xl G « ; see 2 , 33 , 42 and the references given there. Also, it obviously
< <takes at least order log XX steps for the nearest-neighbor random walk onr

an r-regular graph with vertex set XX to be close to equilibrium in variation
distance. Thus, for ‘‘most’’ r-regular graphs, Lemma 2.8 gives the correct
order of magnitude. See also Section 4.

2.5. Product chains. Product chains are of interest both in their own
Ž .right the random walk on the hypercube is a product chain and as a base for

comparison in analyzing more complex chains. For i s 1, 2, . . . , d, let K be ai
Markov chain on a finite state space XX with invariant probability p . Wei i
define a chain on the product which corresponds to choosing a coordinate
uniformly at random and taking a step in that coordinate. Set XX s ŁdXX and1 i
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consider the chain
d1

K x , y s d x , y ??? d x , yŽ . Ž . Ž .Ý 1 1 iy1 iy1d is1

=K x , y d x , y ??? d x , y ,Ž . Ž . Ž .i i i iq1 iq1 d d

Ž .d Ž .d Ž .where x s x , y s y and d u, v s 1 if u s v and 0 otherwise. In termsi 1 i 1
of operators, this means that

d1
2.9 K s I m ??? m I m K mI m ??? m I .Ž . Ý i^ ` _ ^ ` _d is1

i y 1 d y i

This K has invariant distribution
d

2.10 p x s p x .Ž . Ž . Ž .Ł i i
is1

Now, let H , H be the semigroups corresponding to K , K. The definitionsi, t t i
yield

d

2.11 H x , y s H x , yŽ . Ž . Ž .Łt i , tr d i i
is1

and the same relation for the relative kernels h , h . From this, we deduce at i, t
bound on the rate of convergence of product chains that we found surprisingly
difficult.

THEOREM 2.9. Assume that there exists b, B , B ) 0 such that the factor0 1
chains satisfy

5 x i 5 ygh y 1 F be2i , s

Ž .for some fixed x g XX , i s 1, 2, . . . , d, and s s B B q g , g ) 0. Set x si i 0 1

Ž . d Ž . Ž . Ž .x , . . . , x g XX s Ł XX . Then the product chain K, p defined in 2.9 ] 2.111 d 1 i
satisfies

b2
x5 5h y 1 F b exp y c2t ž /2

1Ž .for t s dB B q log d q c , c ) 0.0 1 2

Ž .dPROOF. Let x s x g XX and writei 1
d

2 2 2x x x i5 5 5 5 5 5h y 1 s h y 1 s h y 1Ł2 2 2t t i , tr d
is1

d
2x i5 5s h y 1 q 1 y 1.Ł 2ž /i , tr d

is1
1 2x 2 y2 ciŽ . 5 5 Ž .Now, if t s dB B q log d q c , c ) 0, we have h y 1 F b rd e .20 1 i, tr d2

Thus, we get
d2b2x y2 c 2 25 5h y 1 F 1 q e y 1 F b exp b y 2c . IŽ .2t ž /d
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5 x 5Note that, if for some s, x , « we have h y 1 G « for all i s 1, . . . , d,2i i, s
x '5 5then the above argument shows that h y 1 G d « .2d s

For reversible chains, a discrete time version follows from Theorem 2.9
using Corollary 2.2.

5 nTHEOREM 2.10. Assume that there exists b, B , B such that k y0 1 i, x i
5 yg Ž .1 F be for some fixed x g XX , i s 1, 2, . . . , d, and n G B B q g , g )2 i i 0 1

Ž . Ž .0. Assume moreover that the K , p ’s are reversible. Set x s x , . . . , x gi i 1 d
d Ž . Ž . Ž .XX s Ł XX . Then the chain K, p defined in 2.9 and 2.10 is reversible and1 i

satisfies
1r2m 2 yc5 5k y 1 F 1 q 2 exp 1 q b eŽ .Ž .2x

1Ž . � Ž .for m G 2 dB B q log d q c q 1, c ) 0, where B s max B , log j r0 2 2 12
4 Ž .2 B , j s max 1rp .0 i i, )

Further details that extend with minor modifications to the above situa-
w xtion can be found in 11 , Section 5. We emphasize that we do not know how

to extend this result to nonreversible chains. The above results are rather
sharp. For instance, Theorems 2.9 and 2.10 show that simple random walk on

Ž .dthe torus ZrpZ , p odd, is close to being uniformly distributed after order
2 w xp d log d steps, which is the right answer; see 11 .

3. Logarithmic Sobolev inequalities. Section 3.1 introduces the log-
Sobolev constant a of a finite Markov chain. This is a constant which always
satisfies a F lr2, where l is the spectral gap of the chain. This constant is

Žshown to behave well under product and comparison in fact, it behaves
.exactly as the spectral gap l . Section 3.2 contains a self-contained treatment

of the relation between the log-Sobolev constant a and the hypercontractivity
of the associated semigroup. Section 3.3 describes how the log-Sobolev con-
stant can be used to bound distance to stationarity. Finally, Section 3.4 gives
tools to bound a from below in terms of upper bounds on the semigroup.

3.1. The log-Sobolev constant. Given an irreducible finite Markov chain K
with invariant probability p , consider the Dirichlet form

² :EE f , g s I y K f , gŽ . Ž .
introduced in Section 2.3 and set

< < 2f xŽ .2< <LL f s f x log p x .Ž . Ž . Ž .Ý 2ž /5 5f 2xgX

Ž .A logarithmic Sobolev or log-Sobolev inequality is an inequality of the type
LL f F CEE f , fŽ . Ž .

holding for all functions f. Let 1ra be the smallest constant C such that this
inequality holds. In other words,

EE f , fŽ .
3.1 a s inf : LL f / 0 .Ž . Ž .½ 5LL fŽ .
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We say that a is the log-Sobolev constant of K. Recall that the spectral gap l
of K has a similar characterization:

EE f , fŽ .
l s inf : Var f / 0 ,Ž .½ 5Var fŽ .

Ž . 5 5 2where Var f s f y Ef is the p-variance of f.2

The first result compares the log-Sobolev constant to the spectral gap.

LEMMA 3.1. For any chain K the log-Sobolev constant a and the spectral
gap l satisfy 2a F l.

w xPROOF. We follow 39 . Set f s 1 q « g and write, for « small enough,

2 < < 2« g2 2 22 3< < < < < <f log f s 2 1 q 2« g q « g « g y q O «Ž .Ž . ž /2

2 < < 2 3s 2« g q 3« g q O «Ž .
and

22 2 2 22 2 2 3< < 5 5 < < 5 5f log f s 1 q 2« g q « g 2« Eg q « g y 2« Eg q O «Ž . Ž .Ž . Ž .2 2

222 2 2 35 5s 2« Eg q 4« gEg q « g y 2« Eg q O « .Ž . Ž .2

Thus,

< < 2f 22 2 22 3< < < < 5 5f log s 2« g y Eg q « 3 g y g y 4 gEg q 2 Eg q O «Ž . Ž . Ž .Ž .225 5f 2

and
222 35 5LL f s 2« g y Eg q O «Ž . Ž . Ž .Ž .

s 2« 2 Var g q O « 3 .Ž . Ž .
Ž . 2 Ž . y2To finish the proof, observe that EE f, f s « EE g, g , multiply by « , let «

tend to zero and use the variational characterizations of a and l. I

REMARK. To what extent can one hope to have 2a s l or at least a and l
of the same order of magnitude? This is a classic question in the literature on
log-Sobolev inequalities. Indeed, in most examples where 2a and l are
explicitly known, they turn out to be equal. In Section 4.5 we show that, in
some sense, for simple random walk on a generic regular graph, a and l are
of different orders of magnitude.

� 4EXAMPLE 3.1. Consider the two-point space XX s y1, 1 with kernel
Ž . Ž .K y1, 1 s K 1, y1 s 1. This has stationary measure p ' 1r2. The defini-

Ž .tion 3.1 , together with tedious calculus, shows that a G 1 in this case. Since
it is easy to check that l s 2 we find that, in this case, Lemma 3.1 is sharp

w xand a s lr2 s 1. For further details, see, for example, Example 2.6 in 24 .
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The next two lemmas are crucial for the applications we have in mind.
Indeed, computing log-Sobolev constants turns out to be extremely difficult.

Ž .Lemma 3.2 gives a collection of examples i.e., products with good log-Sobolev
constants. Lemma 3.3 allows comparison of an unknown chain K with the
better known chain K X.

Ž .LEMMA 3.2. Let K , p , i s 1, . . . , d, be Markov chains on finite sets XXi i i
with spectral gaps l and log-Sobolev constants a . Then the product chaini i
Ž . d Ž . Ž .K, p on XX s Ł XX defined at 2.9 ] 2.11 satisfies1 i

1 1
l s min l , a s min a .i id di i

PROOF. If EE denotes the Dirichlet form associated with K , then thei i
product chain K defined in Section 2.5 has Dirichlet form

d1
EE f , f s EE f , f p x ,Ž . Ž . Ž .Ý Ý Łi l ld l : l/i1 x : j/ij

Ž . Ž Ž . Ž ..where EE f , f s EE f x , . . . , x , f x , . . . , x has the obvious meaning: EEi i 1 d 1 d i
acts on the ith coordinate whereas the other coordinates are fixed. It is
enough to prove the following statement: Let XX , i s 1, 2, be two finite sets.i
Let K be a Markov chain on XX with invariant measure p and Dirichleti i i
form EE . Consider the Dirichlet form on XX s XX = XX defined byi 1 2

EE f , f s u EE f ?, x , f ?, x p xŽ . Ž . Ž . Ž .Ž .Ý1 1 2 2 2 2
x2

q u EE f x , ? , f x , ? p x ,Ž . Ž . Ž .Ž .Ý2 2 1 1 1 1
x1

Ž . Ž . Ž .where u , u are positive fixed parameters. Let p x , x s p x p x . Then,1 2 1 2 1 2
if l , a are the spectral gaps and log-Sobolev constants of EE , i s 1, 2, thei i i
form EE has spectral gap

� 4l s min u l , u l1 1 2 2

and log-Sobolev constant

� 4a s min u a , u a .1 1 2 2

We will only prove the statement for a . The proof for l is similar. Let f :
XX = XX ª R be a nonnegative function and set1 2

1r2
2F x s f x , x p x .Ž . Ž . Ž .Ý2 1 2 1 1ž /

x1
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Then write
2f x , xŽ .1 22< <LL f s f x , x log p x , xŽ . Ž . Ž .Ý 1 2 1 225 5f 2, px , x1 2

2F xŽ .22< <s F x log p xŽ . Ž .Ý 2 2 225 5F 2, px 22

2f x , xŽ .1 22< <q f x , x log p x , xŽ . Ž .Ý 1 2 1 22F xŽ .x , x 21 2

y1w xF u a u EE F , FŽ .2 2 2 2

y1w xq u a u EE f ?, x , f ?, x p x .Ž . Ž . Ž .Ž .Ý1 1 1 1 2 2 2 2
x2

Now, the triangle inequality

< < 5 5 5 5F x y F y s f ?, x y f ?, yŽ . Ž . Ž . Ž .2, p 2, p2 2 2 21 1

5 5F f ?, x y f ?, yŽ . Ž . 2, p2 2 1

implies that

EE F , F F EE f x , ? , f x , ? p x .Ž . Ž . Ž . Ž .Ž .Ý2 2 1 1 1 1
x1

Hence
y1w xLL f F u a u EE f x , ? , f x , ? p xŽ . Ž . Ž . Ž .Ž .Ý2 2 2 2 1 1 1 1

x1

y1w xq u a u EE f ?, x , f ?, x p x ,Ž . Ž . Ž .Ž .Ý1 1 1 1 2 2 2 2
x2

which yields
w xLL f F max 1r u a EE f , f .� 4Ž . Ž .i i

i

w xThis shows that a G min u a . Testing on functions that depend on one ofi i i
w xthe two variables shows that a s min u a . Ii i i

� 4n Ž .EXAMPLE 3.2. Consider the hypercube XX s y1, 1 . Let K x, y s 1rn if
Ž .x, y differ at exactly one coordinate and K x, y s 0 otherwise. The station-

ary distribution is the uniform measure p ' 2yn. Further, K is the product
chain on XX coming from the two-point chains on each coordinate. Thus,
Lemma 3.2 and Example 3.1 give a s lr2 s 1rn. This result has several
nontrivial corollaries among which we mention the determination of the

w xsharp log-Sobolev constant for the Ornstein]Uhlenbeck semigroup; see 5 ,
w x w x24 and 25 for proofs and historical comments.

The next lemma allows comparison between spectral gaps and log-Sobolev
constants of two chains on the same state space in the presence of a
comparison between Dirichlet forms and stationary distributions.
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Ž . Ž X X.LEMMA 3.3. Let K, p and K , p be two Markov chains on the same
finite set XX . Assume that there exist A, a ) 0 such that

EEX F AEE , ap F p X .
Then

A A
X Xl F l, a F a .

a a

PROOF. The first stated result follows from the variational definition of l
together with the formula

< < 2Var f s min f x y c p x .Ž . Ž . Ž .Ý
cgR x

The inequality between log-Sobolev constants follows from an observation
w xdue to Holley and Stroock 27 : j log j y j log z y j q z G 0 for j , z ) 0 and

< < 2 < < 2 < < 2 5 5 2 < < 2 5 5 2LL f s f x log f x y f x log f y f x q f p xŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ý 2 2p
x

< < 2 < < 2 < < 2 < < 2s min f x log f x y f x log c y f x q c p x . IŽ . Ž . Ž . Ž . Ž .Ž .Ý
c)0 x

Lemma 3.3 can be extended to allow comparison of chains defined on two
different state spaces as in the following lemma.

Ž . Ž X X.LEMMA 3.4. Let K, p and K , p be two Markov chains defined, respec-
tively, on the finite sets XX and XX X. Assume that there exists a linear map

2 2 X X ˜l XX , p ª l XX , p : f ª fŽ . Ž .
2Ž .and constants A, B, a ) 0 such that, for all f g l XX , p ,

X ˜ ˜ ˜XEE f , f F AEE f , f and a Var f F Var f q BEE f , f .Ž . Ž . Ž .Ž .Ž . p p

Then
alX

F l.XA q Bl
Similarly, if

X ˜ ˜ ˜XEE f , f F AEE f , f and a LL f F LL f q BEE f , f ,Ž . Ž . Ž .Ž .Ž . p p

then
aa X

F a .XA q Ba

w x XREMARK. In 17 , we apply this to a simple case where XX ; XX ; functions
on XX are extended to XX X by an interpolation procedure which allows us to
keep control of the different constants. In this particular case, we can take
B s 0.

� 4nEXAMPLE 3.3. Fix a positive integer n. Consider the chain K on y1, 1
� 4from Example 3.2. This chain induces a birth and death chain on 0, 1, . . . , n
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� 4nwhich counts the number of 1’s in x g y1, 1 . This induced chain has
kernel

n y x rn, if y s x q 1, 0 F x F n y 1,Ž .
P x , y sŽ . ½ xrn, if y s x y 1, 1 F x F n ,

yn nand stationary measure p s 2 . This is the classical Ehrenfest chain. Asž /x
Ž .a function of the chain on the hypercube, it has a P G 1rn. However, the

Ž .spectral gap is known to be l s 2rn the same as for the hypercube . It
Ž .follows that a P s 1rn. We can now use this result to study the Metropolis

Ž . Ž .chain M introduced in 1.9 , which also has the binomial distribution p x s
yn n2 as stationary measure. Comparing the kernels M and P, we getž /x

1 P x , y F M x , y F P x , yŽ . Ž . Ž .2

for x / y. Hence,
EE F EE F 2 EE .M P M

1 1Ž . Ž . Ž . Ž . Ž . Ž .This shows that l P F l M F l P and a P F a M F a P ; hence,2 2

1 2
F l M FŽ .

n n
and

1 1
F a M F .Ž .

2n n

3.2. Hypercontractivity. We now recall the main result relating log-Sobo-
lev inequalities to the so-called hypercontractivity of the semigroup H . Wet
first state the main result and then attempt some motivation. This is followed
by proofs.

Ž .THEOREM 3.5. Let K, p be a finite Markov chain with log-Sobolev
constant a .

Ž . 5 5i Assume that there exists b ) 0 such that H F 1 for all t ) 02 ª qt
4b t Ž . Ž .and 2 F q - q` satisfying e G q y 1. Then b LL f F EE f, f and thus

a G b.
Ž . Ž . 5 5ii Assume that K, p is reversible. Then H F 1 for all t ) 0 and2 ª qt

all 2 F q - q` satisfying e4a t G q y 1.
Ž . 5 5iii For nonreversible chains, we still have H F 1 for all t ) 0 and2 ª qt

all 2 F q - q` satisfying e2 a t G q y 1.

The first two assertions are classic parts of the theory of hypercontractivity
and log-Sobolev inequality. For reversible chains, they yield the equivalence

Ž .between the two notions. The proof of iii follows the same classic lines with
a little twist. As far as we know, this last result is not in the literature.

ŽHowever, this result is known to Bakry, who intended but forgot}personal
. w xcommunication to include it in 5 .
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Let us start with an informal discussion of hypercontractivity. A basic
analytic property of a Markov semigroup H with invariant measure p is thet

2Ž . Ž p.fact that H contracts l p and all l . Now, for any irreducible reversiblet
chain K with invariant measure p on a finite state space XX , it is not hard to

5 5 2 Ž .show that H s sup h x, x ) 1 for all finite t ) 0, whereas of course2 ª`t x 2 t
5 5lim H s 1. Consider the following strange question: is there a finite2 ª`t ª` t

5 5 5 5t ) 0 such that H F 1? In view of what has been said for H it is2 ª 4 2 ª`t t
not so clear what the answer should be. It turns out that the answer is ‘‘yes.’’
Namely, for any reversible irreducible H on a finite state space, there existst

5 5 Ža finite t ) 0 such that H F 1 and thus equal to 1 because of the2 ª 4t
. Ž .constant functions . Further, for any finite q G 2, there exists a finite t q ) 0

5 5such H s 1 for all t G t . This property is called hypercontractivity2 ª qt q
and any reversible irreducible Markov semigroup on a finite state space is

Ž .hypecontractive see Theorem 3.9 for a proof of this well known fact . Let us
point out that reversibility is not an issue here and in fact any irreducible

ŽMarkov semigroup on a finite state space is hypercontractive see the last
.remark following Theorem 3.10 . Figure 1 illustrates this discussion. For

bounding rates of convergence, what we really are interested in is the time t#
5 5at which H F 2. The constant 2 is arbitrary except that the figure2 ª`t#

5 5strongly indicates that one should not ask for H F 1. At time t# the2 ª`t
distribution of the continuous time Markov chain is roughly similar to p

5 5 � Ž . Ž .4since H s sup H x, y rp y . After time t#, convergence takes2 ª`t# x, y 2 t#
Ž .place at the exponential rate 1rl; see 1.3 . What we would like to have is a

characterization of t# in terms of the Dirichlet form EE. Unfortunately, such a
characterization does not exist at present. The more subtle property,

5 5there exists b ) 0 such that H F 1 for all 0 - t,2 ª qt
4b t2 F q- `, satisfying e G q y 1,

has the advantage of having an exact translation in terms of Dirichlet forms,
namely, b LL F EE. This is roughly the content of Theorem 3.5. The largest b

FIG. 1.
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for which the above property holds is equal to the log-Sobolev constant a .
This explains the role of hypercontractivity.

To finish this discussion, note that the exact value of t does not give the4
exact value of a , but good estimates on t imply good estimates on a by4
Theorem 3.9.

PROOF OF THEOREM 3.5. First statement. It is convenient to introduce

< < pf xŽ .p< <LL f s f x log p x .Ž . Ž . Ž .Ý pp ž /5 5f pxgX

It is enough to prove the desired log-Sobolev inequality for positive f. Thus,
for f ) 0, set

5 5 4b tF t s H f where p t s 1 q e .Ž . Ž .pŽ t .t

We compute the derivative of
pŽ t .5 5F t s exp log G t rp t where G t s H f .Ž . Ž . Ž . Ž .Ž . pŽ t .t

First, we have

pX tŽ .Ž .p t y1 pŽ t . pŽ t .X < < < <G t s yp t EE H f , H f q H f log H f p x .Ž . Ž . Ž . Ž .Ýž /t t t tp tŽ . x

Then
X Xp t log G t G tŽ . Ž . Ž .

XF t s y q F tŽ . Ž .2 p t G tŽ . Ž .p tŽ .
Xp tŽ .Ž . Ž .yp t q1 p t y1s F t LL H f y EE H f , H f .Ž . Ž . Ž .ž /p t t t2p tŽ .

3.2Ž .

Ž .Using the specific formula for p t , we get
4b t4beŽ . Ž .yp t q1 p t y1XF t s F t LL H f y EE H f , H f .Ž . Ž . Ž . Ž .ž /p t t t24b t1 q eŽ .

5 5 5 5 Ž . Ž .Now, since H f F f , H f s f and p 0 s 2, the derivative of F t2 ª pŽ t . 2t 0
at t s 0 must be negative. Together with the formula above, this shows that

b LL f F EE f , f ,Ž . Ž .
which is the desired inequality.

Ž .Second statement. Assume that K, p is reversible and satisfies the
log-Sobolev inequality

a LL f F EE f , f .Ž . Ž .
For f G 0, Lemma 2.6 gives

p2
pr2 pr2 py1a LL f F EE f , f F EE f , fŽ . Ž . Ž .p 4 p y 1Ž .
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Ž . 4a t XŽ . Ž Ž . .for any 1 - p - `. If p t s 1 q e , then p t s 4a p t y 1 and, replac-
ing f by H f, we obtaint

pX tŽ . Ž .p t y1LL H f y EE H f , H f F 0.Ž . Ž .ž /pŽ t . t t t2p tŽ .
Ž . 5 5However, using as above the notation F t s H f , the last inequalitypŽ t .t

Ž . XŽ . Ž . 5 5and 3.2 yield F t F 0 for all t G 0. Since F 0 s f , this implies2

5 5 5 5H f F fpŽ t . 2t

5 5or, taking the supremum over all f with f s 1,2

5 5H F 1.2 ª pŽ t .t

This is the desired hypercontractivity.
Third statement. The proof is almost identical to the one above. The

difference comes from the fact that we only have

p p2
pr2 pr2 py1 py1EE f , f F EE f , f F EE f , fŽ . Ž . Ž .

2 2 p y 1Ž .
Ž . 2 a tfor all p G 2. Thus, we set p t s 1 q e . Proceeding as before, we get again

pX tŽ . Ž .p t y1LL H f y EE H f , H f F 0Ž . Ž .ž /pŽ t . t t t2p tŽ .
Ž .and, together with 3.2 , this implies the stated hypercontractivity. This also

ends the proof of Theorem 3.5. I

3.3. Ergodicity. One way to use the log-Sobolev constant to discuss ergo-
dicity is through entropy. This is well known and gives a very clean state-
ment. This is not surprising because, if we set m s f 2p for a function f G 0,
5 5 Ž . Ž .f s 1, then LL f s Ent m . The following result in the reversible case is2 p

w x w xcontained in 5, 47 . Miclo 35 treats the nonreversible case.

THEOREM 3.6. Let K be a finite Markov chain with invariant measure p
and log-Sobolev constant a . Then for any probability measure m on X, we
have

Ent mH F Ent m ey2 a t , t ) 0.Ž . Ž .p t p

Ž . Ž . Ž .Here mH is defined by mH y s Ý H x, y m x .t t x t
Ž .Further, if we assume that K, p is reversible, then

Ent mH F Ent m ey4 a t , t ) 0.Ž . Ž .p t p

PROOF. The proof follows readily from Lemmas 2.5 and 2.7. Indeed, write
m s fp . Then the density of mH with respect to p is HU f. Lemma 2.5 givest t

U ² U U U :­ Ent H f s y I y K H f , log H fŽ . Ž .t t t t
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and Lemma 2.7 yields

1r2 1r2U U U U U U² : ² :I y K H f , log H f G 2 I y K H f , H fŽ . Ž . Ž . Ž .t t t r

1r2 1r2U Us 2 EE H f , H f .Ž . Ž .Ž .t r

Thus,

1r2 1r2U U U U­ Ent H f F y2 EE H f , H f F y2a Ent H f .Ž . Ž . Ž . Ž .Ž .t t t t t

This immediately yields

Ent HU f F ey2 a t Ent f .Ž . Ž .t

The improvement in the reversible case follows from the corresponding
improvement appearing in Lemma 2.7. I

REMARK. As a corollary of the last result we obtain the inequality

12x y2 a t5 53.3 2 H y p F log e ,Ž . TVt ž /p xŽ .

which may be compared with the bound

12x y2 lt5 53.4 4 H y p F e ,Ž . TVt p xŽ .

Ž .which follows from Lemma 2.8. The reversible chain 3.3 holds with 2a
replaced by 4a .

The next result shows that the chi-square distance can also be bounded in
terms of a .

Ž . Ž .THEOREM 3.7. Let K, p be a finite Markov chain. Assume that p x F
1re. Then

1 1 c
x 1yc5 5h y 1 F e for t s log log q , c ) 0.2t 2a p x lŽ .

Ž .y1 Ž Ž ..For reversible chains, the inequality holds for t s 4a log log 1rp x q
crl, c ) 0.

Ž . 2 a sPROOF. For s ) 0, set q s s 1 q e . The third statement of Theorem
5 5 5 U 5 X3.5 gives H F 1. By duality, it follows that H F 1, where2 ª qŽ s. q Ž s.ª 2s s

XŽ . Ž . XŽ . Ž .q s is the Holder conjugate of q s defined by 1rq s q 1rq s s 1. Con-¨
Ž . Ž . Ž .sider the function d defined by d x s 1rp x and d y s 0 for x / y andx x x

recall that

HU y E d y s h x , y y 1.Ž . Ž . Ž .s x s
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Then write

5 x 5 5 U 5 5 U 5 5 U 5h y 1 s H y E d F H d H y EŽ .2 2 2 2 ª 2tqs tqs x s x t

5 5 X 5 U 5 X 5 U 5F d H H y Eq Ž s. q Ž s.ª 2 2 ª 2x s t

Ž .y1rq s 5 5 5 5s p x H H y EŽ . 2 ª qŽ s. 2 ª 2s t

Ž .y1rq s yltF p x e .Ž .
Ž Ž .. Ž Ž .. Ž . Ž Ž ..Choosing s s 1r 2a log log 1rp x , we have q s s 1 q log 1rp x and

thus
5 x 5 1ylth y 1 F e .2tqs

This gives the stated inequality. For reversible chains, we use the second
statement of Theorem 3.5 instead. I

Ž .REMARK. Both 3.3 and Theorem 3.7 can be used to bound total variation
in terms of a . However, Theorem 3.7 is more precise and yields a result
which is better by a factor of 2. Further, Theorem 3.7 yields a bound in
maximal relative error:

1 1 c
2yc< <sup h x , y y 1 F e for t s log log q ,Ž .t 2a p# lx , y

Ž .where p# s min p x . For reversible chains, this follows readily from Theo-x
< Ž . < 5 x 5 2rem 3.7 and sup h x, y y 1 s sup h y 1 . For nonreversible chains,2x, y t x tr2

replace 2a by a and use

U , xx< < 5 5 5 5sup h x , y y 1 F sup h y 1 sup h y 1Ž . 2 2t tr2 tr2
x , y x x

instead and observe that K and KU have the same log-Sobolev constant.

For reversible chains, Theorem 3.7 and Corollary 2.2 yield the following
Corollary.

Ž . Ž .COROLLARY 3.8. Assume that K, p is reversible and p x F 1re. Set
� 4l# s min l, 1 q b . Thenmin

1 1 c1r2n 2 yc5 5k y 1 F 1 q 2 e e for n G log log q q 1, c ) 0.Ž .2x 4a p x l#Ž .
Ž .Further, setting p# s min p x , we havex

< 2 n < 2 y2 csup k x , y y 1 F 1 q 2 e eŽ . Ž .
x , y

1 1 c
for n G log log q q 1, c ) 0.

4a p# l#

EXAMPLE 3.4. We can now apply the results obtained in Example 3.3 to
prove the first statement in Theorem 1.1. Namely, Example 3.3 shows that
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Ž . � 4 Ž .the Metropolis chain 1.9 on 0, . . . , n which has stationary measure p x s
yn n2 satisfiesž /x

1 1
l M G , a M G .Ž . Ž .

n 2n
Ž . Ž . Ž .Further, 1.9 shows that M x, x G 2r n q 3 for all x g XX and it easily

Ž .follows that b G y1 q 4r n q 3 . Hence,min

lM n1r2x 2 ycy 1 F 1 q 2 e e for l G log n q 2c q 1, c ) 0.Ž . Ž .
p 22

w xFor the lower bound stated in Theorem 1.1, see 18 .

Further examples are discussed in Section 4.

REMARK. After this paper was submitted for publication Miclo discovered
a discrete time version of Theorems 3.7 and 3.8. He kindly authorized us to
present some of his results. The discrete time version of the decay of entropy
reads as follows: for any finite irreducible chain K with invariant measure p ,
let a# be the log-Sobolev constant of the chain KKU and aU that of KUK,
that is,

² U :I y KK f , fŽ .
a# s min ; LL f / 0 ,Ž .½ 5LL fŽ .

² U :I y K K f , fŽ .
Ua s min ; LL f / 0 .Ž .½ 5LL fŽ .

Ž U UThese constants can well be zero because KK and K K need not be
. w xirreducible. Miclo 36 proves that, for any probability measure m,

nnEnt mK F 1 y a# Ent m .Ž . Ž . Ž .p p

To obtain a statement analogous to Theorem 3.7, we will use Miclo’s discrete
version of hypercontractivity which reads

nUn5 5 w xK F 1 for all n , q G 2 such that q s 2 1 q a .2 ª q

The proofs of these two results are elementary but subtle. For instance,
Miclo’s entropy bound is based on the inequality

2' 't q s log t q s G t log t q 1 q log t s q t q s y t ,Ž . Ž . Ž . Ž .Ž . Ž .
w xwhich holds for all t, s q t G 0. See 36 .

Miclo’s hypercontractivity result and the line of reasoning used to prove
Theorem 3.7 yield the

THEOREM 3.7X. Let K be a finite irreducible chain with invariant measure
U � 4p satisfying a ) 0 and l# s min l, 1 q b ) 0. Thenmin

5 n 5 1yck y 1 F e2x



P. DIACONIS AND L. SALOFF-COSTE726

for

1 1 c
n G log log q q 2.Ulog 1 q a ylog 1 y l#Ž . Ž .'p xŽ .

As mentioned above, a#, aU can well be zero even when K is irreducible
Ž .in which case a ) 0 . To cope with this difficulty, one can use the log-Sobolev

l l,U l,U l w xconstants of K K and K K for some large enough l. See 10, 16, 36 .

3.4. Bounding a from below. We now give a result which is useful in
bounding a from below. The idea is as follows. For reversible chains, Theo-
rem 3.5 gives a characterization of a in terms of the function

5 5 w wt q s inf s ) 0: H F 1 , q g 2, q` .� 4Ž . 2 ª qs

Namely,

log q y 1Ž .
3.5 a s inf .Ž .

4t qq)2 Ž .
Ž .Theorem 3.9 bounds a in terms of just t q for fixed q ) 2 or, more

5 5generally, in terms of l and q, M , t where M , t satisfy H F M .2 ª qq q q q t qq

Ž .The result can be applied either with a finite q e.g., q s 4 or with q s `. In
the first case, the bound on a is potentially of the right order of magnitude.

5 5However, precise bounds on H for a finite q seem difficult to obtain.2 ª qt
5 5The case q s ` is appealing because good bounds on H are often2 ª`t

5 5available. However, even the best bound on H can produce bounds on2 ª`t
a that are off; see Example 3.5.

Ž .THEOREM 3.9. Assume that K, p is reversible. Fix 2 - q F q` and
5 5assume that t , M satisfy H F M . Then2 ª qq q t qq

1 y 2rq lŽ .
a G .

2 lt q log M q q y 2 rqŽ .Ž .q q

PROOF. The proof is based on Stein’s interpolation theorem for analytic
w x w x w xfamilies of operators: see 46 , 7 or 45 , page 385. Note that in order to

apply Stein’s interpolation theorem, we need to work with complex-valued
functions. Consider the complex time semigroup

` n nz K
yz Ž IyK . yzH s e s e .Ýz n!0

In the present elementary setting, this is clearly a well defined analytic
Ž .family of operators. Set T s H . Because K, p is reversible, we can usez z tq

spectral theory to show that, for all real a,

5 5 5 5T F 1 and T F M .2 ª 2 2 ª qia 1qia q
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5 5Here we have used the hypothesis H F M to obtain the second2 ª qt qq

inequality. Now, Stein’s interpolation yields

1 s 1 y s
s5 53.6 T F M for s q , 0 F s F 1.Ž . 2 ª ps qs p q 2s

From here, we can again restrict ourselves to real-valued functions. If we
Ž .express 3.6 in terms of H s T , where t s st , and sett s q

2 qtq
p t s p s ,Ž . s 2 y q t q qtŽ . q

we obtain

t
5 5H F exp log M .2 ª pŽ t .t qž /tq

2Ž .Let f be a function in l p . From the last inequality, we deduce that

t
5 5 5 5exp y log M H f F f .pŽ t . 2q tž /tq

5 5Since at t s 0 the left-hand side is equal to f , this shows that the2

derivative of

t
5 5t ª U t s exp y log M H fŽ . pŽ t .q tž /tq

Ž .at t s 0 is less than or equal to zero. Using 3.2 , we get

log M pX 0Ž .q y1X 5 5 5 5U 0 s y f q f LL f y EE f , f F 0.Ž . Ž . Ž .2 2 2ž /t p 0Ž .q

Hence
q y 2 1 25 5LL f F EE f , f q log M fŽ . Ž . Ž . 2q2 qt tq q

or
2 q 25 5LL f F t EE f , f q log M f .Ž . Ž . Ž . 2ž /q qq y 2

w x w x w xThis inequality can be found in 24 as well as in 5 and 8 . See also the
references given in these papers. The lower bound on a given in Theorem 3.9
now follows from this inequality and

5 5 23.7 LL f F LL f y Ef q 2 f y Ef .Ž . Ž . Ž . 2

Ž . w x w xThe proof of 3.7 is surprisingly tricky; see 8 , page 246, or 5 , page 47. I

Theorem 3.9 has a useful variant.
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Ž .THEOREM 3.10. Assume that K, p is reversible. Fix 2 - q F q` and
5 5assume that t , M satisfy H y E F M . Then2 ª qq q t qq

1 y 2rq lŽ .
a G .

2 lt q log M q q y 2 r2Ž .Ž .q q

PROOF. The same proof as above yields
2 q 25 5LL f y Ef F t EE f , f q log M f y Ef .Ž . Ž . Ž . 2ž /q qq y 2

Ž .By 3.7 , the result follows. I

Ž .COROLLARY 3.11. Assume that K, p is reversible. Define

5 x 5t s inf t ) 0: sup h y 1 F 1re .2½ 5t
x

Then
1 1 1

F t F 4 q log log .ž /2a 4a p#

PROOF. For the lower bound, use q s `, t s t , M s 1re in Theorem` `

3.10. For the upper bound, use Theorem 3.7. I

� 4nEXAMPLE 3.5. For the chain K on the hypercube XX s y1, 1 described in
nExample 3.2, the eigenvalues of I y K are 2 jrn with multiplicity ,ž /j

0 F j F n. Further,
n n2x id5 5 5 5max h y 1 s h y 1 s exp y4 jtrn .Ž .Ý2 2t t ž /jx 1

Thus,
nr2 jn2x5 5max h y 1 F 2 exp y4 jtrn F 2 exp n exp y4trn y 1 .Ž . Ž .Ž .Ž .Ý2t j!x 1

It follows that
n

x5 5 5 5H y E s max h y 1 F 2 for t s log n.2 ª` 2t t 4x

Using this information in Theorem 3.10 gives
2

a G ,
n 4 q log nŽ .

which has to be compared to the known value a s 1rn.

� 4EXAMPLE 3.6. Consider the nearest-neighbor chain K on 0, . . . , n with
lops at the ends. The eigenvalues and eigenfunctions of I y K are

l s 0, c x ' 1,Ž .0 0

p p j x y 1r2Ž .j 'l s 1 y cos , c x s 2 cos for j s 1, . . . , n.Ž .j j ž /n q 1 n q 1



LOGARITHMIC SOBOLEV INEQUALITIES FOR MARKOV CHAINS 729

w x w xSee 22 , page 436. Using this information, we show in 10 that
2 22 2x5 5 5 5 'H y E s max h y 1 F 2 exp y4tr n q 1 1 q n q 1 r4t .Ž . Ž .Ž .2 ª` 2t t ž /

x
1 2Ž .Thus, for t s n q 1 ,2

5 5H y E F 1.2 ª`t

Ž .2Using this and l G 2r n q 1 in Theorem 3.10 gives

1 1 p p 2 1
3.8 F a F 1 y cos s q O .Ž . 2 2 4ž / ž /2 n q 1 n2 n q 1 4 n q 1Ž . Ž .

To the best of our knowledge, the exact value of a is not known.

Ž .REMARKS. i The lower bounds on a given by Theorems 3.9 and 3.10 are
nondecreasing functions of l. Thus, any lower bound on l can be used in
these estimates.

yl tŽ . 5 5 Ž .'ii Since Lemma 2.8 always gives H y E F 1r p# e , where2 ª`t
Ž .p# s min p x , we can apply Theorem 3.10 with q s ` for each t ) 0. Thisx

yields
l

3.9 a G .Ž .
2 q log 1rp#Ž .

This bound will be improved to
1 y 2p# lŽ .

3.10 a GŽ .
log 1rp# y 1Ž .

Ž .in the Appendix see Corollary 5.4 . Clearly, these bounds have little value in
practice, but they give universal quantitative lower bounds. We will also

Ž .show that 3.10 is sharp in the case of the complete graph.
Ž . Ž .iii Let K, p be a nonreversible chain with stationary measure p . Con-

1 UŽ .sider the reversible chain with kernel Q s K q K and stationary mea-2
Ž w x.sure p this is often called the additive reversibilization of K ; see 23, 10 .

Ž .Note that K is irreducible if and only if Q is. Observe also that 2.2 says that
Ž . Ž . Ž .K, p and Q, p share the same Dirichlet form when restricted to f s g :

² : ² :EE f , f s I y K f , f s I y Q f , f .Ž . Ž . Ž .
Consider the semigroups H s eyt Ž IyK . and S s eyt Ž IyQ .. The relation be-t t
tween the hypercontractivity of H and S is shown in the following com-t t
ments.

Ž .a By definition, K and Q have the same log-Sobolev constant a .
Ž . 5 5b If one knows that S F 1 for all t G 0 and all q G 2 such that2 ª qt

4b t Ž . 5 5q F 1 q e for some b G 0 , then H F 1 for all t G 0 and all q G 22 ª qt
such that q F 1 q e2 b t. For the proof, use all the assertions of Theorem 3.5.

Ž . 5 5c If instead we know H F 1 for all t G 0 and all q G 2 such that2 ª qt
4b t Ž .q F 1 q e for some b G 0 , then the same statement holds for S .t

Ž . 5 5d If we know that S F 1 for some fixed t ) 0, Theorem 3.92 ª 4t 00
Ž . Ž .Ž .says that a G 1r 4t q 2rl . This shows that, for t G log 3 2 t q 1rl ,0 0

5 5H F 1.2 ª 4t
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Ž .e There is no useful converse to the last statement. It might well happen
5 5 5 5that H F 1 for some t , but that S F 1 only for t ’s much larger2 ª 4 2 ª 4t 0 t0

than t .0
Ž . Ž .f Using the above comments and 3.9 , one can show that any irreducible

K with invariant measure p on a finite set is hypercontractive.

4. Examples and applications. This section begins with a study of
what is known about the log-Sobolev constant in three well studied examples:
the hypercube Zn, the circle Z and random transpositions. Following this we2 m
study several classes of examples where good approximations to log-Sobolev
constants are available. For graphs with ‘‘moderate growth’’ we show that the
log-Sobolev constant is of the same order as the spectral gap. For expander
graphs, they are of different orders. Finally, we treat two examples previously
announced: the simple exclusion process and the Metropolis algorithm in a
box. Here, present techniques give considerable improvement over previously
available rates of convergence.

4.1. The hypercube. Let XX s Zn and, for i s 1, . . . , n, let e be the ele-2 i
ment of Zn with all coordinates 0 except for the ith, which is 1. Define a2

Ž . Ž . Ž .probability Q by setting Q 0 s Q e s 1r n q 1 for i s 1, . . . , n andi
Ž . n Ž .Q x s 0 otherwise. The associated random walk on Z has kernel K x, y s2
Ž . Ž . Ž l .Ž . Ž l .Q x y y , K x, y s Q x y y , where Q denotes the lth convolutionl

power of Q. The invariant measure is p ' 1r2n. It is well known that the
Ž . w xspectral gap is l s 2r n q 1 . See 9 for instance. We will show that here

the log-Sobolev constant equals half the spectral gap.
To find the log-Sobolev constant a we proceed as follows. Consider the

˜ n Ž .product chain K on Z with kernel the notation is as in Section 2.5 :2

n1
K̃ x , y s d x , y ??? d x , yŽ . Ž . Ž .Ý 1 1 iy1 iy1n is1

=K x , y d x , y ??? d x , y ,Ž . Ž . Ž .i i i iq1 iq1 n n

˜Ž . Ž .where K 0, 1 s K 1, 0 s 1 for each i. As in Example 3.2, the spectral gap li i
˜and the log-Sobolev constant a of this chain satisfy a s lr2 s 1rn. Since˜ ˜

n y1 ˜ y1Ž . Ž .our original chain K on Z can be written K s n q 1 nK q n q 1 I,2
y1 ˜Ž .the corresponding Dirichlet forms satisfy EE s n q 1 nj . This shows that

na 1 l˜
a s s s .

n q 1 n q 1 2

Ž .Using this, the fact that b s y1 q 2r n q 1 and Corollary 3.8, we get themin
bound

n q 1 11r2l 2 yc n5 5k y 1 F 1 q 2 e e for l s log log 2 q c q 1Ž .2x ž /2 2
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w xfor all n G 2. This is essentially the same as the sharp result given in 9 ,
which reads

n q 1 1
l yc'5 54.1 k y 1 F 2 e for l s log n q c , c ) 0.Ž . 2x ž /2 2

Ž .In particular, the result obtained by using a G 1r n q 1 shows that, as n
1tends to infinity, n log n steps are sufficient to reach stationarity. This is4
Ž w x.known to be sharp see 9 .

We now present a typical application of the log-Sobolev technique. The
above chain K is the simple random walk on the natural graph structure of
Zn with a loop at each vertex. The edge set AA ; Zn = Zn of this graph is the2 2 2

Ž .set of all x, y such that x and y differ at most by one coordinate. Consider a
new graph structure on Zn which is obtained by erasing and adding a few2
edges according to the following rules.

1. When erasing edges, for each original square, x, x q e , x y e , x q e , x yi i j
e , at most one edge is erased, and for each edge left in place, there are atj
most C squares containing this edge and an erased edge. For simplicity, no
loop is erased.

XŽ .2. When adding edges, the degree d x of any vertex x must stay bounded
by Cn.

Let AA X ; Zn = Zn be the symmetric edge set of this new graph. The simple2 2
Ž n X. XŽ . XŽ . Ž . Xrandom walk on Z , AA has kernel K x, y s 1rd x if x, y g AA and2

Ž . XŽ . XŽ . < X <K x, y s 0 otherwise. Its reversible measure is p x s d x r AA . Because
of the above simple rules, it is an easy matter to compare p X with the
uniform distribution 1r2n and to compare the Dirichlet forms EE, EEX of the

X w xchains K, K ; see 10, 12 . Thus, using Lemma 3.3 and the known value of a ,
we get

1
Xa G

C n1

for a constant C ) 0 depending on C but not on n. Then, applying Theorem1
3.7, we find that the perturbed chain K X satisfies

5 X l 5 ych y 1 F e for l s C n C log n q C q c , c ) 0,Ž .2x 1 2 3

for universal constants C , C .2 3
Let us illustrate this technique by looking at a simple case of the above

example. Assume AA X is obtained from the edge set AA of the hypercube with
Ž . Ž .loops by erasing the loops at 0, . . . , 0 and 1, . . . , 1 and adding an extra edge

joining these two vertices. This gives a regular graph. Let K X be the kernel of
the simple random walk on this graph and let EEX be the corresponding
Dirichlet form. It is obvious that K X is reversible with respect to the uniform

Ž . yn X X Ž .measure p x s 2 and that EE F EE . It follows that a G 1r n q 1 . In this
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Ž .case one can also show that b G y1 q 1r n q 1 for n G 3. Hence Corol-min
lary 3.8 yields

n q 1 11r2X l 2 yc n5 5k y 1 F 1 q 2 e e for l s log log 2 q c q 1, c ) 0,Ž .2x ž /2 2

for n G 3. We do not know any other way to prove this result.
w xSee also 17 for a different example of comparison involving the hypercube

and log-Sobolev constants.

4.2. The finite circle Z . Consider the simple random walk on Z withm m
Ž .m G 4. It has kernel K x, x " 1 s 1r2 and uniform stationary measure

1rm. The eigenvalues of I y K are

2p i
1 y cos , 0 F i F m y 1.

m

For this example we show that the log-Sobolev constant is of the same order
as the spectral gap. We have

my1
25 5H y E s exp y2 tl F 2 exp y2 t 1 y cos 2p irm .Ž .Ž .Ž .Ý Ý2 ª`t j

1 1FiFmr2

For 0 F x F pr2, 1 y cos x G 2 x 2r5. For pr2 - x F p , 1 y cos x G 1. These
inequalities yield

16p 2 t m q 12 2 y2 t5 5H y E F 2 exp y i q e .Ý2 ª`t 2ž /ž /45m1FiFmr4

Ž w x .Now see 10 , Section 4.B, for details ,
2 2 2mr4 '`16p t 16p t 5 m 16p t

2 2exp y i F exp y u du F exp y .Ý H2 2 2ž / ž / ž /'5m 5m 5m8 p t12

Hence,
2'5 m 16p t m q 12 y2 t5 5H y E F 2 1 q exp y q e .2 ª`t 2ž /ž /' 25m8 p t

For t s 5m2r16p 2 and m G 5, we get0

2'p m q 1 5m2 y15 5H y E F 2 1 q e q exp y2 ª`t 20 ž /ž /2 2 8p

'p
y1F 2 2 q e F e.ž /2

Using this in Theorem 3.10 gives

2p 2 l 8p 2 2l
G G a G G2 22 25m 25m
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for m G 5 and one can check that this also holds for m s 4. The exact value
of a is not known for m G 4. For m s 3, a is computed in the Appendix and

w xis equal to 1r 2 log 2 .

4.3. Random transpositions. Let XX s S be the symmetric group. Con-n
Ž . w Ž .x y1sider the chain with kernel K u , s s 2r n n y 1 if u s is a transposition

Ž . Ž .and K u , s s 0 otherwise. This chain has invariant measure p ' 1r n! . It
w xis studied in detail in 9 . There, it is proved that the spectral gap is

Ž . Ž .l K s 2r n y 1 .
Let H s eyt Ž IyK . be the corresponding semigroup. Using the informationt

w xand the techniques presented in 9 , pages 40]43, one can show that

5 5 5 id 54.2 H y E s h y 1 F 1Ž . 2 ª` 2t p t

for t s n log n. By Theorem 3.10, this implies that the log-Sobolev constant of
this chain satisfies

1 1
F a F .

3n log n n y 1

w xThis result is used in 14 to study random walk on very sparse contingency
tables. It would be very interesting to compute a exactly or to significantly
improve upon the bounds stated above.

Ž .4.4. Moderate growth. Random walk on a path Example 3.6 and the
circle Z are the simplest examples of chains having moderate growth andm

w xsatisfying a local Poincare inequality in the sense of 10 , Section 5. We´
briefly recall these definitions. For simplicity, consider a simple random walk

Ž .on a finite graph XX , AA , where AA ; XX = XX is a symmetric set of edges. This is
Ž . Ž . Ž . Ž .the chain with kernel K x, y s 1rN x if x, y g AA and K x, y s 0 other-

Ž . Ž .wise, where N x is the number of y such that x, y g AA. This chain has
Ž . Ž . < <stationary distribution p x s N x r AA . It has Dirichlet form

1 2< <EE f , f s f x y f y .Ž . Ž . Ž .Ý< <2 AA Ž .x , y gAA

Ž .Using the graph distance on XX , we consider the ball B x, r of radius r
Ž . Ž Ž .. Ž . Ž .y1 Ž .around x. We set V x, r s p B x, r and f x s V x, r Ý f y . Letr BŽ x, r .

g be the diameter of the graph.
Ž . Ž .The graph XX , AA has A, d moderate growth if and only if

d1 r q 1
V x , r G for all x g XX and all r F g .Ž . ž /A g

Ž .The graph XX , AA satisfies a local Poincare inequality with constant a ) 0´
if and only if

5 5 2 2f y f F ar EE f , f for all r F g and any function f .Ž .2r
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The following theorem asserts that a graph satisfying these two hypothe-
ses has a spectral gap and a log-Sobolev constant of roughly the same order,

Ž .y2both comparable to diameter .

Ž . Ž .THEOREM 4.1. Let XX , AA be a finite graph having A, d moderate growth
and satisfying a local Poincare inequality with constant a ) 0. Let g be the´

Ž .diameter of XX , AA . There are constants c ) 0 depending only on A, d suchi
that the following statements hold.

Ž . Ž . 2i The spectral gap of the simple random walk on XX , AA satisfies 1rag
F l F c rg 2.1

Ž . Ž .ii The log-Sobolev constant a of the simple random walk on XX , AA
2 2 y1 Ž wŽ Žsatisfies c rag F a F c rg . Here, one can take c s 2 2 q log e 1 q2 3 2

. .1r2Ž .d r4 xd A 2 q d .

PROOF. The upper bound on l follows readily for the hypothesis that a
Ž .local Poincare inequality is satisfied take r s g . The upper bound on a´

follows by Lemma 3.1. The lower bound on l follows from the hypothesis of
w xmoderate growth; see 10, 15 . The lower bound on a is a consequence of

w xTheorem 3.10 and 10 , Theorem 5.8. I

Examples of moderate growth are random walks on nilpotent groups of
bounded class with a bounded number of generators, for example, the Heisen-

w xberg group mod p; see 10, 13, 15, 16 .

4.5. Random graphs and expanders. For simplicity, consider an r-regular
Ž .finite graph XX , AA , where AA ; XX = XX is a symmetric set of edges. Since each

Ž .vertex has exactly r neighbors, the simple random walk on XX , AA has kernel
Ž . Ž . Ž .K x, y s 1rr if x, y g AA and K x, y s 0 otherwise. The stationary mea-

< <sure p is the uniform distribution p s 1r XX .

Ž .LEMMA 4.2. The log-Sobolev constant of any finite r-regular graph XX , AA
satisfies

< <4 q log log XXŽ .
a F log r .

< <w x2 log 3 XX r4

For the d-dimensional cube or random transpositions, this bound is worse
than the one given by a F lr2. Nevertheless, Lemma 4.2 shows that for any
fixed r, the log-Sobolev constant of an r-regular graph tends to zero with the
size of the vertex set.

1 Ž .PROOF. Consider the chain K s I q K . On the one hand, by a straight-2
y1x n5 5 < <forward counting argument, we have k y 1 G 1r2 if n satisfies XX r2n

F 3r4. On the other hand, applying Theorem 3.7 and Corollary 2.2 to K,
which has no negative eigenvalues, we find that

1
x 1yc5 5 < <k y 1 F e for n G log log XX q 2c ,Ž .2n 4a
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Ž w < < x.where a s ar2 is the log-Sobolev constant of K. Hence log 3 XX r4 rlog r F
Ž < <.4 q log log XX r2a . This yields the desired result. I

Ž .REMARKS. i One motivation for Lemma 4.2 comes from the general
Žtheory of log-Sobolev inequalities. Recall that the inequality a F lr2 stated

.here as Lemma 3.1 is valid in full generality for Markov semigroups admit-
ting a reversible probablity measure. In the few examples where both l and
a are explicitly known, they satisfy a s lr2. This is the case for the symmet-
ric two-point space, the Orstein]Uhlenbeck process on R n or the standard

w xdiffusion on the n-sphere; see 24, 25, 5 , for instance. A diffusion where
w xa s lr4 is given in 30 . Not surprisingly, the question of bounding a from

below in terms of l is often raised in the literature. Lemma 4.2, together with
known deep estimates on the spectral gap of a certain family of graphs, yields
a host of examples where a g l. Some are described below. From this point of
view, the most striking of these results, which might well be the easiest to
prove, asserts that a generic r-regular graph has a g l.

Ž . Ž .ii Lemma 4.2 extends easily to any finite reversible Markov chain K, p .
� Ž . 4 � Ž .4Let r s sup a y / x: K x, y ) 0 and p s max p x . Thenˆ ˆx x

w xlog r 4 q log log 1rpŽ . Ž .ˆ ˆ
a K F .Ž .

log 3r4pŽ .ˆ
Bounds in terms of the diameter can also be derived.

Ž .EXAMPLE 4.1 Quotients of a group with Kazdhan’s property T . Let G be
an infinite, finitely generated group with a finite symmetric set S of genera-
tors. Consider the finite groups XX s GrG that are quotient of G by a normal
subgroup G. The set S can also be considered as a generating set in XX and

w xthus determines a symmetric ergodic walk on XX . Margulis 34 and Alon and
w xMilman 3 showed that if G has Kazdhan’s property T, then there exists a

Ž . Ž .constant t s t G ) 0 such that l s l XX , S satisfies l G t . By Lemma 4.2,
Ž .a g l for these graphs. The group SL Z is an example of a group with3

propety T. For S one can take
"1 "1

0 1 0 1 1 0
, .0 0 1 0 1 0ž / ž /1 0 0 0 0 1

Ž Ž . .Thus the Cayley graphs SL Z , S , m s 2, 3, . . . , have3 m

c log log m
inf l SL Z , S ) 0 and a SL Z , S F .Ž . Ž .Ž . Ž .3 m 3 m log mm

Ž .Inequality 3.9 gives a lower bound of order 1rlog m in this case.
Ž . Ž .This generalizes to SL Z for any fixed n G 3. The group SL Z does notn 2

w xhave property T. For all of this, see 33 .

w Ž .x Ž .EXAMPLE 4.2 SL Z . Let XX s SL Z , where p is a prime, with2 p 2 p
generating set

"1 "1
1 1 0 1S s , .½ 5ž / ž /0 1 y1 0
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Ž .It can be shown but this is rather difficult that there exists « ) 0 such
Ž Ž . . w x Ž Ž . .that l SL Z , S G « ; see 33 . Lemma 4.2 yields a SL Z , S F2 p 2 p

Ž . Ž .c log log p rlog p. Thus a g l. Here, inequality 3.9 gives a lower bound of
order 1rlog p.

It is worth mentioning the following simple example which is obtained as a
� 4quotient of these Cayley graphs: set YY s 0, 1, . . . , p y 1, ` , where p is a

prime, and connect x g YY to x q 1, x y 1 and y1rx. This is a family of cubic
w xgraphs with l G « uniformly in p; see 33 , where an explicit value of « is

also given. Again, we have

log 3 4 q log log p q 1Ž . Ž .Ž .
a F .

2 log 3 p q 1 r4Ž .Ž .

Ž .EXAMPLE 4.3 Random regular graphs . Fix an integer r G 3. A model for
w xrandom r-regular grpahs on n vertices was introduced by Bollobas 6 ; see

w x w xalso 33, 42 . Theorem 4.2 in 2 states that, for this model and as n tends to
Ž . Ž .infinity, a random r-regular graph GG on n vertices satisfies l GG G « r ) 0

Ž .with probability 1 y o 1 as n tends to infinity. Lemma 4.2 shows that
Ž .a GG ª 0 as n tends to infinity. Thus, for fixed r, a generic r-regular graph

has a g l.

4.6. Exclusion process. Simple exclusion is a well studied process; see
w xLiggett 31 for an overview. Here, we consider the simple case where r

particles are hopping around on the vertices of a finite graph. We refer the
w xreader to 23, 12 for motivation and more details. In particular, we will

w xmainly keep the notation introduced in 12 .
Ž .Thus, let GG s XX , AA be a finite graph with vertex set XX having0 0 0 0

< < Ž . �cardinality XX s n and symmetric edge set AA ; XX = XX . Let d x s a y g0 0 0 0
Ž . 4 � Ž .XX : x, y g AA be the edge degree of x in GG and let d s max d x :0 0 0 0

4x g XX .0
For any fixed r F n, the exclusion process is defined as a Markov chain

with state space the r sets of XX . Informally, if the current state is the r set0
A, pick an element in A with probability proportional to its degree, pick a
neighboring site at random and move the element to the neighboring site
provided this site is unoccupied. If the site is occupied, the chain stays at A.
Formally, let X s X be the set of the r sets of XX and A , A be r sets.r 0 1 2

Ž .Define K A , A as follows:1 2

< < Ž .If A l A F r y 2, K A , A s 0.1 2 1 2

< < � 4 � 4If A l A s r y 1 and A s A j a , A s A j a1 2 1 1 2 2
Ž . Ž .with a , a f AA , K A , A s 0.1 2 0 1 2

4.3Ž . < < � 4 � 4If A l A s r y 1 and A s A j a , A s A j a1 2 1 1 2 2
Ž . Ž . Ž .with a , a g AA , K A , A s 1rÝ d a .ag A1 2 0 1 2 1

UŽ . Ž . Ž .If A s A , K A , A s Ý d A rÝ d a , where1 2 1 1 ag A a 1 ag A1 1
U Ž . <� Ž . 4 <d A s b g A : a, b g AA .a 1 1 0
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This is a reversible chain with stationary distribution

nÝ d aŽ .ag A
p A s .Ž .

n < <r AA0ž /r

w Ž . xNote that if GG is d -regular i.e., d x ' d , then K is symmetric and p is0 0 0
uniform on r sets.

w xIn 12, 37 the exclusion process on a given graph is studied by comparison
˜with a similar but simpler process K known as the Bernoulli]Laplace model

of diffusion. This is also a process on the r sets of XX : if its current state is the0
r set A, pick an element in A at random, pick an element in XX RA at0
random, and switch the two elements. Formally, for two r sets A , A , define1 2
K̃ as follows:

˜< <If A l A F r y 2 or A s A , K A , A s 0.Ž .1 2 1 2 1 24.4Ž . ˜< <If A l A s r y 1, K A , A s 1rr n y r .Ž . Ž .1 2 1 2

nThis chain is reversible with uniform stationary distribution p ' 1r . The˜ ž /r
w xfollowing result is proved in 12 , Section 3.

˜ ˜ Ž .THEOREM 4.3. The Dirichlet forms EE, EE of the chains K, K defined in 4.3
Ž .and 4.4 satisfy

< <AA D0 0
ẼE F EE

n n y rŽ .
with

< <D s max g ,Ý0 x , y½ 5
e gAA0 0 g 2ex , y 0

Ž . < <where, for each x, y g XX = XX , a path g of length g has been chosen in0 0 x y x y
Ž .GG and the sum is over all x, y such that the edge e is an edge used in g .0 0 x y

One of the main features of the above result is that D is a quantity that0
depends only on the underlying graph GG . Now, a lot is known about the0

˜Bernoulli]Laplace chain K. It has been studied by Diaconis and Shahsha-
˜w x Ž .hani 20 , where they show that l s nrr n y r . Further, using eigenvalues

w xand eigenfunctions as in 20 , one can show that

r n y rŽ .
x˜ ˜5 5 5 5H y E s sup h y 1 F e for t s log n.2 ª` 2t p t˜ nxgXX

By Theorem 3.10, this yields the following lemma.

LEMMA 4.4. The log-Sobolev constant a of the Bernoulli]Laplace chain˜
Ž .4.4 satisfies

n n
G a ) .˜

2r n y r 3r n y r log nŽ . Ž .
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Lemmas 3.3 and 4.4, Theorem 4.3 and a direct comparison of p , p yield˜
the following theorem.

Ž .THEOREM 4.5. The chain K of the exclusion process 4.3 satisfies
n n

l G and a G ,
r d D 3r d D log nr 0 r 0

where
1

d s max d a F d .Ž .Ýr 0½ 5rAgXr agA

w xThe estimate of l is one of the main results of 12 and the bound on a
was announced there. Theorem 3.7 can now be used to improve upon the

w xconvergence results stated in Section 6 of 12 .

Ž .THEOREM 4.6. The exclusion process at 4.3 satisfies

r d D 3 ndr 0 r nx 1yc5 5h y 1 F e for t G log n log log q c .Ž .2t ž /rž /ž /ž /< <n 4 AA0

w xIn many cases, 12 also provides estimates on b and one can applymin
Corollary 3.8 to get convergence results for the corresponding discrete time
exclusion process. Examples follow.

w xEXAMPLE 4.4. As a first example, consider the process of nr2 particles
around the finite circle Z with its standard graph structure. This is Exam-n

w x Ž .2ple 1 in Section 5 of 12 , which gives D F n n q 2 r24, d s 2. Hence,0 0
Theorem 4.6 gives

2n n q 2Ž . 2x 1yc5 5h y 1 F e for t G log n q c .Ž .Ž .2t 24

w xBy Corollary 3.8 and the results of 12 , Section 5, a similar estimate holds as
well for the discrete time chain. Thus, using the log-Sobolev constant, we can

3Ž .2assert approximate randomness for this process after order n log n steps.
w x 4Using only the spectral gap as in 12 gives order n .

Ž .REMARKS. i In the important case where GG is a path with n points or a0
square grid or a finite square box in d dimensions of side length n, Lu and

w xYau 32, 50 have been able to show that the log-Sobolev constant of the
w 2 xexclusion process of r particles is bounded by a G cr rn for a constant c

independent of r and n. That is, a f l in this case. Their proof is much more
involved than the argument used above. What their argument gives for more
complicated underlying graph structures GG is not clear to us. It would be0
interesting to decide what is the exact order of the log-Sobolev constant a of˜
the Bernoulli]Laplace model considered in Lemma 4.4. If we knew that a is˜
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w Ž .xin fact of order nr r n y r , the comparison argument used above would
give an alternative proof of Lu and Yau’s result and extend it to other
underlying graph structure.

Ž .ii There is an interesting nonreversible variant of the above process
where a continuous time exclusion process of r particles on Z is constructedn
from the deterministic walk that moves to the nearest right neighbor at each

w x Žstep; see 23 for details. This nonreversible process has the same symme-
.trized Dirichlet form as the above reversible process, and our analysis

applies as well to this nonreversible case.

EXAMPLE 4.5. Consider now the exclusion process of d particles on the
standard graph of the d-dimensional cube Zd. For this case, one has D s2 0
Ž . dy2d q 1 2 , d s d, and Theorem 4.6 gives0

d2 d q 1Ž .
x 1yc5 5h y 1 F e for t G 2 d log d q c .Ž .2t 4

In other words, we find here that approximate equilibrium is reached for t of
4 w xorder d log d, whereas Theorem 1 in Section 5 of 12 asserts approximate

randomness for t of order d6.

Ž . 2EXAMPLE 4.6. Consider the problem of picking say d permutations at
random, without replacement, in the symmetric group S . A possible way ofd

Ž .doing that is to run the exclusion process 4.3 on the Cayley graph of S withd
w xthe transpositions as set of generators. This is Example 4 in Section 5 in 12

Ž .and we have D F d!, d s d d y 1 r2. We find that0 0

d4
2x 1yc5 5h y 1 F e for t G 3d log d q c .Ž .Ž .2t 2

5Ž .2Thus, t of order d log d is enough for approximate randomness of this
w xprocess. Using only the spectral gap as in 12 , one would ask for t of order

d7 log d.

Ž .4.7. The Metropolis algorithm in a box. Let XX s C n, d be a discrete box
Ž . dof side length n in d-dimensions. The extreme points of C n, d are the 2

vectors with coordinates 0 or n.
Ž .The usual nearest-neighbor walk in C n, d has stationary distribution

Ž . Ž .proportional to the degree d x of the vertex x g C n, d . This varies be-
tween d and 2 d and so is not uniform. The Metropolis algorithm is a widely
used method for changing the transition probabilities to have a given station-

Ž .ary distribution. Here, this is a Markov chain on the points in C n, d with
Ž .transitions P x, y s 0 unless x s y or x and y differ by "1 in a single
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Ž .coordinate, in which case P x, y is given by

1¡
, if d x G d y and x / y ,Ž . Ž .

d xŽ .
1

, if d x - d y ,Ž . Ž .~4.5 P x , y sŽ . Ž . d yŽ .
1 1 y d xŽ .

, if x s y.Ý ž /d x d zŽ . Ž .Ž . Ž .¢ z : d x -d z
z;x

Ž .The chain P is a reversible, aperiodic, irreducible Markov chain on C n, d
Ž . Ž .dwith uniform stationary distribution p x s 1r n q 1 . As far as we can

say, the eigenvalues and eigenvectors of this chain are not explicitly known.
Our aim is to prove the following sharp result.

THEOREM 4.7. The semigroup H s eyt Ž IyP . associated with the Metropolist
chain P on C satisfiesn, d

2x 1yc5 5h y 1 F e for t s d n q 1 log d q 1r8 q cr2 ,Ž . Ž .Ž .2t

with c ) 0. Similarly,
1r2 2l 2 - c5 5p y 1 F 1 q e e for l G d n q 1 log d q 1 q c .Ž . Ž . Ž .Ž .2x

Let us first describe the ideas of the proof. There are several variants of the
chain P that are product chains in the sense of Section 2.4. For these
variants, statements similar to Theorem 4.7 follow directly from Theorems
2.9 and 2.10. Now, the reversible measure and Dirichlet form of P are easily
comparable to the reversible measure and Dirichlet form of any of these

w xvariants. In 10 , we used this line of reasoning and Nash inequalities to show
that the chain P is close to equilibrium for l of order d2 n2 log d. Here, we are

w xgoing to use the same idea, the results of 10 , and the machinery of
w xlog-Sobolev inequality to improve upon the results of 10 and show that l of

order dn2 log d suffices. Easy arguments show that this is best possible.
Ž .We have chosen to present this analysis for the Metropolis chain 4.5 , but

it is worth noting that the arguments developed below clearly work for many
other natural chains on C .n, d

� 4PROOF. Consider the Markov kernel K on 0, 1, . . . , n defined by

� 4K x , x q 1 s 1r2 for x g 0, . . . , n y 1 ,Ž .
� 4K x , x y 1 s 1r2 for x g 1, . . . , n ,Ž .

K 0, 0 s K n , n s 1r2.Ž . Ž .
This is a symmetric kernel with uniform stationary distribution. It has
known eigenvalues and eigenfunctions and we proved in Example 3.6 that its

Ž . Ž . w Ž .2 xlog-Sobolev constant on a K is bounded by a K G 1r 2 n q 1 .
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˜ Ž .Next, consider the kernel P on C n, d which proceeds by choosing one of
the d coordinates at random and changing that coordinate using K above.
Thus,

d1
P̃ s I m ??? m I m K mI m ??? m I .Ý ^ ` _d is1

i y 1

It follows from Lemma 3.2 that this chain has spectral gap

1 p 2˜4.6 l s 1 y cos GŽ . 2ž /d n q 1 d n q 1Ž .
and log-Sobolev constant bounded by

1
4.7 a G .Ž . ˜ 22 d n q 1Ž .

˜Further, there is an obvious comparison between the chains P and P.
Ž . Ž .dThey have the same stationary distribution p x s 1r n q 1 and satisfy

˜Ž . Ž .P x, y F P x, y for x / y. Hence, their Dirichlet forms satisfy

ẼE F EE .
Ž . Ž .This, 4.6 , 4.7 and Lemma 3.3 imply that the spectral gap and log-Sobolev

constant of P are bounded by

2 1
4.8 l G , a G .Ž . 2 2d n q 1 2 d n q 1Ž . Ž .

w xFurther, it is proved in 10 that the least eigenvalue b of P satisfiesmin

1
4.9 b G y1 qŽ . min 2dn

and that the chain P satisfies the Nash inequality

822q4r d 2 4r d5 5 5 5 5 5f F 64d n q 1 EE f , f q f f .Ž . Ž .2 2 12ž /d n q 1Ž .
For H s eyt Ž IyP ., this Nash inequality impliest

5 x 5 5 5sup h s H2 2 ª`t t
x

dr42 2216d n q 1 d n q 1Ž . Ž .
F for 0 F t F .ž /t 8

4.10Ž .

w xSee 10 , Theorem 3.5, and the references given therein.
To prove the first statement in Theorem 4.7, we follow the line of reasoning

Ž . xŽ .used in the proof of Theorem 3.7. First, observe that H y E h y st u
Ž U . xŽ . x Ž . Ž .H y E h y s h y y 1 because P is reversible. For s ) 0, define q st u tqu

4a s Ž . XŽ .s 1 q e , 1rq s q 1rq s s 1 and note that Theorem 3.5 and duality
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5 5 Ximply H F 1. Second, write t s c q s q u andq Ž s.ª 2s

5 x 5 5 x 5 5 x 5 5 5h y 1 s H y E h F H h H y EŽ .2 2 2 2 ª 2t cqs u s u c

5 x 5 X 5 5 X yl c 5 x 5 X yl cF h H e s h eq Ž s. q Ž s.ª 2 q Ž s.u 2 u

5 x 5 2r qŽ s. ylcF h e ,2u

5 5 Xwhere the last inequality follows from the Holder inequality f F¨ q
5 51y2r q 5 5 2r q Xf f which holds for all f and all q G 2, 1rq q 1rq s 1. Now, we1 2

Ž .2 Ž . 5 x 5 Ž 7 .d r4pick u s d n q 1 r8 so that 4.10 implies h F e 2 d . This yields2u

Ž .2rq sdr4x 7 ylc5 5h y 1 F e 2 d e .Ž .2t

w Ž 7 .d r4 x2r qŽ s. Ž . 4a s 7 5Next, we pick s so that e 2 d F e. Since q s s 1 q e , 2 F e , it
is enough to choose

1 5d d log d
s G log 1 q q .ž /4a 2 2

Ž Ž ..for instance, s s 1r 2a log d works. For this choice of s and u, we have

5 5 1ylcH y E F e ,2 ª`t

where
2d n q 1 1Ž .

t s q log d q c.Ž .
8 2a

Ž .Using the bounds 4.8 , this implies

21yc5 5H y E F e for t s d n q 1 log d q 1r8 q cr2 .Ž . Ž .Ž .2 ª`t

This is the first assertion of Theorem 4.7. The second assertion then follows
Ž .from Corollary 2.2 and 4.9 .

APPENDIX

This appendix gives the exact value of the log-Sobolev constant of the
Ž . Ž .chain K x, y s p y on a finite set XX , where p is a given probability

Ž .distribution which satisfies p y ) 0. It also determines the log-Sobolev
constant for all chains on a two-point space.

THEOREM A.1. Let p be a probability measure on the finite set XX . Assume
Ž . Ž .that p is positive and set p# s min p . Consider the chain K x, y s p yXX

which has invariant measure p . The log-Sobolev constant a of this chain is
given by

1 y 2p#
a s .

log 1rp# y 1Ž .
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< <In particular, for p ' 1r XX ,
< <1 y 2r XX

a s .
< <log XX y 1Ž .

� 4We will first prove the special case where XX s 0, 1 is the two-point space.
Then we will show that the above result follows from this special case.

� 4THEOREM A.2. Consider the chain on 0, 1 with matrix

u 1 y u where 0 - u F 1r2.ž /u 1 y u

Ž . Ž .This has invariant measure p 0 s u , p 1 s 1 y u . The log-Sobolev constant
of this chain is

1 y 2u
a u s .Ž .

log 1 y u ruŽ .
Ž . Ž wŽ . x.At u s 1r2, the function u ª 1 y 2u r log 1 y u ru must be replaced by

its limit value, which is equal to 1r2.

w xYoshida informed us that he and Higuchi 26 have independently discov-
ered the value of the log-Sobolev constant of asymmetric two-point spaces.

PROOF OF THEOREM A.2. The proof is a tedious calculus exercise involving
good guessing supported by numerical computations. The first step consists of
picking nice coordinates. In order to do this, we follow the choice that leads to
the easiest computation in the known symmetric case u s 1r2. Call x, y the

� 4values of a given function on XX s 0, 1 and set s s x y y, which will be our
main variable. We can assume that x, y G 0. We want to compare

LL s u x 2 log x 2 q 1 y u y2 log y2Ž .
y u x 2 q 1 y u y2 log u x 2 q 1 y u y2Ž . Ž .Ž . Ž .

and
2

EE s u 1 y u x y y .Ž . Ž .
By homogeneity, we can impose the condition

u x q 1 y u y s 1,Ž .
which amounts to saying that our function has mean 1 under p . With this
normalization, we can compute x and y as functions of s s x y y:

x s 1 q 1 y u s,Ž .
y s 1 y u s.

Ž .y1 y1 2The parameter s varies between y 1 y u and u . Also, we have u x q
Ž . 2 Ž . 21 y u y s 1 q u 1 y u s . Thus, our problem is to compare

2 2l s s u 1 q 1 y u s log 1 q 1 y u sŽ . Ž . Ž .Ž . Ž .
2 2q 1 y u 1 y u s log 1 y u sŽ . Ž . Ž .

y 1 q u 1 y u s2 log 1 q u 1 y u s2Ž . Ž .Ž . Ž .
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with

e s s u 1 y u s2Ž . Ž .
w Ž .y1 y1 xon y 1 y u , u . Computing derivatives gives

eX s s 2u 1 y u s, eY s s 2u 1 y u ,Ž . Ž . Ž . Ž .
and

2Xl s s 2u 1 y u 1 q 1 y u s log 1 q 1 y u sŽ . Ž . Ž . Ž .Ž . Ž .Ž
2 2y 1 y u s log 1 y u s y s log 1 q u 1 y u s ,Ž . Ž . Ž .Ž . .

lY s s 4u 1 y u 1 q 1 y u log 1 q 1 y u s q u log 1 y u sŽ . Ž . Ž . Ž . Ž .Ž .ž
1 u 1 y u s2Ž .

2y log 1 q u 1 y u s y ,Ž .Ž . 2 /2 1 q u 1 y u sŽ .
4u 1 y u b sŽ . Ž .

Zl s s ,Ž . 221 q u 1 y u s 1 q 1 y u s 1 y u sŽ . Ž . Ž .Ž .Ž .
Ž . Ž .Ž Ž . 2 . 2Ž .2 3where b s s 1 y 2u 1 q 3u 1 y u s y 4u 1 y u s . Finally, we com-

pute

bX s s 6u 1 y u s 1 y 2u y 2u 1 y u s .Ž . Ž . Ž .Ž .

We want to find the smallest positive real a such that

l s F ae sŽ . Ž .
w Ž .y1 y1 xon y 1 y u , u . Let us start with two simple observations.

Ž . Ž . XŽ . Ž . XŽ . YŽ . Ž .i Since l 0 , l 0 , e 0 , e 0 are equal to zero and l 0 s 4u 1 y u ,
YŽ . Ž .e 0 s 2u 1 y u we have a G 2.
Ž . Ž . Ž . y1Ž Ž . Ž ..ii Since l 1ru y ae 1ru s u log 1ru y a 1 y u , we have a G
Ž . Ž .1r 1 y u log 1ru .

Figure 2 shows the variation of lY y aeY, lX y aeX and l y ae. For a G 2,
YŽ . YŽ .l 0 y ae 0 s u F 0. Further, we can assume that a is taken small enough0

so that u ) 0.1
Ž .If u is negative it easily follows from the table in Figure 2 center and the3

Ž . Ž .fact that l 0 y ae 0 s 0 that l y ae F 0. We can thus assume that a is
small enough so that u is positive. Then l y ae varies as shown in the lower3
panel of Figure 2.

Ž . Ž .It follows from the study above that the equation l s y ae s s 0 has zero,
wŽ .y1 y1 xone or two nonzero solutions in 1 y u , u , depending on the value of a.

If a is too large, there are no nonzero solutions. When a is too small, either
XŽ . XŽ . Ž . Ž .there is one nonzero solution s# with l s# y ae s ) 0 and l s y ae s ))

y1 XŽ . XŽ .0 for s# - s F u , or there are two solution s - s with l s y ae s )y q y y



LOGARITHMIC SOBOLEV INEQUALITIES FOR MARKOV CHAINS 745

FIG. 2. Variation of l y ae and its derivatives.

XŽ . XŽ . Ž . Ž . Ž .0, l s y ae s - 0 and l s y ae s ) 0 in s , s . This shows that weq q y q
are looking for the unique value of a for which the system of equations

l s y ae s s 0,Ž . Ž .
A.1Ž .

lX s y aeX s s 0Ž . Ž .
wŽ .y1 y1 xhas a nonzero solution in 1 y u , u . Unfortunately, it is not clear how

to compute this value explicitly from the system above.
Ž . Ž .Now, it is easy to plot s ª l s y ae s for a fixed value of u and different

Ž .values of a. Experiments and good guesses led us to believe that A.1 admits
a solution if and only if

log 1 y u ruŽ .
a s

1 y 2u

Ž .and that the solution of A.1 for that value of a was

1 y 2u
s s .

2u 1 y uŽ .
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Ž .Luckily enough, plugging these values in A.1 shows that, indeed, they
Ž .satisfy A.1 . This proves Theorem A.2. I

Above, we have chosen a specific two-state chain, but the result of Theorem
5.2 determines the log-Sobolev constant for all kernels on a two-point space.

� 4COROLLARY A.3. Let XX s 0, 1 . Let K be a Markov kernel on XX with
Ž . Ž . Ž .stationary distribution p x . Assume that p 0 F p 1 . Then the log-Sobolev

Ž .constant a s a K equals

K 0, 1 1 y 2p 0Ž . Ž .
.

p 1 log p 1 rp 0Ž . Ž . Ž .

Ž . Ž .If p 1 F p 0 , reverse the roles of 0 and 1.

Ž . Ž .Ž Ž . Ž ..2PROOF. The Dirichlet form EE equals K 0, 1 p 0 f 0 y f 1 , whereasK
Ž . Ž .Ž Ž . Ž ..2the Dirichlet form used in Theorem A.2 is p 0 p 1 f 0 y f 1 . This proves

the corollary. I

Ž . Ž .REMARK. Observe that K has spectral gap l s K 0, 1 q K 1, 0 . It fol-
Ž . Ž . Ž Ž .. Ž w Ž . Ž .x.lows that the ratio a K rl K s 1 y 2p 0 r log p 1 rp 0 F 1r2 with

Ž .strict inequality unless p 0 s 1r2. Thus, for all chains on a two-point space
Ž . Ž .having p 0 / 1r2, a - lr2, the two sides having different orders for p 0

small.

PROOF OF THEOREM A.1. The proof borrows many ideas from the work of
w xRothaus 38]40 . Recall that a is defined by the variational formula

EE f , fŽ .
A.2 a s inf : LL f / 0 .Ž . Ž .½ 5LL fŽ .

We know that we can restrict ourselves to nonnegative functions because
Ž < < < <. Ž .EE f , f F EE f , f . Now, either there exists a nonconstant nonnegative mini-

Ž .mizer call it f or the minimum is attained at the constant function 1,0
Ž . Ž .where EE 1, 1 s LL 1 s 0. In this second case, the proof of Lemma 3.1 shows

Ž .that we must have a s lr2 since, for any function g k 0 satisfying E g sp

0,

EE 1 q « g , 1 q « g « 2 EE g , g lŽ . Ž .
lim s lim G .2LL 1 q « g 22« Var g«ª0 «ª0Ž . Ž .p

This reasoning is valid for any finite Markov chain. It implies that either
a s lr2 or there must exist a nonconstant nonnegative function f which0

Ž . Ž .minimizes A.2 . Further, it is not hard to show that any minimizer u of A.2
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must satisfy

1
5 5A.3 2u log u y 2u log u y I y K u s 0.Ž . Ž .2

a

Let us now specialize to the case at hand, where
225 5K x , y s p y , EE f , f s Var f s f y E f .Ž . Ž . Ž . Ž . Ž .Ž .2p p

Ž .Equation A.3 becomes

1 1
5 5A.4 2u log u y 2u log u y u q E u s 0.Ž . Ž .2 pa a

w .The function t ª t log t is convex on 0, q` . It follows that any straight line
intersects the graph of t ª t log t in at most two points. Hence any solution u

Ž . Ž . Ž .of A.4 takes at most two values. For the chain K x, y s p y with inf p -
1r2, it is easy to rule out the possibility that a s lr2. Indeed, l s 1 and a
well chosen test function shows that a - 1r2. Thus, we can assume that

Ž .there exists a nonconstant, nonnegative minimizer f for A.2 . As f must0 0
Ž .satisfy A.4 , it takes exactly two values x, y G 0. Let u be the probability

that f takes the value x. Without loss of generality we can assume that0
0 - u F 1r2. We have reduced the problem to that of computing

2
u 1 y u x y yŽ . Ž .

min ,2 2 2 2 2 2 2 2u x log x q 1yu y log y y u x q 1yu y log u x q 1yu yu , x , y Ž . Ž . Ž .Ž . Ž .
Ž .where u takes all the possible values u s p A with A ; XX . In particular, u

varies between min p s p# and 1r2. From Theorem A.2, we infer that theXX

minimum is
1 y 2p#

a s .
log 1rp# y 1Ž .

This ends the proof of Theorem A.1. I

COROLLARY A.4. For any finite Markov chain K with invariant measure p ,
Ž . Ž .the spectral gap l K and the log-Sobolev constant a K satisfy

1 y 2p# l KŽ . Ž .
a K G .Ž . w xlog 1rp# y 1

PROOF. The result of Theorem A.1 can be written

1 y 2p#Ž .
LL f F Var f .Ž . Ž .p pw xlog 1rp# y 1

Ž . Ž . Ž .The desired result follows since l K Var f F EE f , f . Ip K

Ž .COROLLARY A.5. On a finite set XX , consider the Markov kernel K x, y s
Ž < < . Ž . < <1r XX y 1 if x / y and K x, x s 0. This has stationary measure p ' 1r XX .
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The associated logarithmic Sobolev constant is

< <XX y 2
a s .

< < < <XX y 1 log X y 1Ž . Ž .

In particular, the simple random walk on XX s Z has log-Sobolev constant3
Ž .a s 1r 2 log 2 .

This readily follows from Theorem A.1. Observe that simple random walk
on Z has spectral gap l s 1 y cos 2pr3 s 3r2. Thus lr2 s 0.75 whereas3
a ; 0.72 - lr2 in this case.
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