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1. Introduction

In this paper, we give an algorithm for approximating the volume of a convex body

in Euclidean space. Our algorithm is a randomized polynomial-time-bounded

algorithm. In other words, suppose we are given a convex body K, determined by

a membership oracle (see [9]) and a relative error bound c Then, our algorithm

takes time bounded by a polynomial in n, the dimension of the body K and 1/c.

With probability at least 3/4, itfinds an c approximation to the volume of K.

(Here, as usual, we count unit time per call to the oracle. Observe that we can

make the failure probability as small as we like by repeatedly running the algorithm

and taking the median value as output [12, 13]. ) Our result should be contrasted

with results of Elekes [6], BarAny and Furedi [2], and Dyer and Frieze [5]. In

particular, the first two of these references show that, with such an oracle. it is not

possible to approximate the volume of a convex set within even a polynomial

factor in deterministic polynomial time. In fact, Barany and Furedi showed that

the best one could do was to get within a factor of the volume that is exponential

in n. Grotschel et al. [9] had already given such an approximation algorithm.

Furthermore, Dyer and Frieze [5] show that if K is a polyhedron. given either by a

list of its facets or its vertices then it is # P-hard to compute the volume of K
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exactl]. B> comparing our results 11-ith these. l~e see that here is a case where

randomness gi~es a super-pol:-nomlal speed-up In computing power.

Ii-e remark that one consequence of our algorithm is that the number of linear

extensions of a partial order can be similarl: approximated (see, for example.

[14, p. 61]).

Our algorithm is based on a scheme for sampling nearl: uniformly from within

k-. To do this, we place a grid conslstmg of cubes of side 0( l/n5’2) and do a

random walk over the cubes in the grid that intersect a slightl:- smoother enlarge-

ment of A-. For this random \valk. it is not difficult to sho]~ that eventually it

“settles down” to being nearl>- uniform. \Vhat is much more ddlleult to show is

that the time taken to settle down is polj-nomial, To do this. we use results on the

theory of rapidly mixing Markov chains. In particular. we emplo>- an extremely

useful result of Sinclair and Jerrum [ 16]. \vhich relates the rapid mixing property

to structural properties of the chain that are somewhat easier to establish. We note

that Jerrum and Sinclair [11] have used this result to rigorousl:- \ enfy Broder’s

algorithm [4] for approximating dense permanents. These methods are likely to

j-ield further interesting results. See Aldous [ 1] for an expositon- paper on other

methods for establishing the rapid mlxmg propert>-. The ke: step in the Sinclair–

Jerrum approach is to establish an lsoperimetnc inequaht> for the graph underlying

the random walk. To do this. we use a result from differential geometry. that is.

the isoperimetric inequality of B6rard et al. [3] which generalizes the more classi-

cal inequality of Levy-Gromov (see Mdman and Schechtmann [15]) on the vol-

ume of the boundary of subsets of smooth Riemannian manifolds with positive

curvature.

In the next few sections, we make these arguments more precise, In Section 2,

we describe the random walk and the algorithm. In Section 3. u e show that

the algorithm has the claimed properties under the assumption that the cmzdz~ct-

ance [16] of our Markov chain is at least l/q(t?) \vhere. q(. ) is a polynomial. In

Section 4. we verify this claim. The final section contains some technical lemmas.

1.1 NOTATION AND VALUES USED THROLTGHOUT. )? z 3 is the dimension of

the body whose volume is to be approximated. and O < c < 1 is the desired degree

of approximation.

r= Ji(H+ 1)
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All logarithms are to the base e unless otherwise specified.

B is the unit ball in R“ with the origin as center, and o,, denotes its surface area.

By a convex bodj’, we mean a closed, bounded convex set of nonzero volume.

For any convex set K and nonnegative real number, a, we denote by OK the

“dilation” of K by a factor of a, that is, aK = {M: x E K}.

If T C S c Rm, we denote the “boundary” of T with respect to S by d,YT. This is

the set of points .Y in the closure of T such that any ball in R’” with x as center

intersects S\ T. Usually, the context will make clear what S is, so we will denote

dsTasd T.

For any set Kin R’” and a nonnegative real number A, we denote by K(A) the

set of points at distance at most A from K. If K is convex, it is easy to see that K( X)

is too.

All our convex bodies will be given a so-called “well-guaranteed membership

oracles, ” that is, we will be given a sphere containing the body, a sphere contained

in the body, both of nonzero radius (this is called the “guarantee’’-see Grotschel

et al. [9] for a discussion of why many problems are meaningless without these

guarantees) and a black box, which presented with any point x in space, either

replies that x is in the convex body or that it is not. Grotschel et al. [9] show that

from such an oracle, we may construct (in polynomial time) a so-called weak

separation oracle (see their Section 4.4). For convex bodies presented by a weak

separation oracle, they also show that we can find in polynomial time a (non-

singular) affine transformation so that, on applying the transformation, the body

is “well-rounded,” that is, the body contains the unit ball with the origin as center

and is contained in a concentric ball of radius r = &!(n + 1) where n is the

dimension of the body. (Polyhedra of positive volume fit this category. Polyhedra

of zero volume can be detected in polynomial time by the ellipsoid algorithm.)

2. A Rafldom W?llk

Throughout we assume that space (R”) is divided into cubes of side & that is, cubes

of the form {.Y: m, 6 s x, s (m, + 1)6 for i = 1, 2 . . . . . n } where the m, are integers.

Note that the cubes are defined as closed sets.

Suppose K is any well-rounded convex body. Central to our algorithm will be

the following random walk through the cubes which intersect K(a). (Reminder:

see notation section for the value of a.) The random walk starts at any cube

intersecting K(CY), for example the cube containing the origin. Al each step, it stays

in the present cube or it moves from the present cube to one of its adjacent cubes

(a cube that shares an (n – 1) dimensional face) as follows: It chooses a facet of the

present cube each with probability 1/(2n ). If the cube across the chosen facet

intersects K(LY ), the random walk moves to that cube, else it stays in the present

cube. The random walk gives us a Markov chain with the states corresponding to

the cubes. The underlying undirected graph (containing edges corresponding to the

transitions of nonzero probability) is connected as the following argument shows:
If a cube C intersects K(a) and x is in C n K(a) the line joining .x to the origin of

course lies inside K(a). The sequence of cubes intersected by the line gives us a

path from our cube to the cube containing the origin: If the line “passes” from a

cube Cl to a cube C? through (n — i ) dimensional face shared by Cl, CZ, then there
is obviously a path of length i from Cl to C? in the graph. We later refer to the

random walk described here as the natural random }!alk 1 on K, although we really

walk over the cubes that intersect K(cY). The reason for walking over the cubes that

‘ For techmcd reasons, we will have to modify the natural random walk.
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intersect K(LY ) rather than the cubes that intersect K is that A-(a) is a little

“smoother” than K: in particular, for any point x c K(a), there is a sphere of

radius a which contains.~ and is contained in K(a). This fact will be used in our

proofs. Note also that K(a) is “close” to K, in fact it will be easy to see

(cf. Proposition 1 of Sect. 5) that ( 1 + a )K contains R“(a). Thus, at least intuitively,
we see that we may replace K by K(a) for purposes like computing the volume

approximately.

We are given K by an oracle, and this will not let us decide precisely whether a

particular cube intersects K(a). We therefore modify the natural random walk so

that the set of cubes over which the random walk is executed includes all of those

that intersect K(a) plus some other cubes each of which intersects K(a + a‘ ) where

a‘ = 6/(2&), as defined earlier. The modification is as follows: It is easy to see

that for any cube C, there is a membership oracle for C(a + a‘ ).2 Using this. and

the separation oracle for K. with the well-known techniques of Grotschel et al. [9]

based on the ellipsoid algorithm. we have a deterministic polynomial time algorithm

that terminates with either

(i) a point x E C’(,Y + a’) n Kwhence we know that C (1 K(a + a’) is nonempty.

or

(ii) an ellipsoid of volume at most (a’ )“an-, ?Z-~(2/rT )“-zr-”+[ containing

C(~+a’)n K,

whence we show (cf. Proposition 5, Sect. 5) that C(a) n K is empty or equivalently

C n K(a) is empty. (See notation section for a,,_,.)

The random walk will go to cubes for which the alternative (i) occurs and will

not go to those for which (ii) occurs. We show (cf. Proposition 11 (proof), Sect. 5)

that any cube for which alternative (i) occurs must in fact either itself intersect

K(u) or one of its adjacent cubes must, so this walk does not “stray” too far from

the original, a fact that will be useful later. If (i) is the result of the algorithm, we

say that the cube C u’eaklj intersects the convex body K(a). A further technical

modification is needed. In order to apply the theorem of Sinclair and Jerrum, we

need to be sure that at each step, the walk has probability at least ~ of staying in

the same cube. This is achieved, as follows: At each step, with probability ~, the

walk makes no attempt to change cubes. With probability 1/(4n ) each, it picks one

of the facets of the current cube and moves across to an adjacent cube if it weakly

intersects R-(a). Thus, in the interior of K, the probability of staying put is precisely

~ and at the boundary, it is at least ~. We call the random walk thus obtained the

- te~hnical random }iulk.

We wish to show that, after a polynomial number of steps, the steady state

probabilities of the (technical) Markov chain will be approximated with an expo-

nentially small error, More precisely. suppose N is the number of states of the
Markov chain and let the states be numbered 1.2, . . . . IV. Let p,, be the probability

of transition from state i to state j. The p,,’s assume values O or at least 1/(4n ). Let

P be the matrix with the p,, as entries and for any natural number t, we denote by

“‘ the entries of the matrix P’, the t th power of P that represents the t stepP,,
transition probabilities. It is easy to see that our Markov chain is “irreducible.”

that is, for each pair of states i. J, there is a natural number s such that p ~~)is
nonzero. This follows since the graph of the natural random walk is connected,

and each cube in the technical random walk is either included in the natural

2The nearest point m a cube from an exterior point can be found by “rounding” the coordinates of the
point on to the cube.
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random walk or is adjacent to such a cube. Also the Markov chain can be seen to

be aperiodic, that is, gcd{s: p~~)> 0} = 1 for all i, j. This follows from the facts that

the graph is connected and each cube has a self-loop. Hence, the chain is “ergodic”

[7] and there exist “stationary” probabilities ml, m,. . . . .r,v >0 such that

lim pfi) = 7r, Vi, j.
>-cc

The vector r of .r,’s is the unique solution to the equations mP == m and Z m, = 1.

In our case. since P is symmetric, it is easy to see that all the T,’s are equal. Thus.

also, the Markov chain is “time-reversible” that is, p~,m~= P,, m, (Vi, j).

Our approach is as follows: we use a result

time-reversible ergodic Markov chains to show

mixing, ” that is, we prove the following:

THEOREM 1. For any i, j, and t, we have

from Sinclair and Jerrum [16] on

that our Markov chain is “rapidly

‘P’)-TJJ41-W)

Thus, when t is a sufficiently large, yet polynomial function of n (namely,

t = T—see notation), the p~~)are approximately equal. Roughly speaking, this gives

us the ability to pick a random cube intersecting the convex body with uniform

distribution in polynomial time. Using this, we argue in the next section that the

following algorithm does the job:

(1) Let K be the convex body in R“ whose volume is to be found. Transform the body so
that it is now well rounded, that is, now we have B C K G rB where r = &(IZ + 1). The
determinant of the linear transformation gives the factor by which the volume is changed.
We keep track of this.

(2) Let p = 1 – (1/H). Let k= Uog,iPrl and for i = O, 1, 2, . . . . k, let p, = max{p’r, 11.The
algorithm will find for i = 1.2, . . . . k an approximation to the ratio

Vol,,(p,K n TB)

VO1.(O,., K n rB)

The ratio will be found by a sequence of “trials.” In each trial, we first do the technical
random walk on K,_, = O,.1 K n FB for r steps. (The states of the random walk will
be the cubes that weakly intersect K,-, (a).) Suppose we are in cube C = {.Y: q,8 = .x, <
(q, + 1)6) after T steps. We pick randomly (uniformly and independently) integers ~,,

~~,...,~)eachfrom {0. 1.2 . . . ..~)where?= ~”- l. Let

If.% ● K,_,, then we declare the trial a proper trial and check to see if .~, G K,. If it does.
we declare the trial a success. This completes the trial. We repeat until we have made m
proper trials and we keep track of the ratio of the number of successesto m. We later
show that with high probability, the ratio will be a good approximation to the ratio of
volumes that we want to compute.

Clearly this together with the fact that K), = K and the volume of K, = rB is known in
closed form gives us the volume of K, as required. Note that K, contains pK,.,, so each
of the ratios to be computed is at least ,0”, which is known to be at least 1/4. This fact
will be required later.

Remark. We conjecture that Theorem 1 can be considerably strengthened, that

is, the polynomial O(n 19) in that Theorem is not optimal. Whether this is true or
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not, a heuristic method would be to run the random walk above for many fewer

than r steps. (See also Remark 8 of Sect. 6.)

Consider the ith step of our algorithm. We first estimate the probability that a trial

is declared proper. Let R‘ be the set of cubes that weakly intersect K,– I (a ). Observe

that I H’ I s (3r/8 )“. Then

Pr(proper trial) = ~ Pr(proper trial I walk ends in C’)Pr(walk ends in C ).
CEJt

Consider a fixed C E J7”and let u’ = Voln(C n K. I )/6”. We imagine C divided

into subcubes of side v = 2-”6 and our sample point .~clis equally likely to be the

corner of any one of these subcubes.

Let now N: be the number of “border” subcubes (i.e., which meet K,. 1, but are

not fully contained in K,.1 ) and NC = 2~”. Then with

r(- = Pr(proper trial I walk ends in C ),

we have

Now j- = ~ ~~Ll {( is (q/d )“ times the total number of subcubes which meet K,-,.

but are not fully contained in it. Using Proposition 3 of Section 5. f is at most

3n3/Qrj vol,i(K_ , )/3 “.
Now. using Theorem 1,

using the fact that 1 + x s e’ V real x

Similarly,

using Proposition 4 and the bounds on c and k.

Observe that this lower bound is independent of the starting point of the random

walk and so the number of proper trials occurring in s walks stochastically

dominates the Binomial Bin(s, O.33). Thus, with probability close to one, at least

a quarter of any large number of trials w’ill be proper.
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Wenowconsider theprobability of success. Byan identical argument to that

above, we obtain

So, if p = Pr(success I proper trial) and u = VOIM(K, )/Vol,l(KL_, ). we have

‘(1-%)(1‘iio’’v(’+ilifk)(’-irk)’
which implies 1/5 s ( 1 – ~/49k)v s p < (1 + c/49k)v.

Let in be the number of successes after there have been m proper trials. It is a

standard result from probability theory (for example, an easy consequence of

Theorem 1 of Hoeffding [10]), that for any positive A <1.

Hence,

‘r(:-1’2 +pr(:-’ +-+))
So with A = t/51t, we have

(
.

)Pr ~–v Z ~v s 2e-( 1’3)(3’/z0~)’mPs 2e-(3/s)(c’z0k)2’”.
m

Now we must make k volume estimates and so assuming that we compute VO1,,(KO)

to within 1 * ~/2 we see that the above algorithm computes an estimate u satisfying

with probability at least

1 _ x&(3/5 )(c/20/c)2m

The reader may check, with the constants given in the notation section. that u

turns out to within 1 k c of VO1,,(K) with probability at least ~ as required.
The running time of the algorithm is that needed to solve

convex programs.

4. The Markov Chai~z Is Rapidlv Mixing

Let.# bean ergodic Markov chain with states {1,2, . . ., N], transition probabilities

P,J and stationary probabilities mi, r~, . . . . TN. Sinclair and Jerrum define, for any

subset S of states, the capacity Cs of S to be ~ ,G,sm, and the ergodic jZowI out of S

to be

z P[, T,.
zG.s,/$%s
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They also define the conductanceOS of S to be the ergodic flow out of S divided

by the capacity of S. Finally, they define the conductance of the whole chain to be

Intuitively, @ measures the minimum relative connection strength between

subsets of the states and we expect that if@ is relatively high. the random walk will

not “get stuck” in some subset S of states, thus it will “mix” rapidly. The following

is a direct consequence of their main Theorem:

THEOREM 2 (SINCLAIR AND JERRUM). For a tiww-se~wrihje ergodic .J{arkm’

chain Itith all the 7rj’s equal. and p,, ? ~ jor all 1,

We show that the conductance of our Markov chain cannot be too small. First.

we work on the natural Markov chain whose states are precisely the cubes that

intersect A-((!). (We should of course talk about K,(a). but we will drop the

subscript for clarity. ) We then extend the result to the technical version whose

states are all cubes that weakly intersect li-(a ).

For any subset S of states (of the technical Markov chain), we denote by S the

complementary set of states and by (S, ~) the set of edges in the underlying

transition graph from a vertex of S to a vertex of ~. Since all the m,’s are equal.

and for any edge (i, j ) in the graph. p,, = l/(4n), we have

So a lower bound on @ will follow from a lower bound on the minimum of ~ (S).

We start first with the natural Markov chain. In Lemma 1 below, y(S) now refers

to edges and vertices in the transition graph of the natural Markov chain.

PROOF. A ‘-cube” means a cube that intersects k“(a ). A cube is called a “border

cube” if it intersects both K(a) and the complement of K(a) and it is called an

“inside cube” if it is wholly contained in K(a). We will also look upon a subset S
of states as the union of whole cubes corresponding to the states. We let S B be the

border cubes in S and S1 be the inside cubes in S. Now, by Proposition 10, for any

subset S of states,

ISBI <2nl(S,~)l + 181 S11.

We deduce that

vOl,,(sn K(CY)) 2 Is’lfi” = (Isl – lsBl)6°

?(1S1 –2nl(S. S) l-- 181 S] 1)6”
> (IS I — 2nl (S. S)l)6r1 — 18 VOl,l(Sfl K(a)).
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Hence

VOln@ n K(a)) 2 *8’’(ISI – 2721(S, S)1).

Let S be an arbitrary subset of states with I S I s N/2. This S will be fixed for

the rest of this proof. We need the following basic fact from analysis (for example,

see Gilbarg and Trudinger [8, Sect. 8]): Every convex body can be approximated

arbitrarily closely by a convex body containing it whose surface forms a smooth

(%-”) Riemannian manifold. Let KK be a convex body such that dKK forms a

smooth Riemannian manifold, K(a) C KK and the set of cubes intersected by KK

is precisely the set of cubes intersected by K(a). (Since the cubes are defined as

closed sets, the last condition can be ensured by a sufficiently close approximation

to K(a).)

If T(S) 2 l/4n, then the Lemma is proved, so we assume that y(S) s 1/4n.

Then, letting T = S n KK and ~ = S n KK, we have

Voln(s)
VO1,*(T) > Voln(s n K(a)) 2 38 .

By the classical isoperimetric inequality [15, p. 125],3

nVol. (T)(c,, )ll”

‘01”-’ ‘d ‘) 2 (vol,l(T))’/” ‘

where C. = Vol,,(l?).

But we know that Vol.(T) s VO1.(KK) s c,,r”(l + a + 6&~ s 2.5c.#’.

Substituting this for the denominator for the above expression, we get

Vol,,(s)
VolH_, (d T) > ~OOn,,z .

Consider the set TI = (d T\dKK). This set consists of the union of parts of facets

of cubes with the property that on one side of the facet is a cube in S and on the

other side is a cube in ~. So we have I (S, S) I 2 Vol._ I ( TI )/6”- 1. Thus, if the

volume of T1 is at least half the volume of d T. by the above inequality on

Vol.-l (d T), we have a lower bound on -y(S), of 1/4000n3. This would give us the

Lemma. So assume that that the volume of T, is at most half the volume of d T.

Then, letting Tz = (d T) fl (dKK), we have that

For notational consistency, we define ~1 = (d ~\dKK)(= T, ). If the volume of

~1 is greater than or equal to Vol,l(~)/(200n 1/2), this would again imply

Y(S) > l/4000n3. But T(S) = y(~) I ~ I / I S I 2 ~(~), and so this would imply that

y(S) z 1/4000n3. This would complete the proof of the Lemma. Assume this fails.

Then, letting ~2 = (d ~) n (c?KK), we have

Vol,,(s)
vol,,_, (T?) 2 ~ootz ,,2.

3This inequality states that the ball has the least surface area to volume ratio among all (reasonable)

subsets of Rm.
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Now one of the two sets Tz, ~z must have at most half the (n – 1)-volume of dlih-.

We treat the two cases:

case’ 1. T? has at most half the volume of dKK. Then by using the inequalities

of Berard et al. [3] (see Proposition 6). we have that

Now each point in d T~ belongs to a facet F with an S cube on one side and an ~

cube on the other. Thus, d T? is the union of (n – 2) dimensional pieces of the

form F n dKK. By convexity, each such piece has (IZ – 2) volume bounded above

by the (n – 2) dimensional volume of dF, which is less than 2n6 “-z. Thus, the

number of such pieces (and therefore I (S’. ~) I ) must be at least 8z I S I /(2400n 7/: ),

so we have the Lemma in this case.

cm-e’ 2. In this case, arguing symmetrically, we have -y(~) 28 ‘/(2400t~7i~) and

since y(S) z ~(~), the proof of Lemma I is now complete. ❑

Now we extend the Lemma to the technical Markov chain.

PROOF. Let S‘ be the cubes in S that actually intersect K(a) and let ~‘ be the

cubes not in S that actually intersect K(a). Now, by Proposition 11

lSIS[(S.~)l+181S’l.

If. I (S, ~) I z I S 1/2. then clearly Y(S) z ~, so assume not. Then we have IS’ I z

I S I/36. We may similarly assume, I ~’ I 2 I ~ I /36. Lemma 1 yields

Lemma 2 now follows. ❑

Theorem 1 follows now from Lemma 2. Theorem 2, and the fact that

@’s = 7(s)/(412), vs.

5. Te~’/z~zical Restdts

PROPOSITION 1. Suppose K M u CYNZWWbed) in R“ such thulB C K and c [s u

po~iti~)e real. Then for atz]%?’ irz R’f\( I + t)K,and z in A“. we ha}e f z – J 1> c.

PROOF. Let the hyperplane u.x = ( I + c) separate J’ from ( 1 + ~)K, that is,

u . j’> (1 + c) and for all zin K, L) . (1 + t)zs (1 + t). From the last inequality, it
follows that u . z s 1 and so we have L] . (J’ – :) > e. From the fact that K contains

B. we have I u I s 1 and hence we must have I J’ – u I E c. ❑
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PROOF. If ~ is on the boundary of K, there exists a vector v such that v oz = 1

andv. .x<lforall.~in K.So wehavev .(z–j’)z~ and again [V IS1, SO

Iz–j’l>c ❑

Suppose K is a convex body in R“ such that B Q K. Consider a division of R“

into “cubes” of side q (i.e., cubes of the form {y: m, q < .yl s (m, + l)q for i = 1, 2,

. . . . n I where m, are integers) where q s 1/(900}23’2). Let K1 be the set of cubes

that are wholly contained in K and K B the set of cubes that intersect both K and

R“\K. Then,

PROPOSITION 3

lK~l =3n31zqlK’1.

PROOF. Any point JI in any cube in ~ ‘B is at distance at most qv$ from K,

so by Proposition 1, it is contained in ( 1 + q fi)K. Further, j‘ is at distance at

most q A from the boundary of K, so it is not in the interior of (1 – qN&)K

from Proposition 2. These together imply that the cubes in KB are all wholly

contained in the closure of ( 1 + qfi)K\( 1 – q fi)K from which it follows4

that their total volume is at most 2.5n 31Zq VO1,,(K) which implies that I KB I s

2.5n31z Vol. (K)/q “-1. The cubes in K ‘, K’ together include K, so we have

I KB I + I K’ I > Vol,,(K)/q” and the proposition follows. ❑

PROPOSITION 4. If K contains tbe unit bull, then the number of cubes that ~ceakl~’

intersect K(e) is at most three times the number of cubes that are jhll~’ contained

in K.

PROOF. Using the same argument as in Proposition 3, this follows from the fact

that any cube that weakly intersects K(a), but is not contained in K, is wholly

contained in the set

(l+a+a’ + 6fi)K\(l – 6fi)K. ❑

PROPOSITION 5. If

()

~—~

Vdn(c(a + a’) n K) < (a’ran-172-2 : ~-’’+’,

thetz C’(a) n K = 0.

PROOF. Suppose not and x = C’(a) fl K. Let 0 be the angle between the line

joining x to the origin and any line through x tangent to B. Then C(a + cl’) il K

contains the intersection of a ball .Y of radius a‘ centered at x and a cone Y of

half-angle 6> 1/r with vertex x whose extreme rays are the tangents from x to B.

The volume of 1’ rl Y is

J

(1

fJ,,_, (a’yrl-’ (sin UY-2 dd.
o

Using the lower bound sin d z 2d/r. for O s o s 7r/2 and integrating. we get the

proposition. ❑

4Observe that, if O s II s 1 s .x s ( 1 + a/n), then .Tn– y“ s ne”(x – y).



12 DYER ET AL.

PROPOSITION 6. Let KK he us tn the pwqf qf Lewmu 1. L~’t T be o subset qf

d ~r~ und S1lPPOS(’that i ‘o),,-,(T) < ~’o[,,- ] ( dKK)/2. Then.

PROOF. In the following HI is a positive integer. Let ~,,, = f 6 (sin t)’”-]dt. Then

from the relation o,,, = [(nz – 2)/(rn – l)]ti,,,-~, ?n z 3 and~l = m, oz = 2, ye

deduce (inductively) that for m >2, 0 ,,, z l/~m — 1 ? l/din and w s r/~nz.

Let .4 = ( 1 + }nUJ,,Z)*j’” – 1. It is easy to see that A 2 log nz/2}n, from which it

follows that .-l z l/t?z for all m > 1.

Let U be a Riemannian manifold without boundary of dimension n? with

everywhere nonnegative (Ricci) curvature and diameter d(fll). B6rard et al. [3]

show that if f) C .11 is such that

Vol,.(fl )

VO1,,,(M)
= P.

then

voln,_, (d Q) > Vol,},-, (dB(@))

Vol,,,(.lf ) – V01,,7(s’”) ‘

where S’)’ is the unit sphere and B(~) is the spherical

VOI,,7(B( ~)) = ~

Vol,,,(s”z) “

We can rewrite the above inequality as

vol,,,-, (dQ) > Vol,,,-, (dB(b))

Vol,n( o ) – vol,,,(B(/j))

Now we can show straightforwardly, that the ratio

vol,,7_, (dB(p))

vcJ,)l(B(b))

decreases ~vith $. so for ~ s ~. we get

d(,tl) ‘

cap on S ‘“ such that

.4

d(lu ) “

vol,,,_, (dB(b)) >

(s

~/~

1

–1

V01,,,(B(8)) – “
(sin t)’”-’ dt = z.

@,,l

Thus,

We use this with M = dKK, m = n – 1, and Q = T. Observe that

d( dKA-) s T( fi(n + 1) + a). A simple calculation now completes the proof of

the Proposition. ❑

For the next Proposition, we need to define a function @: R“ -+ R“ as follows: If

x ~ R“. let J = {j: I.Y, I > l/&} and f = ~(.y) = ~,eJ .Y~. Then, let 4,(.Y) =

.~~/t if~ = Y, and @J(.~) = 0, otherwise.

PROPOSITION 7. Let Z/l, Uz, . . . . u,, be }Iectors [n R“ ]t’~thIIL,I = 1(Vi) and

I z(, – u, I s 2/(3@z)fbr 1 s i.js n. Then ~r=, 4,(u,) s 18.
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PROOF. Observe first that ~(u,) > I U,12 – n.(1/2n) = ~, i = 1, 2, . . . . n.

Now for any i, j we have I u,.,/ – I q., I s 2/(3&) a~d so if I u,.,I z l/~, then
I N,,,I s 3114., I and hence o,(u,) s 2u~, s 1821,.,. But if I u,., I < l/&,
then d, (u, ) = O s 18 u:,, trivially. So

PROPOSITION 8. Let C‘ be un~’ cube such thal there exists x [~ C‘ (1 dh’(ci ). Let

q be the closest point in K to x and” [et u = (x – q)/ 1x – q I = (x – q)/a. For an]’

k such that I u~ I > l/~n and an]’ 1 satsij~’ing 2)1 s 1 s 20n, the cube C =

C‘ – 16sign(u~)e~ is tilzoll]’ contained in K(a) (e~ is the ktiz unit vector.)

PROOF. For 1, k as above, let x‘ = x – 16sign(m )e~. Then we have,

where the last inequality uses the fact that 2n < 1< 20n. From the above, we see

that a sphere of radius 6 &around x‘ is contained in the sphere of radius a around

q which is contained in K(a). This implies that the whole cube containing x‘ is

inside K(a) proving the proposition. ❑

PROPOSITION 9. Fix (l >0. Let x,, .YZ 6 dK(tl ) and let q,, q~ be the points

in K neavest to XI, X2, ~espective[y. Let u, = (x, – q,)/ 1X, – q, 1for i = 1, 2. Then,

llf, –Lf21s21.Y, –.Y2l/fl.

PROOF. Without loss of generality, move the origin to ql. So, now, ql = O
belongs to K. We have u, . (]’ – .~,) s O for i = 1, 2 and j’ = K(O). (Otherwise, we

would have x, E int K(o).) Putting i = 1, J’ = .~~gives ul . xz s 6 and i = 2, j’ = flu?

gives 0 s 112. x2. Thus, ul . X2 s 212. X2. Now,

IX2-6U212= l.Y,l'- 202{, ."Y, +0251.Y,l '-20Lll ..Y2+(7' =lx2-dt[l l'.

Hence,

Now

61 u~ – u, I = I(X2 – 02/1) – (.Y2 – 02/2)1

SIX-2–02[JI+I.Y2–01{21S 21X2--XII. ❑

PROPOSITION 10. If S is ati~’ set of cubes meeting K(a), ~vith S1 the subset of

cubes in S that are M’ho[[J’ contained in K(a) and S~ = SIS1. we have

lSBls2nl(S.~)1 + 181 S’1.

PROOF. Let C‘ be any border cube and let .x G C‘ (l dK(cI ): let q be the nearest

point of Kto.~. Let u = (.Y– g)/1.Y– al. Now, let-l= {~: IIGI > I/d’%}. let
ej = sign(u, )e, for j E J. Then, we know by Proposition 8 that C, = C‘ – 2n6e; C

K(a). Suppose first that some C,, j = J is not in S. By convexity, the whole “stack”

of cubes between C, and C‘ meets K(a), and thus there is an (S, S) facet F

somewhere between C, and C‘. In this case, we associate all the volume of C‘ with

one such facet F. Note that any one facet may only “receive” the volume of a stack
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of 2)1 cubes by this process. If ~; is in S for all J E J, we do the following: For each

j E J, we associate o,(u) = u~/(~,eJ u:) of the volume of C“ with C’,,

Now any (S, S) facet receives volume at most h?”. Thus the volume mapped

onto all (S. S) facets is at most 211J” I (S. S) I.

Now consider an inside cube C’. This is mapped onto by border cubes C’”). using

a direction Aei.. for k G .4 L {1, 2. . . . . n ~. We use superscript (k) to refer to

quantities associated with C ‘h’.

Now

Thus, by Proposition 9, we have

But, the total volume mapped onto C is

by Proposition 7.

Thus, the total volume mapped onto inside cubes is at most 186” I S’ 1. ❑

PROPOSITION 11. Let K be u ccune.x bodj’ containing the unit ball and let S be

a set qf’ (wbes thut Urul<[jy intersec( K(LY ). Let S‘ G L~ be those cubes that actwdl]s

intro w A’(cY). Then

IS I s l(S.~)1 + 181 S’1.

PROOF. Let C E S – S‘. Then, there exists .~ = C n dK(a + a‘ ). Let J’ = K

be the nearest point to x in K and N = (x – J’)/( 1.~ – I’ I ). Then 0< 1.y – J’ I s

a + a’. Now let J= {j: I ~~1 > l/&} and observe now that ifj ● Jthen the

point x – si,gn(l~ )&’, is at distance at most a from j’ and so is in K(a). Hence, for

every J G J the neighboring cube C; across the face F, in the direction –sign( u, )e,

meets K(a). If there exists j = J such that C: @ S, then we map all of the volume

of C onto any such F,. Otherwise, we share out the volume of C by mapping

d, (uM” Of it to e; ~ S’ for J ● J. The result follows (as in Proposition 10) once
we have shown that a cube in S‘ has at most 18fi” in volume mapped onto it in

this way. So now let C‘ E S’ be fixed. This is mapped onto by cubes C(k) ~ S –

S’, using .r(”), u(k). k~KG {1, 2 . . . . . n ~(in the notation of Proposition 10). Now

which implies

and hence (Proposition 7)

k~h

❑

Remark. The term 2n I (S, ~) I in the inequality of Proposition 10 can be

replaced by 8 & I (S, ~) 1. This is done by modifying the argument. and using a

strengthening of Proposition 9 to show that an inside cube can be reached in
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distance 8 &/u/,. However, in turns out that this is not the dominant term in the

complexity analysis, so we have omitted this refinement.

6. Remarks

Remark 1. If the convex body K is a polytope given explicitl y by its constraints,

then we can just use the natural random walk—since it is now possible to test in

polynomial time if the body intersects C(a) for any cube C’. This is done by solving

a quadratic programming problem using the ellipsoid algorithm.

Remark 2. We do not quite need the oracle we have described. We may instead

use the so-called weak membership oracle [9]. A vteak wzembe~ship oracle for a

convex body K does the following: Given a point x and a rational A, it tells us (in

unit time) either (i) .x belongs to K(A) or (ii) tells us that x does not belong to

K(–A ), the set of points in K which are at distance at least X from the boundary of

K. It is straightforward to see that such an oracle will do for our purposes.

Remark 3. Given a weak oracle for a convex body K containing the origin in

its interior, it is easy to construct an oracle for the so-called “polar” or “dual” body

K* = {u:max{u ..x:.Y G K] – min{u ..Y:.Y G K] = 1]. We briefly sketch the

argument. Given any u, we can find the approximate maximum and minimum of

u . x over K to a desired degree of approximation using the weak oracle for K (see

[9]). Then, if the difference between these is suitably close to 1, we answer “yes,”

otherwise, “no.” Thus, it is possible to find the volume of the polar body given an

oracle for the “primal” body.

Remark 4. We can integrate any bounded nonnegative concave function de-

fined over a convex body K in R“. This is because we can express f A-bfasVol,,+l (K, )

where KI = {(x, t): .Y G K and O s ts f(x)}.Some nonconcave functions that do

not vary very rapdily may also be integrated by sampling values at random points

(using our random walk to choose the points).

Remark 5. It would be interesting to show that the random walk over cubes

that intersect any well-rounded convex body K is rapidly mixing. This would

simplify our algorithm by avoiding the use of K(a ).

Remark 6. We suspect the following result is true. If so, it would give us the

required isoperimetric inequality more readily without having to look at the

boundary of the set T?.

Suppose K is any convex body in R“ and S is some measurable subset of it. (It

may or may not be necessary to assume any other properties of S like smoothness

or connectedness.) If the volume of S is at most half the volume of h’, is ittrue

that the “exposed surface area of S,” that is, the (~~– 1) volume of d S\dK is at

least the n volume of K divided by a fixed polynomial in n, d(K)? (Here d(K) is

the diameter of K.) It is also possible that such a result may hold for nonconvex K

as well, where now the denominator is also a function of the least (Ricci) curvature

of the surface of K.

Remark 7. The random walk enables us to generate a random point in a

polytope with nearly uniform distribution. Of some interest, for example, is the
following polytope P in R“-, where the variables are {.~,,, 1 s i, j s n ] and P =

{-Y: O s x,, s 1, .~,, + .~,~ s .~,~ Vi, j }. The points of P for example give us “costs”
on the edges of a graph on n vertices that satisfy the triangle inequality. We expect

that the random generation aspect of our result will have other applications.
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Renzark 8. As we remarked immediately after the algorithm, we conjecture

that the bound of 0( n ‘g) can be improved. Here, we discuss some limits on the

improvements. The diameter of the Markov chain we have is O(r/6 ), which is

O(nq). By working carefully through the proof of Lemmas 1 and 2, and taking

note of Theorem 2. we see that the dependence of our upper bounds on the number

of steps for rapid mixing on the diameter of the Markov chain is the fourth power

of the diameter. (The @2 of Theorem 2 contributes a 2 and Lemmas 1 and 2

already have a 2 in them. ) By well-known results (see [1, example 5.7]), the

dependence cannot be improved below the square of the diameter, even in the

simple case that the convex body is a cube. (In fact. for the 1-dimensional random

walk with 2 reflecting boundaries, after t steps, we are expected to be only at

distance ~ from the starting point. ) Thus. with our random walk, the best bound

on the number of steps needed for rapid mixing is !2(ng ). Thus, we must reduce

the diameter of the Markov chain for more improvements. If the result stated in

Remark 5 is true, then there is no need for going to K(a). Then going through our

arguments carefully, it can be seen that 6 = 1/O(n 3’Z) will work, whence the

diameter will be 0(n3 ).
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