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GEOMETRIC BOUNDS FOR EIGENVALUES 

OF MARKOV CHAINS 


Harvard University and Massachusetts Institute of Technology 

We develop bounds for the second largest eigenvalue and spectral gap 
of a reversible Markov chain. The bounds depend on geometric quantities 
such as the maximum degree, diameter and covering number of associated 
graphs. The bounds compare well with exact answers for a variety of simple 
chains and seem better than bounds derived through Cheeger-like inequali- 
ties. They offer improved rates of convergence for the random walk associ- 
ated to approximate computation of the permanent. 

1. Introduction. 

A. Basic notation. Let X be a finite set and P(x, y) the transition proba- 
bility for an irreducible Markov chain. We assume throughout that P(x, y) is 
reversible relative to the probability distribution r r .  That is, 

This means that rr is a stationary distribution for P(x, y) and so (because of 
irreducibility) rr charges every point. Equivalently, the operator P given by 

is a self-adjoint contraction on L2(r) .  This P has largest eigenvalue 1 and 
(again because of irreducibility) the constant functions are the only eigenfunc- 
tions with eigenvalue 1.The eigenvalues are denoted 

1 = p, > p1 2 . . . 2 p,-I 2 -1 where m = 1x1. 

The chain is aperiodic precisely when Dm-,> -1. 
This paper develops methods for bounding Dl, Dm- ,  and p, = 

max(pl, Ipm-ll). Bounds for rates of convergence to stationarity in variation 
distance in terms of eigenvalues are given at the end of this introduction. 

There are technical advantages in considering the Laplacian L = I - P 
instead of P. Obviously the spectrum of L consists of the numbers h i= 1 - pi, 
0 5 i I m - 1. The usual minimax characterization of eigenvalues [see, e.g., 
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Horn and Johnson (1985), page 1761 gives 

,i1 = inf( cEi:; : 4 is nonconstant 1 , 

where Var(4) denotes the variance of 4 relative to 7~ and 

(1.3) 8 ( 4 , 4 )  = ;C ( 4 ( ~ )- + ( x ) ) ~ Q ( x , Y )  
X , Y  

is easily identified [use symmetry of Q(x, y)] as the quadratic form 

4 '-) ( 4 ,  L 4 )  L 2 ( T )  determined by L on ~ ~ ( 7 ) .  

REMARK. For historical reasons, quadratic forms determined by operators 
which, like L, generate a Markov semigroup, are called Dirichlet forms. The 
classical Dirichlet form is 

where r is a region in Rn. The quadratic form F ( 4 , 4 )  is nothing but a discrete 
version of this classical form. 

B. Poincare' inequalities. The next ingredient is a graph with vertex set X 
and {x, y) an edge iff Q ( x ,y) > 0. For each pair of distinct points x, y E X, 
choose a path yxy from x to y. Paths may have repeated vertices but a given 
edge appears at most once in a given path. Let r denote the collection of paths 
(one for each ordered pair x, y). Irreducibility guarantees that such paths exist. 
However, as will become obvious, the quality of our estimate depends on 
making a judicious selection of r. 

For yx, E r define the path length by 

where the sum is over edges in the path and Q(e) = Q(z, w) if e = {z, w}. 
The geometric quantity that appears in our estimate is 

where the maximum is over directed edges in the graph and the sum is over all 
paths y which traverse e. As will emerge from the examples in Section 2, K is a 
measure of bottlenecks. It will be small if it is possible to choose paths which 
do not traverse any one edge too often. As will also emerge, K can be effectively 
bounded in examples of interest. 

With this notation, a first form of our estimate can be stated. 

1 (PoincarB inequality). 
the second largest eigenvalue satisfies 

PROPOSITION For an  irreducible Markov chain P 

with K defined by (1.5). 
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PROOF. Write 

Here 4(e) = +(ef) - +(e-) where e is the oriented edge in a path from e- to 
e+, the inequality is Cauchy-Schwarz and the final sum is over all oriented 
edges in the graph. Bounding the final inner sum by K,we arrive at 

Var(4) 5 4 4 ,  $1, 
so the result follows from the variational characterization (1.2). 

REMARK. Proposition 1 is a discrete analog of the classical method of 
Poincar6 for estimating the spectral gap of the Laplacian on a domain [see, 
e.g., Bandle (1980)l. Related ideas were used by Landau and Odlyzko (1981),by 
Holley and Stroock (1988) and by Mohar (1989a, b). Section 1E gives further 
discussion and a comparison with other techniques such as ergodic coefficients. 
Our own realization of just how much can be gained by careful choice of paths 
in r came from reading Sinclair and Jerrum's (1989) lovely solution to a 
problem from computer science. 

Finally, it should be clear that we have made only one of many possible 
choices for estimating (C,, yxy4(e))2in terms of C ,Q(e)4(e)'. For example, 
Sinclair (1990) has suggested the one leading to 

PROPOSITION1'. With notation as in Proposition 1, 

where 

and I yXy1 denotes the number of edges in the path Y,,. 

This bound is often easier to use and examples presented in the next section 
show it can be more effective than the bound involving K. For random walks 
on graphs, explained below, the bounds involving K and K coincide. 
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Sinclair (1990) has used these Poincar6 inequalities to get bounds in the 
approach to equilibrium in the Metropolis algorithm for simulating Ising 
models and in several complex Markov chains for solving problems in com-
puter science. Ingrassia (1990) has used the techniques of the present paper to 
get bounds on the rate of convergence in simulated annealing. 

In Section 1D it is shown how bounds on Pl  translate into bounds on rates 
of convergence for chains run in continuous time. In Section 1C it is shown 
how to use similar ideas to bound the smallest eigenvalue and so the spectral 
gap, 1- P * .  

An important special case occurs when the Markov chain is the random 
walk on a graph. That is, let G = (X, E )  be an undirected graph with vertex 
set X and edge set E. We assume that G is connected and simple, i.e., that G 
has no loops or multiple edges. A random walk begins at an initial vertex x, 
and thereafter proceeds by choosing a neighboring vertex with uniform proba-
bility. Thus, if d(x) is the degree of x, then 

\ 0 otherwise. 

Since the graph is connected, the chain is irreducible. It is clear that the chain 
is reversible with respect to 

Hence in this case 

1 

&(x ,Y)= 2lElir if {x,y] E E ,  

otherwise. 

The estimate of Proposition 1specializes to the following. 

COROLLARY1. Let (X, E )  be a connected graph. Then, for any choice of r, 

with d * = max d(x), y is the maximum number of edges in any y E r ( y ,  is 
the diameter of G if paths are chosen as geodesics) and 

b = max { Y  E r : e  E y ) .  
e 

PROOF. ~ ( r )of (1.5) is bounded above by 

Thus the corollary follows immediately from Proposition 1. 
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REMARK. The geometric aspects of the bound come out clearly in the graph 
case. The quantity b is exactly a measure of bottlenecks. If paths can be 
chosen with small overlap, the bound is good. 

C.  Smallest eigenvalue. The techniques introduced above can be applied 
to get lower bounds on the smallest eigenvalue P,-,. Toward this end 
introduce a graph with vertex set X, an edge from x to y if Q(x, y) > 0 and a 
self loop from x to x if Q(x, x) > 0. The chain P(x,  y) is aperiodic if and only 
if this graph is not bipartite: T i e  set of vertices cannot be partitioned into 
disjoint sets such that edges only go from one set to the other. In particular, a 
connected graph cannot be bipartite if P(x,  X)  > 0 for some x. As is well 
known, the chain is aperiodic if and only if P, -,> - 1. 

Let a, be a path from x to x with a n  odd number o f  edges. Such paths 
always exist for irreducible aperiodic chains. Let 2 be the collection of paths 
(one for each x). Define the path length lu,lg by analogy with (1.4). The 
geometric quantity that appears now is 

(1.7) 	 L = L(C)= max C lu, lQ~(x) .  
u x 3 e  

PROPOSITIONFor a n  irreducible aperiodic Markov chain P the smallest 2. 
eigenvalue P,, = P, - satisfies 

with L defined i n  (1.7). 

PROOF.The following simple identity will be used: 

(1.8) f C (+ (XI  + ~ ( Y ) ) ~ Q ( X , Y )E(+2)  + ( + > P + ) L ~ ( ~ ) .= 
X,Y 


In (1.8), E denotes expectation with respect to the stationary distribution T. 

The heart of the idea is to express 

4 ( x >  = +{(+(XI+ +(Y>)- (+(Y)  + 4(w))  + . . .  + ( 4 ( z )  + +(x))) 
and use the Cauchy-Schwarz inequality as before. This shows how paths with 
an odd number of edges enter the argument. To continue, write 
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After the second equality, the sum is over directed edges e = (e-, e+)and l(e) 
is the distance of e- from x in ax.Dividing through by E(42) gives a lower 
bound on any eigenvalue of P, 

For a random walk on a graph (1.6) the result specializes to 

COROLLARY2. Let (X, E )  be a connected graph which is not bipartite. 
Then, for any choice X of paths of odd length, 

2 
pminr -1+ 

d , ~ , b *  

with d * the maximum degree, u, the maximum number of edges in any u E C 
and 

REMARK1.1. The upper bound on Pl in Proposition 1and the lower bound 
on P,, in Proposition 2 give a bound on the spectral gap 1 - P, . 

REMARK1.2. Another approach to bounding the smallest eigenvalue uses 
Proposition 1on the second eigenvalue of P2.Sometimes an auxiliary argu-
ment gives all eigenvalues positive. Then pl is all that is needed. 

REMARK1.3. The argument can be varied. For example, for each (x,y) E 

X x X, let a,, be a path from x to y with an odd number of edges. Let 
G = max,C,yseluxylQ~(x)r(y) .Then Pmin2 -1 + l/i. Since the paths u,, 
can also be used in Proposition 1,P, I 1- l/i. 

D. Bounds on variation distance. The variation distance between proba-
bilities p ,  7~ on a finite set X is defined as 

llp - rllv,, = maxlp(A) - r (A)I  = $ C 11-4~) - r ( x ) l .
A cX x E X  

This probabilist's version is $ the usual operator norm on measures as the 
dual of bounded continuous functions. The following arguments give bounds 
on the variation distance to stationarity for reversible Markov chains in terms 
of the second largest eigenvalue Pl and P, = max(pl, IP,- ,I). As is well 
known, in continuous time (say exponential waiting time with rate 11, no 
parity problems arise and bounds on pl are all that is necessary. The transi-
tion kernel for continuous time is denoted by 

PROPOSITION3. Let d x ) ,  P(x,y) be a reversible Markov chain on a 
finite set X. Assume P is irreducible with eigenvalues 1 = Po > P1 2 . . . 2 
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D m - ,  2 - 1. Then for all x E X ,  n E N and t E (0,GO), 

1 - T ( X )
(1 .9)  411Pn(x, . )  - ~ 1 1 ; a r  ,6? with p* = max(p1, I P , - I ~ ) , 

r ( x )  

Above, the inequality is Cauchy-Schwarz and the identity 

l / ( r ( x > > P 2 " ( x ,X )  = C ( ~ " ( x , Y ) ) ~ / ~ ( Y )  
Y 

follows from reversibilitv. 
Let D be a diagonalWmatrixwith x th diagonal entry d m .  The matrix 

DPD-l has ( x ,y )  entry J ( . r r ( x ) / ~ ( ~ ) )P ( x ,y )  and so is symmetric. It can 
thus be orthogonally diagonalized as TBTt ,  with TTt = I and B a diagonal 
matrix consisting of the eigenvalues of P.  All of the entries of B are real in 
( - 1, 11 and one, say B,,, equals 1. Thus the transition matrix P2" can be 
written as 

p2" = ~ - 1 r ~ Z n r t ~ .  

Multiplying out, the ( x ,y )  entry of the matrix is 

The rows of TtD are left eigenvectors of P.  Since A,, = 1, the z th  row of Tt 
has entries ( . . . . . . 1. It follows that the x ,  x entry of P2" is 

r ( x )  + E B$wT,2w. 
W # Z  

Bounding B$u by p2," and using the orthogonality of T,  the inequality (1.9)of 
the lemma follows. The continuous time version can be proved by a virtually 
identical argument. 
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REMARK.There are two places in the preceding argument for error to 
enter. The first place is our use of the Cauchy-Schwarz inequality in (1.12). Of 
greater concern is our estimate for P2"(x, x). In general, there is no reason 
that & will be in the eigenspace of P1 and unless it is, the estimate for 
P2"(x, x )  can be poor. For example, consider the case when, for each n E N, 
Pn(x,  x) is independent of x E X. This arises for random walk on a group. 
Then rr is also independent of x E X and so 

P2"(x,X )  - 1= -
1 x P2n(y, - 1= x pZn(y,  y).rr(y) - 1 - 1
1x1 yex 

y) 
Y ex  

= t r ( ~ ~ ~ )  

m - l  

= C p". 
i = l  

This is certainly better than the estimate ( m - l)p2," from (1.10) which 
essentially bounds Pi by P, .  In Section 2 we will discuss, for comparison 
purposes, some examples for which the entire spectrum is known. 

E. Related bounds. There is a large literature offering bounds on the 
spectral gap in terms of the entries P(x,  y) and some aspect of the geometry of 
an associated graph. One promising development, the use of Cheeger-like 
inequalities, is reviewed in Section 3 and will not be discussed further here. 

There are a variety of coefficients of ergodicity which bound P, = 

m a , ,  -,Ipil These include Dobrushin's bound 

P*  4 maxllPx(.) - P,(.)llvar, 
X , Y  

where PJ.1 is the probability distribution given by the x th row of P(x, y). A 
refinement is the Deutsch-Zenger bound 

P* -< mallP,( .)  - PY(.)II- R ( x , y ) ,  
X 2 Y  

where 

~ R ( X , Y )IP(x,x) - P(y ,x) l  + IP(x,y) - P(y,y)l= 

- P ( x ,  x )  - P ( Y , Y )+ P ( X , Y )- P ( Y ,  x ) .  
Seneta (1981) and Rothblum and Tan (1985) contain extensive reviews of this 
subject. Horn and Johnson (1985) review the closely related subject of 
GerSgorin disks. These results are sharp in that there are examples where 
equality holds. The bounds can be far off. For example, consider simple 
random walk on a p point circle (Example 2.1). There are many rows of the 
transition matrix which are singular as measures, so both bounds above give 
p,  I 1. To make use of ergodic coefficients, high powers of P(x, y) must be 
considered, and approximating the entries of such powers seems like a form- 
idable task. 

Landau and Odlyzko (1981) offer a bound for random walk on a connected 
graph as in (1.6). They show 
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where 1x1is the number of vertices in the graph, d ,  is the maximum degree 
and y, is the diameter. The first inequality gives the correct order for simple 
random walk on the circle and they show it is sharp for dumbbell-shaped 
graphs. For random walk on the d-cube (Example 2.2) it gives a bound of the 
form 1- ( c0ns t . / d~2~)which is quite far from the right answer (1 -
(const./d)). One real advantage of this bound is that it is easy to compute 
compared to the geometric quantities involved in Propositions 1and 2. 

Very recent work by Milena Mihail and by Jim Fill allows the techniques 
used in the present paper to be applied to nonreversible chains as well. Mihail 
(1989) works directly with distance to stationarity, avoiding the use of eigen- 
values in a novel way. Fill (1991) translates Mihail's ideas into probabilistic 
language and relates them to the techniques introduced here. One of 
the results is the following: If P is an aperiodic irreducible Markov chain 
on the finite set X, let M(P)  = PP, with P(x, y) = P(y, x ) ~ ( y ) / ~ ( x ) .  This 
M(P)  is reversible with nonnegative eigenvalues and the same stationary 
distribution T. If ,!3*(M) is the second largest eigenvalue of M(P), Fill shows 
411Pn(x ,. ) - r112I (P*(M ) ) n / ~ ( ~ ) .  He offers a variety of examples where 
P*(M) can be approximated by the geometric techniques of the present paper. 

Finally, we must mention that there are a variety of other techniques 
available for bounding rates of convergence of Markov chains to their station- 
ary distributions. Aldous (1983) and Diaconis (1988) review and illustrate 
techniques such as coupling and stationary times. Diaconis and Fill (1990) 
develop a duality theory which gives useful bounds for examples. The question 
of how these ideas relate to the present paper seems tantalizing. 

2. Examples. This section presents some simple examples where bounds 
are easy to obtain and compare with the exact answer. All of the examples 
involve random walks on graphs. 

EXAMPLE2.1 (The circle Z,). Let p be an odd number and consider the 
integers mod p as p points around a circle. For x and y in L,, choose y,, as 
the shorter of the two paths from x to y. Here ~ ( x )  = l /p ,  d ,  = 2, IEI "=p 
and y, = ( p  - 1)/2. By symmetry, any edge has the same number of paths 
crossing over it. Take the edge from 0 to 1. A point at distance i to the left of 
0 is connected to ( p  - 1)/2 - i points by paths crossing from 0 to 1,0 I i _< 
( p  - 3)/2. Thus 

Corollary 1gives 

The eigenvalues of L, are cos(2~j /p) ,  0 Ij _< p - 1; see, e.g., Chapter 3C of 

Diaconis (1988). For p large, P, = 1- 27r"p2 + O(l/p4) compared to 
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1- 8/p2. In other words, the Poincar6 technique gives the right order of 
magnitude but the constant term is off by a factor of about 2. 

To get a lower bound on P,,, choose a, as a clockwise path, going once 
around, starting and ending at  x. The quantities in Corollary 2 are easily seen 
to be d ,  = 2, a ,  =p and b ,  = p. The bound becames Pmin2 -1+ l /p2.  
This is of the right order for p large. 

EXAMPLE2.2 (The cube z;). The classical Ehrenfest urn can also be 
described as nearest neighbor random walk on a d-dimensional cube with 
vertices the 2d binary d-tuples. For background on this well-studied model, see 
Kac (19471, Letac and Takacs (1979) or Diaconis, Graham and Morrison (1989) 
and the references cited therein. Here ~ ( x )  = 1 / 2 ~ ,  d ,  = d and IEl = d2d-1. 
For x and y in z:, choose y,, by changing the coordinates where x differs 
from y to their opposite mod 2, working left to right, one coordinate at a time. 
Clearly y, = d and for this choice of paths, b = 2d-1, To see this, consider an 
edge (w, 2). These differ in only one coordinate, say the j th. A path y,, 
crossing over this edge can begin at  any x that coincides with w in coordinates 
after the ( j- 1)st (2j-I choices) and ends in any y that coincides with z in 
coordinates up to the j t h  (2d-j choices). Thus there are 2d-1 paths y,, 
crossing an edge. Corollary 1gives 

The eigenvalues of ~ , dare 1- 2 j / d  with multiplicity (?1, 0 Ij I d ;  see, for 
example, Chapter 3C of Diaconis (1988). Thus the bound here is off by a factor 
of d .  This example appears in Jerrum and Sinclair (1988) in slightly different 
language. 

Note that in this example, the graph is bipartite (after an even number of 
steps the walk start,ed at 0 is at  an even position). A frequent,ly used variation 
eliminates parity problems by allowing the walk to hold in place with probabil- 
ity l / ( d  + 1) and choose a nearest neighbor with uniform probability. To use 
the bound in Proposition 2, take a, as a self-loop from x to x. The quantity L 

of (1.7) equals (d  + 1) and the bound becomes Pmi, L -1 + 2/(d + 1). In this 
example, Pmin= -1 + 2/(d + 1). 

REMARK2.1. The paths chosen above give the best possible value of b, 
namely 2d-1. To see this, note that there are d2d oriented edges on the cube. 
Any choice of paths has 2d(y)  ordered pairs of vertices at  distance i and so 

Zd  (:) = dad- '  edges. 
i =0 

Now the pigeonhole principle implies that some edge must be covered by 2d-1 
paths. 
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REMARK2.2. In investigating potential improvements of the bounds, we 
considered using random paths T,, chosen from among all geodesic paths from 
x to y. For the cube, if the distance from x to y is j there are j !  paths and F,,, 
is chosen uniformly from these and independently for every x and y. The 
argument below shows that random paths do essentially the same as the paths 
chosen above. 

The argument works in exactly the same way for any distance transitive 
graph G = (V, E). Recall that this means that if x, y and x', y '  are the same 
distance apart, then there is an automorphism taking x to x '  and y to y'. 
Biggs (1974) gives background material, and Sax1 (1981) gives lists of candi-
dates. Such graphs are connected. 

PROPOSITION4. Let G be a distance transitive graph. Then the second 
largest eigenvalue of the random walk on G is bounded above by 

1 1 

where D is the expected squared distance of a random point in G from a fixed 
point and y, is the diameter of G. 

PROOF. For any choice of paths y,,, the Cauchy-Schwarz inequality shows 

If y,, are randomly chosen geodesic paths, the expectation of the inner sum 
does not depend on e. Averaging over edges, 

Thus Var(+) 5 D/41EIC ,$(el2 = Dd'($, $1 because Q(x, y) = 1/21EI if 
x ,y  E V. 

For the cube z$,D = (d (d  + 1))/4 by a simple binomial calculation. This 
gives Dl5 1- 4/(d(d + 1)) which is asymptotically better by a factor of 2 
than the 1- 2/d achieved by the bound using fixed paths. 

Mere is a problem where random paths do better than any currently 
available deterministic paths. The graph ccnsisbs of the k element subsets(3 
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of (1 ,2 , .. . ,n}.A metric on these k sets is d ( x ,  y )  = k - 1x nyl. A graph is 
formed by connecting sets at distance 1. Random walk on this graph is also 
known as the Bernoulli-Laplace diffusion model and is the original chain 
analyzed by Markav. This is a distance transitive graph with 

The classical case has n = 2  k .  With k large D = k 2 / 4  + O ( k ) ,so Proposition 
3 gives 

Diaconis and Shahshahani (1987) determine all the eigenvalues for this 
chain. In particular, if n = 2 k ,  P1 = 1 - 2 / k .  The best deterministic paths we 
know give p, I1 - C / k 3  for a constant C.  

Proposition 4 carries over as stated to graphs with automorphism groups 
acting transitively on the set of oriented edges. Aldous (1987)gives a similar 
result for graphs with automorphism groups acting transitively on vertices. In 
unpublished work, Fill has shown that Proposition 4 holds for distance regular 
graphs. 

REMARK2.3. The best Poincar6 upper bound on Dl for nearest neighbor 
random walk on Z; is of the wrong order of magnitude. For this example, 
there is a further idea that gives the correct answer. After any number of 
steps, random walk on the cube is uniform over level sets with a constant 
number of ones. Thus the rate of convergence is the same as for the "distance 
chain" which records the distance from zero. Of course, this distance chain is 
simply the original Ehrenfest chain. What we will now show is that the 
Poincar6 inequalities applied to the distance chain give the correct bounds for 
the second eigenvalue. 

The distance chain has state space {O,1,2,. . . ,dl.  The transition probability 
is p ( j ,  j  - 1) =j / d ,  p ( j ,  j  + 1) = 1 - j / d .  The stationary probability is 

a ( j )= ( 3 ) / 2 d .Here, there is a unique path from x to y. One verifies easily 
that the maximum for both K and K occurs for the "middle edge" d / 2  - 1to 
d / 2  if d is even and (d  - 1) /2  to ( d  + 1) /2  if d is odd. From here, it is a 
straightforward if tedious exercise to bound both K and K .  The results are 

This is instructive in providing an example where the two versions of the 
Poincar6 inequality diEer. The version involving K being better-it gives the 
right rate with the right constant. Jim Fill has shown us examples where K 

does better. The matter needs further investigation. 
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The main point is that using symmetry helps dramatically here; using the 
Poincar6 inequality directly on the cube gives P1 I1 - 4/d(d + I), while 
using it on the orbit chain gives 1- 2/d.. 

EXAMPLE Consider the full binary tree of depth d.2.3 (Trees). 

For d 2 1, such a tree has 2d+1 - 1 vertices, 2d+1 - 2 edges and the 
maximum degree is 3. Consider the Markov chain arising from nearest neigh- 
bor random walk on this tree. Each pair of points is connected by a unique 
path. The longest path is of length 2d and an edge connected to the root vertex 
is covered by 

b = (2d - 1)2d 

paths. The bound of Corollary 1is therefore 
1 

p l < l -
9d2d-1 ' 

It can be shown that pl = 1 - (1 + 0 ( 1 ) ) / 2 ~ + ~ .  

REMARK2.4. For a lower bound, take 

-1 on the left subtree, 
0 on the central vertex, 
1 on the right subtree. 

This has 

1 
Var(4) = 1 - 2d+1 - 2 

Now (1.2) gives 

This bound will be compared with other approaches in Example 3.3. 

REMARK2.5. Similar bounds hold for less symmetric trees. The techniques 
involved are reasonably robust. Bounds for trees provide crude bounds for any 
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connected graph by using a spanning tree. Unfortunately, trees have "bot- 
tlenecks" which lead to extremely weak bounds. 

As an example, consider the cube z:. This has a spanning path, e.g., 

For d large, the bound of Corollary 1based on paths gives 

This is exponentially worse than the bounds derived in Example 2.2. 
A second tree example which we find instructive is a "star" with a central 

vertex and n outside vertices: 

Random walk on this graph has eigenvalues 1,  0 and -- 1, with 0 having 
multiplicity n - 1. To cure periodicity, consider the Markov chain that holds 
with probability 6 at every point. This has eigenvalues 1, 6 and 26 - 1, with 6 
having multiplicity n - 1. 

The symmetry group of this graph operates transitively on the edges. The 
stationary distribution puts mass 1 / 2  at the central vertex and mass 1 / 2 n  at 
each outside vertex. The quantity K in the Poincar6 bound of Proposition 1 is 

The bound from Proposition 1 becomes 

This is uninformative if 8 is small (e.g., 6 = l / n ) .  
This example shows that the bound of Corollary 1 can be far from 1 - ( 1 / ~ ) .  

Corollary 1 gives P, I 1 - 21El/d2,y, b which becomes P ,  5 1 - l / n 2  in the 
present case. 
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EXAMPLE2.4 (Equilateral subdivision). The next example arose in an 
application. Ulf Grenander needed to put a grid of points on the surface of the 
usual sphere S2in three dimensions. He began with an icosahedron. This has 
faces which are equilateral triangles. Consider one face. If the midpoints of the 
face are connected, four equilateral triangles result. Connecting their mid- 
points, and continuing recursively, gives a sequence of triangular subdivisions. 
Grenander suggested carrying out such a subdivision of each face of the 
icosahedron, and then projecting the vertices of the graph obtained onto the 
surface of a circumscribing sphere. 

This grid is used as part of a smoothing algorithm. To analyze its asymptotic 
behavior, the second eigenvalue is needed. In the present example, the second 
eigenvalue of a single face is approximated. As explained at  the end of the 
example, the same argument gives the same rate (up to constants) for the 
icosahedron. 

Let G, 	 be the graph with vertex and edge sets 

V, = {(x1 ,x2 ,x3) :0  < x i  I n , x l  + x 2  + x 3  = n ,  xi E N),


(2.1) 
En = {{(XI,x 2 ,  ~ 3 ) 7(x;, ~ 6 ) ) :Ixi - II ) .  

Thus G, appears as 

When n is a power of 2, G, is the result of successive equilateral subdivision. 
It is easy to see that 

PROPOSITION If P1 is the second largest eigenvalue of G, defined in 5. 
(2.11, then 

9 1 
1 - - < p l < l -

n2 - 12n(n  + 2) ' 
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PROOF.Upper bound. For x, y E V,, let y,, be the line from x to y, if it 
exists, or the unique shortest path from x to y with one 60" counterclockwise 
turn: 

Fix an edge e. Paths that cross e have at most one turn. There are at most 
n IV, I such paths with the turn at or before e and at  most n lVn I such paths with 
the turn after e. Thus at most n(n + l)(n + 2) paths cross any edge. The 
maximum path length is n ;  the maximum degree is 6. The upper bound now 
follows from Corollary 1of Section 2. 

Lower bound. A lower bound can be derived by bounding B(4,  c$)/Var(+) 
for any specific 4. The graph G, has vertex set ((x,, x,, x,): x, + x, + x3 = n). 
Take +(XI= x, - x2 so C,+(x) = 0. Now 

because Q(e) = 1/21EnI and +2(e)takes value 4 on $ of the edges and 1on 
of the edges. 

For the variance, write 

1 1 
Var(4) = -x (x, - x212deg(x)2 - (x, - x,)'

21EnI . IEnI x 

Thus, from this choice of 4 ,  8(4 ,4) /Var(4)  < 9/n2 + O(l/n3). The lower 
bound part of the proposition follows, 

REMARK. The argument above is based on the ideas of Richard Stong 
(private communication). He has carried out the calculations more carefully 
and shown that 

Using similar arguments for the triangulation of the full icosohedron with 
each face a G,, Stong has shown that random walk on this graph has second 
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largest eigenvalue satisfying 

1- -Cl 
I pl I 1- -

c2 + 0 for explicit constants C,, C2 
n2 n2 

3. Cheeger's inequality. 

A. Introduction. Let X be a finite set and P(x, y) an ergodic Markov 
chain with stationary distribution r. Assume P is reversible and define a 
probability Q by 

Q(x ,Y)  = r ( x ) P ( x , y )  x ) .= ~ ( Y ) P ( Y >  
Inequalities on the second largest eigenvalue of P have been derived in terms 
of the geometric quantity 

Q ( S  X S C )
h = min 7 

~ ( S ) 2 1 / 2  r ( S )  

where SCdenotes the compliment of S .  Heuristically, Q(S x S C ) / r ( S )  is a 
measure of the relative flow out of S when the chain is in stationarity. If this 
is large for all S, the Markov chain should converge to r rapidly since there 
are no bottlenecks. This is made precise in the following result. 

PROPOSITION Let P, be the second largest eigen- 6 (Cheeger's inequality). 
value of a reversible, ergodic Markov chain. Then 

1 - 2 h < P l < 1 - h 2  

with h defined by (3.1). 

A short proof, along with references to work of Cheeger, Alon, Alon and 
Milman, Dodziuck and others is given in Section 3C. Early applications of 
Cheeger's inequality began with a symmetric graph where group theory could 
be used to bound PI. This gave a bound on the expansion coefficient h and 
allowed construction of "expanders." Lubotzky (1989) gives a highly readable 
survey. 

The point of view taken here is that h can sometimes be bounded directly, 
thus giving bounds on P,. 

EXAMPLE3.1. Let p be an odd number and consider the graph Z, intro-
duced in Example 2.1. This has P(x,  y) = 1/2 if Ix - yl = 1and d x )  = l /p.  
If S is an interval [ a ,b], Q(S x S C )= l /p ,  T(S)  = IS(/p. Elementary con- 
siderations show that h is achieved by taking S as an interval of size 
( p  - 1)/2, so 

2
h = -

p - 1 '  

Here /3, = cos(2r/p) = 1- 2r2 /p2  + O(l/p4) compared with the Cheeger 
bounds 1 - 4/(p - 1) 5 p, I 1- 2/(p - Thm the upper bound gives 
the right order but the constant is off by a factor of r 2 .  The bound is slightly 
worse than the Poincar6 inequality of Section 2. 
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EXAMPLE3.2. Let Z: be the graph of the cube considered in Example 2.2. 
Thus P(x,  y) = l / d  if x and y differ in precisely one bit and ~ ( x )  = 1/2". An 
inductive argument shows that h is achieved by taking S to be the face 
(x: x, 	= 0). This gives 

1 
h = - .  

d 
Here p, = 1 - 2/d, compared with the Cheeger bounds 1- 2/d 5 Pl I 1 -
1/2d2. Thus the lower bound is sharp and the upper bound is of the same 
order as the Poincarb bound but with a slightly worse constant. A different 
proof for the value of h appears in Section 3B. 

EXAMPLE3.3. Consider the full binary tree of depth d .  An elementary 
argument shows that h is achieved by taking S to be all vertices in the 
left-hand subtree (excluding the root). This gives 

1 
h =  2"" - 3 .  

Here the second largest eigenvalue satisfies P, = 1 - 1/2"-~(1 + o(1)). 
Cheeger's inequality gives 

2 1 
- 2611 - 3 -< p 1 5 1 -

2(2"+l - 3)2 ' 

The Poincarb inequality of Example 2.3 gives 

For large d ,  the Poincar6 upper bound is much smaller. 
For a star with n outer vertices and holding probability 8, h = 1 - 8. The 

associated Cheeger bound is 28 - 1 I P, 5 1 - (1 - 0 )~ /2 .  Here, P1 = 8 and, 
for 8 small (e.g., P/n), both sides of the bound are uninformative. 

3.4. 
Example 2.4. By a clever combinatorial argument Richard Stong has deter- 
mined the set S where h is achieved. He shows S may be taken to be a 
convex set containing roughly half the points and meeting two sides and one 
vertex. 

EXAMPLE Let G, be the triangulated equilateral triangle introduced in 

He proves 

m + l  
h(G,) (3:-min= 8 13n(;+ 1 
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\ 0 otherwise. 

This gives the Cheeger constant as h = 2fi /3n + O(n-2) and the bound 

Stong has shown that the Poincar6 technique gives 1 - 8/7n2 + O(l/n3) as 
an upper bound for PI. 

B. Jerrum's and Sinclair's canonical paths. Computing h seems difficult 
in general. In a sequence of papers, Jerrum and Sinclair have shown how a 
simple geometric idea gives a bound on h .  Let X be a finite set and P(x, y) be 
the transition probability for a reversible, irreducible Markov chain with 
stationary distribution r ( x )  and reversing measure Q(x, y) = r (x)P(x,  y) .  For 
each ordered pair (x, y), let y,, be a path connecting x to y. The following 
geometric quantity arises: 

Here the max is over all oriented edges e = (x,y) and the sum is over all paths 
containing e. Proposition 7 is a version of Jerrum's and Sinclair's result. 

PROPOSITION7. For a reversible, irreducible Markov chain P, the second 
largest eigenvalue satisfies 

with 77 defined by (3.2). 

PROOF. Associate with the path y,, the weight r(x)r(y).  Let S c X be 
any set with r ( S )  5 i and let W denote the aggregated weight of all paths 
which cross the cut from S to SC. Clearly W = r ( S ) r ( S C )  2 i r ( S ) .  Sum-
ming over cut edges e E d S  gives the complementary bound 

Combining the two bounds on W gives h 2 1/277 and Cheeger's inequality 
completes the proof, 



GEOMETRIC BOUNDS FOR EIGENVALUES 55 

REMARK3.1. For random walk on a connected graph G = (V ,E )  the bound 
becomes p,  I 1 - i (1 /4771~1>~.If d ,  denotes the maximum degree in G ,  P, 
is bounded above by 

with b = maxe#{y,,: e E y,,} as in the Poincmi5 inequality of Corollary 1. The 
bound there was P ,  I 1 - 21El/d$Oy,b. As was shown in Section 2, usually 
the Poincari5 inequality is smaller. For graphs, this happens if and only if 
y ,  IEl I 4d2,b. We have been unable to decide if this inequality, perhaps with 
the right side multiplied by 2, always holds. 

REWK 3.2. For highly symmetric graphs it is possible to use random 
paths to prove the following result. 

PROPOSITION8. Let G be a distance transitive graph. Then the second 
largest eigenvalue of random walk on G is bounded above by 

where d is the expected distance of a random point on G from a fixed point and 
y ,  is the diameter of G .  

PROOF. From the proof of Proposition 7 specialized to this case, for any 
choice of paths y,, and any set S c V with .rr(S) I i ,  

where dS is the set of e = ( x ,y )  with x E S, y E s'. Let y,, be chosen as 
random geodesics from x to y. The expected value of the inner sum on the 
right is independent of the oriented edge e. It  can be written as 

Thus . r r ( ~ ) . r r ( ~ ' )I Q ( S  x S C ) d ,  so h 2 1 / ( 2 d )  and the result follows 
from Cheeger's inequality. 

In Proposition 3, the Poincar6 technique was used to prove P, I 1- 1 / D  I 
1 - l/y2,.The diameter bound from the Poincari5 inequality is better by the 
factor 8. There is no clear comparison for the bounds involving expected values 
since d 2  I D. 
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The argument above showed h 2 1/27,. Aldous [(1987), page 391 showed 
h 2 1/2y* for Cayley graphs of groups. It is not clear how much symmetry is 
required for such a bound. Mohar (1989a, b) contains several results for 
general graphs which shed light on these inequalities. 

We now briefly run through the four examples, using the canonical paths 
described in Section 2. 

EXAMPLE3.5 (The circle L,). The bound (3.3) becomes 1- 2p2/(p2 - 112. 
For p large, this is the best that can be done from Cheeger's inequality 
(h = 2/(p - I)), of the right order of magnitude (p, = 1 - 2r2/p2 + 
O(l/p4)) and slightly worse than the 1- 8/p2 from Poincark's inequality. 

EXAMPLE The bound (3.3) becomes 1 1/2d2. This is 3.6 (The cube Lg). -
the best that can be done using Cheeger's inequality (h = l /d) ,  off by a factor 
of d(p, = 1- 2/d) and slightly worse than the 1 - 2/d2 from Poincark's 
inequality. 

EXAMPLE3.7 (Binary trees). For a binary tree of depth d as in Example 
3.3, the bound (3.3) becomes 1- 2 / 8 1 d 2 ~ ~ .This is asymptotically the same 
order of magnitude as the Cheeger bound, but far worse than the bound from 
Poincark's inequality (PI I 1 - 1/9d2~- ') .  

EXAMPLE3.8 (Triangulated equilateral triangle). Here all bounds give the 
same answer: p, 5 1 - C/n2. Again the Poincark inequality gives a slightly 
better constant than the Cheeger inequality. 

C. A short proof of Cheeger's inequality. In this section we give a brief 
explanation of Cheeger's inequality for reversible Markov chains on a finite 
state space. Our notation will be the same as it was in Section 1.Thus, what 
we want to do is derive the estimate 

h2 Q ( S  x S C )
(3.4) - I A ,  12h where h = in f  

2 

The upper bound in (3.4) is very nearly a triviality. Namely, given S 5 X 
with 0 < r ( S )  I i,set 

forx E S ,  
- r ( S )  for x E SC, 

note that 4, has 7-mean-value 0 and use (1.2) to conclude that 

The lower bound in (3.4) is more challenging. Indeed, it rests on two 
observations which are interesting in their own right. To explain the first of 
these, for any 4 E L2 ( r )  use $+ to denote 4 v 0, the positive part of 4, and 
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set S($) = {x E X: $(XI > 0). Assuming that S(4)  # 0 ,  the first observation 
is that, for any $ E L2(r )  and A E [0,a), 

To see (3.5), simply note that 

where we have used polarization to see that 

for 4 ,  E L 2 ( r )  

and have used 

to get the last inequality. [Simple as (3.5) may be, it makes essential use of the 
structure of L as reflected in the properties of Dirichlet forms.] 

* E 

The second observation underlying the lower bound in (3.4) is that, for any 
L2(7r) with S(*) # 0, 

h(*)2~~++~~i2(71 . )
&(!h+,*+) 2 '-, where 

Q ( S  x S C )
h ( 4 )  = inf 

In proving (3.6), we may and will assume that 2 0 everywhere. Next, by an 
application of the Cauchy-Schwarz inequality, we write 

At the same time, the left side of the above inequality can be written as 

=4/6at( z ~ ( x , y ) ) d t ,  
Q ( X ) l t  < Q ( y )  

which, because 

C Q(x, y)  = Q ( S  x S C )  with S = {x:  $ (x)  > t) c S($ ) ,  
Q ( x ) < t < * ( Y )  
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shows that 

By combining (3.5) with (3.61, we arrive at 

for any A E [O, ~ 4 )and any y!~ E L2(,rr)with S(+) f 0.TOget the lower bound 
in (3.4) from here, take A = A,  and J, to be a normalized eigenfunction for A,. 
Because J, must have 7-mean-value 0, we can always arrange that 0 < 
.rr(S(J,)) 5 and therefore that h($)2 h .  Hence, the desired lower bound 
comes directly from (3.7) with this choice of A and J,. 

HISTORICALREMARK. Cheeger's inequality was originally proved as a lower 
bound for the eigenvalues of the Laplaeian on a compact Riemannian mani-
fold. A host of mathematicians have refined and applied these ideas. Fiedler 
(1973), Alon (19861, Alon and Milman (1985) and Dodziuck (1984) developed 
geometric inequalities for Markov chains using a variety of closely related 
geometric quantities. The a rg~men twe have given above is a modification of 
an argument in Sinclair and Jerrum (1989). 

There are further refinements possible for the upper bound. For example, 
F. R. K. Chung (1989) and B.Doyle (1989) (personal communications) have 
shown 

A more careful history and extension of these ideas to Markov processes is 
given by Lawler and Sokal (1988). 

4. Approximating the permanent. This final section treats a complex 
example of interest in theoretical computes science. Let A be an n x n matrix 
with 0-1 entries a i j .  The permanent of A is defined just like the determinant 
but without sign, 

The permanent counts the number of permutations a consistent with the 
restrictions imposed by A. The best available algorithm for computing Per(A) 
takes order n2" steps. Valiant (1979) has proved that computing permanents 
is # p  complete and so equivalent to a host of other currently intractable 
problems. It is unlikely a faster algorithm will become available soon. 

Broder (1986) introduced a stochastic algorithm for approximating Per(A) 
for matrices which are symmetric and dense in the sense that each row and 
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each column contains at least n/2 nonzero entries. Jerrum and Sinclair (1989) 
analyzed Broder's algorithm. The central part of their analysis proves that an 
associated Markov chain converges sufficiently rapidly to give an approxima- 
tion of Per(A) using a number of steps to within a factor of 1 f E ,  which is 
bounded by a polynomial in n and I/&. This is an important result in 
theoretical computer science as the first example of a realistic, provably hard 
problem with a provably polynomial approximation. 

Jerrum and Sinclair introduced the path arguments described in Section 3 
to solve this problem. We show how the Jerrum-Sinclair construction coupled 
with the Poincar6 inequality gives an improved rate of convergence. The 
original bound on the second largest eigenvalue 1- C/n12 can be reduced to 
1- C/n7. 

Jim Fill showed that the Poincar6 inequality would give improved results. 
To describe his result, we work with an equivalent formulation in terms of 
matchings. Let G = (V,, V,, E)be a bipartite graph with 1V,I = 1V21= n and 
E c V, x V,. A matching in G is a set of edges of G, no pair of which shares 
an endpoint. A perfect matching contains n edges. If the vertices in one set are 
boys and the second set girls and if an edge indicates approval, then a perfect 
matching "marries" all of the boys and girls in such a way that each person 
approves of his or her partner. 

Given a bipartite graph, let Aij  = 1 if (i, j )  E E and 0 otherwise. Clearly 
Per(A) counts the number of perfect matchings. Let M, be the set of perfect 
matchings and let Mn-, be the set of matchings containing n - 1 edges. 
Broder's algorithm constructs a Markov chain on X = M, uMn-,. 

If the process is at x, the next step is determined by choosing an edge (u ,  v) 
in the original bipartite graph uniformly at  random. Then: 

(a) If x EM,  and ( u ,  v) E X ,  delete ( u ,  v) from x. 
(b) If x E Mn-I and u and v are unmatched in x ,  add ( u ,  v) to x. 
(c) If x E M,-,, ( u ,  w) E X ,  and v is unmatched in x ,  add ( u ,  v) 

(4.1) and delete ( u ,  w). 
(d) If x E M,-,, (w,  v) E x and u is unmatched in x ,  add ( u ,  v) 

and delete ( w, v) . 
(e) In all other cases stay at x. 

Broder (1986) showed that this is a connected, symmetric Markov chain and 
that it converges to the uniform distribution on X. This allows one to choose 
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points in M ,  uniformly to good approximation and Broder showed how to 
convert this into a good estimate of the size of M,. 

To show that the algorithm outlined above is efficient, the rate of conver- 
gence of the chain described above must be bounded. 

PROPOSITION Let a bipartite graph with each vertex of degree at least 9. 
n / 2  be given on two sets of n vertices. For the Markov chain described in  (4.1), 
the second eigenvalue is bounded above by 

1 
p1 I 1  - ---.

6n7 

PROOF. The argument uses canonical paths constructed by Jerrum and 
Sinclair (1988). We refer to their paper for details. The maximum degree of the 
graph associated to X is d ,  In2.The minimum degree is bounded below by 
n - 1. It  follows that lEl 2 ( n  - 1)IXl. 

Jerrum and Sinclair show that b I3n4(Xl .To complete the analysis the 
longest path length y ,must be bounded. From the Jerrum-Sinclair construc-
tion, the worst case that can arise is connecting two almost matchings. These 
are connected to well defined closest-matchings (at most length 2) and then 
these matchings are connected by an unwinding algorithm. This takes at  most 
2 n  steps, so y ,  5 2(n + 1). 

The chain here has substantial holding probability, so Proposition 1must be 
used directly (rather than Corollary 1). It yields 

REMARK.This example brings out the really new aspect of Jerrum and 
Sinclair's ideas. In the application, they are trying to estimate /XI which in 
principle appears in the upper bound. They bound b by constructing a 1-1 
map from the paths covering an edge into the set of vertices crossed with some 
extra information. This gives b I 3n4/Xl (the 3n4 being the "extra informa- 
tion"). 
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