Eigenvalue Bounds on Convergence to Stationarity for Nonreversible Markov Chains, with an
Application to the Exclusion Process

Author(s): JTames Allen Fill

Source: The Annals of Applied Probability, Vol. 1, No. 1, (Feb., 1991), pp- 62-87

Published by: Institute of Mathematical Statistics

Stable URL: http://www.jstor.org/stable/2959625

Accessed: 18/05/2008 15:44

Y our use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=ims.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archivesfor scholarship. We enable the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

http://www.jstor.org


http://www.jstor.org/stable/2959625?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=ims

The Annals of Applied Probability
1991, Vol. 1, No. 1, 62-87

EIGENVALUE BOUNDS ON CONVERGENCE TO STATIONARITY
FOR NONREVERSIBLE MARKOV CHAINS, WITH AN
APPLICATION TO THE EXCLUSION PROCESS!

By JaMES ALLEN FiLL

The Johns Hopkins University

We extend recently developed eigenvalue bounds on mixing rates for
reversible Markov chains to nonreversible chains. We then apply our
results to show that the d-particle simple exclusion process corresponding
to clockwise walk on the discrete circle Z,, is rapidly mixing when d grows
with p. The dense case d = p/2 arises in a Poisson blockers problem in
statistical mechanics.

1. Introduction.

1.1. Overview. In this paper we establish bounds on the variation distance
from stationarity for an ergodic but generally nonreversible Markov chain. We
focus on the application of such bounds to a particular interacting (finite)
particle system, namely, the simple exclusion process corresponding to clock-
wise walk on the discrete circle, to show that the process becomes nearly
random in time polynomial in the number of points on the circle.

The simple exclusion process was introduced by Spitzer (1970) and is
treated in Liggett (1985), which gives history and references (see Section
VIII1.6 there). We recall the definition of a (finite particle) exclusion process
generated by a stochastic matrix g = (q(x, y)), s, ,< s On a finite or countably
infinite set S. We superimpose an exclusion interaction on d otherwise
independent continuous time Markov chains on S with jump matrix ¢ as
follows. The d particles are originally configured on S according to some
specified initial distribution 7, on the system’s state space {0, 1}, with 1 at
site x € S corresponding to the presence of a particle. The particles move on S
according to the following rules:

1. a particle at x € S waits an Exp(1 /d) time, after which
2. it chooses a y € S with probability q(x, y);
3. if y is vacant, it moves to y, while if y is occupied, it remains at x.

In particular, there is always at most one particle per site. Note: We have
scaled transition rates so that there is an average of one attempted particle
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move per unit time. We could equally well treat a discrete time version of the
process.

In Section 4 we analyze the exclusion process with S equal to the discrete
circle Z, (with addition modulo p) and g¢(x,x + 1) = 1 for every x, corre-
sponding to (deterministic) clockwise walk. Let the sites 0, ..., p — 1 be placed
clockwise about a circle. To give a fuller description of the process, we keep
track of the individual particles. For this it is necessary only to arbitrarily
designate one of the particles from the beginning as particle 1 and to record at
each instant of time the position of particle 1 and the list of occupied sites. We
can label the particles clockwise as 1,...,d, beginning with particle 1. The
state of the labelled exclusion process at any time is the ordered d-tuple of
sites for particles 1,...,d at that time.

The labelled exclusion process for clockwise walk on Z » 18 an irreducible
Markov jump process on the state space . consisting of all clockwise rotations
of strictly increasing d-tuples from {0, ..., p — 1}. The nonzero entries of the
generator G are, fori =1,...,d,

(%, vy g), (%, +1,...,25)) =1/d
provided x; + 1 # x,_; (with subscript addition modulo d) and

1
g(x,x) = ——gl{i: 2+ 1# x4}

Since £, . .g(x,y) = 0, the continuous time analogue of double stochasticity,
the stationary distribution 7 is uniform over the d( 5) states of 7.

In Section 4 we show that the labelled particle system is rapidly mixing,
that is, becomes nearly uniform in time polynomial in p < ||, when d
grows with p. As this is the first bound, to the author’s knowledge, on the rate
of convergence to stationarity for an interacting particle system, we find the
result interesting in its own right. Furthermore, in Section 5 we explain how
the dense case d = p/2 arises in a statistical mechanics problem involving the
passage across an interval of a particle blocked by the events of Poisson
processes. For the dense case, our results are summarized in the following
theorem, which shows that the process becomes nearly stationary in time at
most of order p’. The theorem is an immediate consequence of Proposi-
tion 4.4, the variation upper bound of Theorem 2.14 and the trivial bound
( y )< 27,

p/2

THEOREM 1.1 (Rapid mixing for exclusion process). Consider the labelled
clockwise exclusion process with p = 2d. Let A denote the second smallest
eigenvalue of —A(G), the negative of the additive reversiblization of the
generator G. Then

3/2 12

(1.1) ?SASWT)

and consequently, for any initial configuration X, the variation distance
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P, (¢) — wll at time t = cp” satisfies
D 1/2 1
(1.2) 1P, .(¢) — =l < (g) exp[— 5(30 —log2)p|.

REMARK 1.2. We briefly consider two other possible approaches to this
problem.

(a) Coupling. Couplings have been used by a number of authors to prove
results about the exclusion process; see Liggett [(1985), Chapter VIII] for
discussion and references. For simplicity return to the unlabelled clockwise
process. We describe a rather natural coupling for studying convergence to
stationarity; see Liggett [(1985), Section VIII.2] for related discussion of this
graphical representation of the exclusion process.

Associate independent rate 1/d Poisson processes (N,(¢)) with the sites
J € Z,. At each event time of N;, a particle is moved from j to j + 1, provided
that j is occupied and j + 1 is vacant just prior to that time. Then versions of
the exclusion process for all (distributions of) initial configurations are defined
simultaneously on the same probability space. It is not hard to see that for any
two versions of the process, the number of differences in occupied sites
decreases monotonically to zero. Call the (random) time T at which the two
configurations first agree the coupling time for the two versions. If one
version of the process begins in a specified distribution 7, and the other

begins in stationarity [uniform over the (Z) configurations], then the tails of

the coupling time distribution provide an upper bound on variation distance:
see, for example, Lemma 5 in Chapter 4 of Diaconis (1988). But we do not
know how to analyze this stopping time.

(b) Strong stationary duality. Diaconis and Fill (1990a, b) [see Fill (1990a)
for continuous time] have introduced the notion of the strong stationary dual
of a Markov chain. This is an absorbing Markov chain for which the time to
absorption is distributed as the time to stationarity for the original chain.
Such a dual exists when the state space . is partially ordered and the given
chain possesses certain monotonicity properties: see Fill (1990b) for further
explanation. For the linear exclusion process considered in Section 4.1, started
in(1,2,...,d), the monotonicity conditions are met and we can quite explicitly
describe the dual. But the stopping time of interest again seems difficult to
analyze.

1.2. Organization. The theory needed to extend the variation distance
bounds of Diaconis and Stroock (1991) to nonreversible chains is developed in
Section 2. In Section 3 we work a few simple examples. Section 4 develops
results for the exclusion process and Section 5 describes the connection with
the Poisson blockers problem.

2. Bounds for nonreversible chains. In this section we give a simple
proof of an identity of Mihail (1989) and derive from it an upper bound on the
variation distance from stationarity for an ergodic but not necessarily re-
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versible Markov chain in terms of eigenvalues of two associated reversible
chains. Using the Poincaré inequality we obtain bounds on the eigenvalues of
these chains in terms of geometric quantities of associated edge weighted

graphs.

2.1. Multiplicative reversiblization and the variation upper bound. The
following setup will be used throughout. Let P be a given ergodic (i.e.,
irreducible and aperiodic) transition matrix on a finite state space .. Let 7 be
the (unique) stationary distribution and let P denote the time reversal of P:

S m(¥) P(y, %)
(21) P(x,y) = —‘m——

P is also ergodic with stationary distribution 7 and its time reversal is P.
Define the multiplicative reversiblization M(P) of P by

(2.2) M(P) = PP.

Since PR has stationary distribution 7 and the reversal of PR is RP when
both P and R are ergodic with the same stationary distribution =, it follows
that M(P) is indeed a reversible transition matrix. We claim that the eigenval-
ues of M(P) are all real and nonnegative, so that (M) € [0, 1]. Indeed, for
any matrix M, define

S(M) = D'2MD~? with D = diag().

Observe that S(-) is an algebraic isomorphism that preserves eigenvalues. We
have

S(P) = DY*(D'P'D)D~'/2 = (S(P))’,

and so S(M(P)) = S(P)(S(P))* is nonnegative definite.

Denote the second largest eigenvalue of M(P) by B,(M) (the largest eigen-
value being unity). Let P" be the n-step transition matrix, so that P™"(x, - ) is
the law at time n of the chain P started in state x. Finally, let |lo — | :=
maxflo(A) — m(A): A c /) = ;X . lo(x) — m(x)| be the variation distance
from a given probability mass function o to 7. With this notation we are
prepared to state the main result of Section 2.

TueorEM 2.1 (Variation upper bound). Let P be an ergodic transition
matrix on a finite state space . and let m be the stationary distribution. Let
B(M) denote the second largest eigenvalue of the multiplicative reversibliza-
tion M(P) of P. Then for any x € .7,

(2.3) 4P (x, ) — ml* < (By(M))" /m(x).

Theorem 2.1 is a corollary of Theorem 2.7, which handles arbitrary initial
distributions 7, in a manner that makes use of the closeness of , to 7.
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REMARK 2.2. (a) If P is reversible (P = P), then M(P) = P2 and B,(M) =
IBI2, where B maximizes |b| over all choices of eigenvalues b # 1 of P. In this
case, Theorem 2.1 reproduces Proposition 3 in Diaconis and Stroock (1991).

(b) There is another natural way of reversiblizing P. Let

(2.4) A(P) = (P + P)/2

denote the additive reversiblization of P. Like M(P), A(P) is indeed a
reversible transition matrix. As will be seen from examples, A(P) is often
easier to analyze than M(P). Corollary 2.9 gives a reformulation of Theorem
2.1 in terms of A(P).

2.2. An identity of Mihail. We derive Theorem 2.1 from a simple identity
first stated by Mihail (1989) in combinatorial language. Given a function ¢
on ./, let Var ¢ := Var ¢(X_), where X_ is a random variable taking values
in . with distribution 7, and for any transition matrix R, let R¢ be given by

(2.5) (R$)(x) = X R(x,5)o(y).
y

Given functions ¢ and ¢ on ., define the Dirichlet form
(2.6) r(d, ) =31 (6(y) — &(x))(¥(y) — ¥(x))m(x)R(x,y)
X,y

based on a given reversible R having stationary distribution 7. We rephrase
equation (3.22) in Mihail (1989) in the present probabilistic setting and give a
simplified proof.

ProposITION 2.3 (Mihail’s identity). Let P be an ergodic transition matrix
on a finite state space . and let w be the stationary distribution. Calculate
variances with respect to m and let &y p, be the Dirichlet form (2.6) for the
multiplicative reversiblization M(P) of P. Then for any function ¢ on .7,

(2.7) Var ¢ = Var(P¢) + Eucpy (D, D),
with P¢ defined by (2.5).
Proor. Without loss of generality, ¢ has zero mean under 7. Let (¢, ¢) =

L m(x)¢(x)¢(x) denote the L?(7) inner product and note that &x(¢, ¢
(¢,(I — R)y) when R is reversible with respect to . Thus

Eupy($,8) = ($,(I - M(P))é) = Var ¢ — ($, PP¢)
= Var ¢ — (P¢, Pp) = Var ¢ — Var(Po),
where we have used the fact that P is the adjoint of P on L%(w). O

2.3. Reversiblizations. As the next lemma shows, when P is strongly
aperiodic, in the sense that P(x,x) > 3 for every x, the Dirichlet form &} p,
appearing in Mihail’s identity can be decomposed into Dirichlet forms based on
two other reversible transition matrices associated with P.



BOUNDS FOR NONREVERSIBLE CHAINS 67

LemmMa 2.4 (Dirichlet decomposition). Let P be an ergodic transition matrix
as in Proposition 2.3. Suppose additionally that P is strongly aperiodic. Let
M(P) and A(P) denote the multiplicative and additive reversiblizations, re-
spectively, of P. Then we have the following identity of Dirichlet forms:

1
Emepy = apy T 1€uep-1y-

ProoF. According to the hypotheses, 2P — I is a stochastic matrix with
stationary distribution 7. Moreover, by direct calculation, we have

M(P) = A(P) + iM(2P - I) - 1I.

Since the diagonal entries of a transition matrix R do not affect the Dirichlet
form &x(¢, ¢), the assertion follows. O

In many examples A(P) is considerably simpler to analyze than M(P) or
M@P — I). The following immediate consequence of Lemma 2.4 is then
helpful.

ProposITION 2.5. Suppose that P in Proposition 2.3 is strongly aperiodic.
Then for any ¢,

(2.8) Var ¢ > Var(Pg) + &,p(d, ).

REMARK 2.6. Strong aperiodicity can always be arranged by introducing
enough additional (constant) holding probability at each state. However, analy-
sis of the chain so modified does not yield analysis of the original chain. In
continuous time, on the other hand, multiplicative reversiblization of the
transition function corresponds without reservation to additive reversibliza-
tion of the generator (see Section 2.7).

2.4. Proof of the variation upper bound from Mihail’s identity. In this
section we apply Mihail’s identity to derive bounds on the ‘‘chi-square”
distance from stationarity for a nonreversible Markov chain. Using the
Cauchy-Schwarz inequality, we relate this distance to the more standard
variation distance and, in particular, establish Theorem 2.1.

We begin by defining the chi-square distance. Given an ergodic P with
stationary distribution 7, consider the Markov chain with transition matrix P
and an arbitrarily specified initial distribution m,. Denote the distribution
L, mo(x)P™(x, ) at time n by m,. We define the chi-square distance from
stationarity at time n by

, o (m(x) —7(x))

The choice of terminology is apparent from the similarity with the chi-square
goodness-of-fit statistic.
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Since x?2 is simply the variance with respect to 7 (in the sense of Section
2.2) of the likelihood ratio p, = 7, /7 and

< 5 T.(y) T.(y) P(y, x)

Pp,)(x) = ) P(x, = ————— =p, (%
using (2.5) and (2.1), Mihail’s identity implies
(2‘10) Xr2L=X72L+1 + gM(P)(pn’pn)'

But by the minimax characterization of 8,(M) [see (2.19)], the second term on
the right here is at least (1 — 8(M))x2, so x2,, < B(M)xZ. Using induction
we obtain the following bound on chi-square distance:

(2.11) X2 < (B(M))"x3.
Now by the Cauchy—-Schwarz inequality,

A, — P = (); ()~ =]

(2.12) 2
_ ( 7(y)

2
< x2.

‘L:. () lm.(y) — 7 (¥)

We have proved the following theorem, from which Theorem 2.1 follows
simply.

THEOREM 2.7. With the setup of Theorem 2.1 and (2.9), we may conclude
for any initial distribution that

(2.13) dllm, — 7l® < (B(M))" x2.

ReEMARK 2.8. Suppose for ease of discussion that = is the uniform distribu-
tion. From Theorem 2.1 and the triangle inequality, one easily derives the
bound

dllm, — 7l < (B(M))"1A1.

Theorem 2.7 is always an improvement, and sometimes considerably so. An
extreme but artificial example is the case m, = w. A more realistic renewal
theory example is treated in Chang and Fill (1990).

When P is strongly aperiodic, Theorems 2.1 and 2.7 can be reformulated in
terms of A(P), whose second largest eigenvalue we denote by 8,(A) € [0, 1).

CoROLLARY 2.9. If P is ergodic and strongly aperiodic, then
(2.14) 4llm, — 7l < x2 < (By(A))"x2.
In particular, for any x € .7,

(2.15) 4P (x, ) — 7l < (B(A))" /7 (x).
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Proor. Equation (2.15) follows simply from (2.14), which in turn has at
least two simple proofs. One proof proceeds as for Theorem 2.7, noting that
the Dirichlet decomposition Lemma 2.4 and (2.10) together imply that y?2 >
X2+ (fA(P)(pn, p,). This last inequality may also be obtained by setting
¢ = p, in Proposition 2.5. Another proof uses Dirichlet decomposition and the
minimax characterization

(2.16) B =1—inf{&x(s,¢)/Var(¢): ¢ is not constant}
of the second largest eigenvalue of a 7-reversible transition matrix R to derive
(217)  BM) < Bi(A) - 3[1 - B(M(2P - I))] < By(A). =

REmARK 2.10. Since B(M) < B,(A), the bound (2.14) is less sharp than
(2.13), but not appreciably so. Indeed, since S(A(P)) = (S(P) + S(P)")/2 and
S(M(P)) = S(P)S(P), we have as a consequence of a theorem of Fan and
Hoffman (1955) [see, for example, Theorem 9.F.4 in Marshall and Olkin
(1979)] that (8,(A))? < B(M). Thus, application of Corollary 2.9 gives a bound
no worse than 4|7, — wll* < (8,(M))*/2x2. In applications, such a bound is of
greatest interest when P (and hence all other quantities such as m, 8,(M),
etc.) depends on a parameter d (say) that measures the size of the state space,
BM) =e /D gand y2 = ef2(d) with f(d) > ©as d - » for i = 1,2. Then
Theorem 2.7 says 4w, — 7> < e ¢ for n = fi(d) fo(d) + ¢f(d), while Corol-
lary 2.9 gives the same bound for n twice as large. Either bound implies that
order f(d) fy(d) steps are sufficient for near-stationarity when d is large. But,
as discussed in Diaconis and Stroock [(1991), Section 1D], the truth typically is
that order f(d) steps are both necessary and sufficient, the discrepancy
arising from bounding an entire spectrum using only the second largest
eigenvalue [see also Diaconis (1988), Chapter 3].

2.5. The Poincaré inequality. In practice, one is seldom fortunate enough
to know the exact value of B,(M) appearing in the upper bound Theorems 2.1
and 2.7. To simplify the exposition, we suppose for this subsection that R is a
given transition matrix reversible with respect to a stationary distribution =
satisfying 7(x) > 0 for each x € .. The following comments then apply to
R = M(P) to give upper bounds on B,(M). [We do not need to consider
whether M(P) is ergodic.] Application to R = A(P) likewise extends Corollary
2.9.

Our discussion here follows Section 1 of Diaconis and Stroock (1991). The
eigenvalues of R are all real and lie in [—1, 1]. Call the eigenvalues 1 = 8, >
B1= -+ =B, ,_(= —1). The so-called minimax characterization of the
eigenvalues of the real symmetric matrix

(2.18) S(R) = D'?RD-'/? with D = diag(r)
implies that

(2.19) B, =1 — inf{&R(¢, ) /Var(¢): ¢ is not constant},
with & given by (2.6).
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The underlying graph of the Markov chain R is an undirected graph
(possibly containing loops) with vertex set . and {x, y} an edge if and only if
Q(x,y) > 0, where Q(x, y) := m(x)R(x, y). Given vertices x and y in the same
connected component, we randomly choose a (not necessarily geodesic) path
(without repeated edges) and refer to it henceforth as the canonical path
I'(x,y) from x to y. The canonical paths I'(x,y) can be chosen according to
any joint distribution, although in all of our applications the various paths are
chosen independently (and often deterministically). To simplify the exposition,
we assume that our paths have no loops. Define the length

eel(x,y)
of I'(x, y) to be the number of edges; here the sum is over oriented edges € in
the path. Define Q(&) = Q(z, w) if € = (z, w). With

K= max{(Q(E’))_lE Y IT(x, y)lm(x)m(y):
(2.21) (x,y):T(x,y)2¢

€ is an oriented edge} ,

if the graph is connected, that is, if R is irreducible and K := » otherwise, we
have the following bound on B; in terms of the geometric quantity K. The
result is a slight generalization of Proposition 1' in Diaconis and Stroock
(1991) and is proved using (2.19) and the Cauchy-Schwarz inequality.

ProposiTioN 2.11 (Poincaré inequality). The second largest eigenvalue B,
of a Markov chain R reversible with respect to an everywhere positive station-
ary distribution w satisfies
(2.22) B,<1—-K!

with K the Poincaré constant defined at (2.21).

Most of the examples worked in this paper fit either the following specializa-
tion of Proposition 2.11 or its continuous time analogue. This special setup
was also met in the present author’s analysis of the problem of approximating
a permanent described in Section 4 of Diaconis and Stroock (1991). Suppose
that there exists a constant r > 0 such that R(x,y) = r whenever x # y and
R(x,y) > 0 and that the uniform distribution 7 on . is a stationary distribu-
tion for R. Then Q(&) = r/|.7|if € is not a loop. Assuming R is irreducible, K
equals (r|”])~! times the maximum expected sum of lengths of all canonical
paths passing through any oriented edge ¢ in the graph. This yields:

COROLLARY 2.12. In the Poincaré inequality, if we have in addition that R
is irreducible,  is uniform, R(x,y) = r whenever x # y and R(x,y) > 0 and
no canonical path exceeds vy, in length (= number of edges), then

S
Y« b

)
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with

(2.24) b= max (expected number of canonical paths through ).
e

2.6. Cheeger’s inequality. A standard alternative to the Poincaré inequal-
ity for bounding the eigenvalues of a Markov chain is Cheeger’s inequality. Let
P be a (not necessarily reversible) transition matrix with an everywhere
positive stationary distribution. Define the Cheeger constant h by

h = h(P)

(225) — mln{ erszyescﬂ'(x)P(x,y)
m(S)

The following result for reversible chains, a discrete analogue of Cheeger’s
(1970) bound on the second smallest eigenvalue of the Laplacian on a compact
Riemannian manifold, is stated and proved, for example, in Diaconis and
Stroock (1991). See their paper, Sinclair and Jerrum (1989), Lawler and Sokal
(1988) and Mihail (1989) for variants, further discussion and historical refer-
ences.

1
S # Jand w(8S) < E}

PropPosITION 2.13 (Cheeger’s inequality). The second largest eigenvalue 3,
of a transition matrix reversible with respect to an everywhere positive station-
ary distribution i satisfies

(2.26) 1-2h <B; <1- ;A%

Now let P be nonreversible. Cheeger’s inequality may be applied to either
M(P) or A(P). For M(P), combining (2.12), (2.11) and the Cheeger upper
bound yields

(2.27) dllm, — 7l < x2 < (1 - 3R%(M))" X3,

with h(M) = h(M(P)), recapturing Theorem 38.3.1 in Mihail (1989). For
A(P), assume P is strongly aperiodic and use (2.14), the Cheeger upper bound
on B,(A) and the observation [a minor variant of which is used in the proof of
Theorem 2.3 in Lawler and Sokal (1988)] that A(P) = h(P) = h(A(P)) to
conclude

(2.28) 4lm, — 7l* < x2 < (1 - $h%(P))"x3.

The bound is improved in Section 3.3 of Mihail (1989) by removing the 3.

Mihail’s proof of (2.27) proceeds from (2.10) by showing directly that
G Pn> Pr) = sh*(M)x 2, without reference to eigenvalues. The advantage of
the present approach is that any eigenvalue bound for reversible chains, not
Jjust Cheeger’s, is available for use in extending the variation bound (2.13). We
have chosen to concentrate on the Poincaré inequality rather than Cheeger’s
because in all known applications where both can be computed, the Poincaré
upper bound does better than the Cheeger bound. See Diaconis and Stroock
(1991).
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2.7. Continuous time. In this subsection we derive continuous-time ana-
logues of the variation bounds in Theorems 2.1 and 2.7. Let P, (2), x € ./,
y €, 0 <t <o be the transition function of an irreducible Markov jump
process on a finite state space ./, with generator G and stationary distribu-
tion 7. For each ¢, define the matrix P(¢) := D™'P(¢)'D with D := diag (),
just as in (2.1). Then (P(2)), the time reversal of (P(t)), is also an irreducible
Markov jump process with stationary distribution ; its generator is G =
D7 'G'D. If P = (P(t)) and R = (R(¢)) are both transition functions on .7,
then so is (P(¢/2)R(¢/2) = R(t/2)P(t/2)), whose generator is the average of
those for P and R. [To see this, recall P(¢) = ¢’6.] With R = P, we obtain the
(multiplicative) reversiblization (M(P(¢/2))) of (P(¢)), with generator

(2.29) A(G) = (G + G) /2.

[Note: (A(P(t))) is not in general a transition function.] Denote the second
smallest eigenvalue of —A(G) by A = A,(A) > 0 (the smallest eigenvalue being
0). For a given initial distribution 7, define 7, and the chi-square distance
x(t) just as in discrete time.

THEOREM 2.14. In the present continuous-time setting we have

(2.30) 4|, — wlI* < x2(¢t) < e 2x%(0).
In particular, for any x € 7,
(2.31) 4P, (t) — 7l* <e 2 /m(x).

Proor (Sketch). Apply the discrete-time Theorem 2.7 to the Markov
chain P((k/n)t), k =0,1,2,... with # and n fixed to conclude
dllm, — wl* < [B( M(P(t/n)))]" x*(0).
But as u |0,
M(P(u/2)) =e*49 =T + uA(G) + O(u?).
Thus, letting n — o,
M(P(t/n))" - 4@

and the second largest eigenvalue of this matrix is e~ 2%, O

There is a Poincaré inequality for continuous time chains: If A is the second
smallest eigenvalue of — G, where G is the generator of a reversible chain with
stationary distribution w (> 0 everywhere) and K is defined as in the para-
graph containing (2.21) with G replacing R throughout, then A > K~ *. Corol-
lary 2.12 also extends to continuous time in the obvious fashion.

3. Examples. In this section we present four simple examples illustrating
the theory developed in Section 2. A more substantial application to renewal
theory is presented in Chang and Fill (1990). The first three examples treated
here can be addressed by other techniques, but we find it instructive to see
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how well the eigenvalue bounds fare in problems where exact results are
known. No other analysis is known for the fourth example.

ExampLE 3.1. Clockwise random walk on the discrete circle Z,. Consider
the additive group Z, of integers modulo p as p points placed about a circle.
We treat the random walk which, at each step, holds at its present state with
probability r € (0,1) and moves clockwise with probability 7 =1 — r. The
transition matrix P is clearly ergodic and doubly stochastic, so the stationary
distribution 7 is uniform. P is strongly aperiodic if and only if r > %. For
simplicity, suppose that the walk starts deterministically, say at 0.

For any r we may (and for r < § we must) use the multiplicative reversib-
lization M(P) of P. Here M(P)= PP = PP! is simple symmetric random

walk with holding probability 2 + 72 = 1 — 2rF. Thus
Bi(M) = (1 - 2rF) + 2rF cos(2mw/p) = 1 — 2rF(1 — cos(2m/p))
=1-(1+o0(1))4n?r#/p? = exp[— (1 + o(1))4m2r7/p?|.

The asymptotics here are as p — =, with r fixed. From the variation upper
bound Theorem 2.1 it follows (cf. Remark 2.10) that order p? log p steps of the
clockwise walk are sufficient for near-stationarity. In fact, Fourier analysis
making careful use of the entire spectrum of P [as in Example 1 of Chapter 3C
in Diaconis (1988)], or the simpler observation that , is the distribution of
Y, mod p with Y, ~ binomial (n, 2r7), shows that order p? steps are necessary
and sufficient.

Let us examine how Poincaré fares for this example. Clearly 1 — 8,(M) =
2rF(1 — B,), where B; is the second largest eigenvalue for simple symmetric
random walk without holding. For definiteness, suppose henceforth that p is
odd. For x and y in Z , choose I'(x, y) deterministically as the unique geodesic
path from x to y. An easy calculation gives K = 5(p% — 1) as the Poincaré
constant for the no-holding random walk. Thus

B(M) <1 - 24r7/(p* - 1),

which (asymptotically) gives the right order of magnitude and only misses in
the p~2 term by a factor of 72/6 < 1.7. As shown in Example 2.1 in Diaconis
and Stroock (1991), Corollary 2.12 also gives the right order of magnitude and
doezs about 50% worse than Proposition 2.11 in bounding the coefficient of
P~

If r > %, we may alternatively employ the additive reversiblization Corol-
lary 2.9. Here A(P) is simple symmetric random walk with holding probability
r and so B;(A) = 1 — F(1 — cos(27/p)); the analysis proceeds as before, with a
further degradation in the bounds on the coefficient of p 2. For this example,
the first inequality in (2.17) is by Dirichlet decomposition an equality. Indeed,
M(Q2P — I) is simple symmetric random walk with holding probability 1 —
47(2r — 1) and so the same ¢ achieves the infimum in (2.16) for each of the
matrices M(P), A(P) and M(2P — I).



74 dJ. A FILL

ExaMpLE 3.2. Simple asymmetric random walk on Z »- If P is asymmetric
simple random walk on Z,, the walk M(P) is not simple and so Poincaré
analysis becomes messy. However, A(P) is a simple walk and can be analyzed
as in the preceding example. We present a few of the details for a continuous
time asymmetric walk mainly to illustrate the continuous time results of
Section 2.7.

Consider a walk that starts at 0 (say) and moves counterclockwise and
clockwise with respective rates u and A. The stationary distribution is uni-
form. The reversiblized chain moves in each direction at rate (u + A)/2: recall
(2.29). Thus A(A) = (u + M[1 — cos(27/p)] and so by Theorem 2.14,

4||Po, (2) = mll* < pexp[—2t(pn + A)(1 - COS(2W/p))]~

Again order p®log p time units suffice, while actually order p? are necessary
and sufficient. The Poincaré constant K for the reversiblized chain equals
(n+ ) 1E5(p2-1).

ExampLE 3.3. Top in at random card shuffle. This example is discussed in
Aldous and Diaconis (1986), Diaconis (1988) and Diaconis and Fill (1990a).
Consider shuffling a deck of d cards by repeatedly removing the top card and
inserting it at a random position. This may be formalized as a random walk on
the symmetric group S, with step distribution placing mass 1/d at each of
the cycles id, (21), (321), (4321),...,(d d — 1 --- 1). To simplify the analysis,
we treat in place of this chain P, the strongly aperiodic chain P = (I + P,)/2.

We use additive reversiblization and Poincaré. We can write A(P) =
(I + A(Py))/2; then B(A) = (1+ B,)/2, where for brevity B, = B,(A(P,)).
Let R = A(P,). At first thought it would appear that we can apply Corollary
2.12, with I/ | = d! and r = (2d)~!. However, an interchange of the top two
cards can result either from moving the top card below the second card (a step
according to P) or from moving the second card above the top card (a step
according to P). Thus while most of the nonzero off- diagonal entries of R
equal (2d)!, some equal d~!. Nevertheless, 7 is uniform and Q(&) >
(2d)~'/|]if € is not a loop, so from Proposition 2.11, we obtain

ed) i

b Y«b
with y, and & as in Corollary 2.12.

Our canonical paths will be deterministic and very simple, but not always
geodesic. We construct a path from a given initial order to a given final order
using entirely top-in-to-somewhere transitions. Begin by moving the top card
in the initial order to the bottom of the deck or to the next-to-bottom position
so that the bottom two cards are then in their final relative order. Now move
the top card to one of the bottom three positions so that the bottom three
cards are then in their final relative order. Continue in this fashion until the
deck is brought to its final order.

Clearly v, =d — 1. Now we bound & of (2.24) by first producing a bound
[say, b(;j)] on the number of canonical paths I'(x, y) for which any given edge &
is the jth edge in the path, where 1 <j < d — 1, and then summing over J.
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Let an edge € = (2, w) and j be given. Then the bottom j + 1 cards of w are
in their final (y-) relative order. So there are at most d!/(j + 1)! possibilities
for y. Also, the top d —j cards of z are precisely the cards in positions j
through d — 1 (as measured from the top of the deck) in x, in the same order.
So there are at most j! possibilities for x. Thus &(j) <d!/(j + 1D = |A1/(j +
1) and hence

d-1

b<|AY (j+1) "< |Allogd.

j=1

We conclude from Proposition 2.11 that

<l- —5——-.
Ai<l-gop log d

To get a lower bound on pB;, recall from (2.19) that B, > 1 —
&r(d, d)/Var(¢) [with R = A(P,)] for any nonconstant ¢. We use the natural
notation

Q(e) = Q(z,w), ¢(&) = d(w) — ¢(2),

if &€= (z,w). Let ¢(x) = x(d), the number on the bottom card of the deck in
order x. Then

1
u(6,9) = ~ £ ()Q(@)

Do

Syt XL eer L #o)
But
Y ¢%(e) = )y $*(e)
€ top in € top in to bottom
=(d-2)! ¥ (u-v)’=2(d-2)d? Var(s)

and similarly for the other sum. Thus

1 1 1 1
GOR((b ¢) — X m X -z—d X 4d2(d - 2)'Var(d>) = E_—lVar(qb)

and therefore

.1 1
Azl

We have shown

1
L= 5@ =AW <1~ ga
Suppose that the deck starts in natural order. Then we find that order
d3(log d)* steps are sufficient for near-stationarity. The truth—via strong
uniform times—is that order d log d steps are necessary and sufficient. The
exact value of B,(A) is unknown, but it seems reasonable to conjecture that
1 — B,(A) is of exact order d ™.
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ExamPLE 3.4. Another card shuffle. Consider shuffling a deck of d cards
by repeatedly removing a random (uniform on {1,...,d}) number of cards
from the top and replacing them in reverse order. Here the Markov chain is
reversible; let B; denote its second largest eigenvalue. An analysis similar to
that for top-in-at-random shows that

i-1=Ph=1"qp

and hence that order d*log d steps are sufficient for mixing. This problem
seems not to be amenable to Fourier analysis, strong stationary times or
coupling. We conjecture that the truth, as for most simple shuffles, is that
order d log d steps are both necessary and sufficient.

4. Application: The exclusion process.

4.1. The exclusion process on a segment of the integers. As we shall see in
Section 4.2, analysis of the (d-particle) exclusion process for clockwise walk on
the discrete circle Z, reduces to that of the exclusion process for symmetric
random walk on {1,..., p}. Thus, in the general notation of Section 1.1, we
take S={1,...,p} glx,x— 1D =3, x=2,...,p; glx,x+ 1) =1 x=
1,....,p0—1;,q(1,1) = %; and q(p, p) = 1 for the underlying random walk.
The corresponding exclusion process is an irreducible jump process with a
symmetric generator G, so the stationary distribution 7 is uniform over the Z
states of .~. Note g := G(x,y) = (2d) ! is constant when x # y and G(x,y) >
0. Let A denote the second smallest eigenvalue of —G. We shall prove the
following results.

PrOPOSITION 4.1. Let A be the spectral gap for the exclusion process for
symmetric random walk on {1, ..., p}.
(a) Upper bound on A:
6 6

Y () T
(b) Lower bound on A for d fixed:
()
d

= 2dd2(p _ d)pd+1

A
1
= (o) gragzye

(¢) Lower bound on A for d growing with p:
3

A > .
d(p—1)"(p +2)(2p®+ 5p + 6)

3/2
=(1+o(1))#.

REMARK 4.2. (a) The exact bounds are valid for any values of p and d. The
asymptotic estimate in (c¢) is valid uniformly in 0 <d <p as p - ». The
estimate in (b) is for constant d as p — .
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(b) When d is fixed, (a) and (b) trap A between two constant multiples of
p 2, but the ratio of these constants grows very rapidly with d; hence our
interest in (c).

(c) When the exclusion interaction is removed, the resulting process is d
independent random walks on (1, ..., p}, for which A = d~*(1 — cos(/p)) =
(1 + o(1)X72/2)/(dp?) uniformly in d. By comparison, this is of the same
order as the upper bound in part (a) of the proposition.

(d) We do not know the right (i.e., exact) asymptotics for A. But there is
reason to believe that the Poincaré bound A > g|.”|/(v,b) is inadequate for
large d, regardless of the choice of canonical paths. Indeed, for the process
without exclusions as in the previous remark, this bound can give no better
than 3/(d*(p? — 1)), off by a factor of about d. To see this, observe that y, is
at least the diameter of the graph, namely, d(p — 1); moreover, a simple
pigeonhole argument shows that b > 1p%(p + 1).

(e) The inadequacy of the bound in (b) of the proposition for large d
stems not just from our crude analysis of b; b truly is large for our choice
of paths. For example, when d =p/2, one can show b/|7] > (1 +
o()2m)~1/2d~1/%33/2 /4)? by identifying an edge through which many
canonical paths pass.

(f) Suppose d grows linearly with p. Combining (c) of the proposition with
the variation bound Theorem 2.14 and standard asymptotic estimates, we
conclude that order p’ time is sufficient for near-stationarity, regardless of the
distribution of the initial configuration; in particular, the process is rapidly
mixing. We have not investigated, for any choice of initial distribution, the
amount of time necessary for near-stationarity.

AN UPPER BOUND ON A. We shall derive a lower bound on A using the
continuous time analogue of the Poincaré Corollary 2.12, but the paths we use
will depend on whether d is regarded as fixed or as growing with p. On the
other hand, we can get an upper bound on A usable in both cases from the
continuous time analogue

A = inf{&;(p, ) /Var(s): ¢ is not constant)
of (2.19) by choosing a ““bad” ¢. Indeed, let ¢(x) = L ¢ x,. Then, with

1 1
Q(e) = Q(z,w) = m(2)G(z,w) = "z X 5d when €= (z,w),

. ‘ 2d(p - d)
|E| = number of oriented edges = ———~|.~

l,

we have

1

(b, 9) = §Z¢2(?)Q(€)

1 1 1 E_,_l d
EXIXI_L;lXé—Xml_E( )
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For the variance, note that by a standard formula for sampling without
replacement

-d

Var(¢) = ;; — X d X VarU (where U ~ unif{1,..., p})

p—d

p—1

Thus A < 6/(dp(p + 1)).

1
xdx 2 (p*~1) = d(p—d)(p+ 1),

A LOWER BOUND ON A FOR d FIXED. In continuous time we have A >
gl71/(yb). Given vertices x and y, we specify a (deterministic geodesic)
two-stage canonical path from xtoy. Let I = I(x,y) = {i €{1,...,d}: x; > 5,;}
and let I denote its complement in {1,...,d}. Writing i, <i, < --+ <1i, for
the elements of I, our path from x to y first travels edges along which
coordinate i, decreases from x; to y;, then likewise decrements coordinate i,
from x;, to y; ,..., then decrements coordinate i ; from x; to y;,. i It is easy to
see that each of the vertices along this first stage of the path lie in 7. For the
second stage we similarly increment the coordinates in I, but this time we
proceed from right to left. Again all vertices along the path lie in .»#. Since the
paths are geodesic, vy, equals the diameter of the graph, namely, the distance
fromx=(1,...,d)toy=(p—-d+1,...,p), whichis d(p — d).

It seems hard to count the exact number of canonical paths through a given
edge, but we can bound & crudely, as follows. Let us, for example, bound the
number of paths through an edge ((2,,...,2;,...,2.),(2;,...,2; = 1,...,2,).
If a path T'(x,y) through this edge has I(x y) = {zl, Loigwithiy <ig< -+
<1i,, then i, =j for some % and, for i # j, z;, =y, if i =i, with h <k, and
z; = x; if either i =i, with A >k or i € I. This limits (x,y) to (far) fewer
than p?*! possibilities. Since there are 2¢~! possibilities for the set I, the
number of paths through the given edge is < 29 !p¢*!. The same bound
applies to edges ((z4,...,2;,...,2.),(2,...,2;,+1,...,2,). Thus b <

2d—1pd+1.

Putting everything together,

(2d) "' x (Z)
2 d(p —d) x 2d—1 a+1

(1+0(1)Zsi753

as p — o with d fixed.

d|2dd2 2

A LOWER BOUND ON A FOR d GROWING WITH p. Canonical paths. The lower
bound we have just derived for A is unsatisfactory when d grows with p. For
such cases we rebuild our canonical paths I'(x,y) = [, .x,y),x€.”,ye.”,
inductively in a “semirandom” fashion. That is, certain parts of the paths will
be specified deterministically, while other parts will employ randomization to
more evenly distribute the numbers of paths through the various edges of the

graph.
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The induction, on p simultaneously for all values of d in {0, ..., p}, is based
trivially on the observation that || = 1if d = 0 or d = p. For the inductive
step we may therefore assume that 0 < d < p. Our canonical paths are of four
types, depending on the values of x,; and y,. The following example illustrates
the sort of informal terminology we will use in describing the paths. The
specification of a type 1 path means that, if x; = p and y, = p and the ordered
vertices of T, ; ; (xy,..., %51, (yy,...,¥q-1) are (2f,...,25_)), then
T, 4(x,y) is defined as the path whose vertices are (zf,...,2}5_,, p). Also, if
X€E A g thenx+je A ,U.A ;. isdefined in the obvious manner, as is
X—k€ A 4U A a1

1. If x,=p and y; =p, use the (Z:i)-path from (x,...,%;_1,p) to

T N )}

2. If x;,<p—1land y; <p — 1, use the (p; 1)-path from x to y.

3. If x, =p and y; < p — 1, pick a vacant site at random (uniformly) from x
and call it /. (a) Move from x to x* = (x + J) — p € ./, ; deterministically
by decrementing the ith coordinate in its turn, i = 1,...,d, from x; to x}*.
[For example, if p = 8,d = 4,J = 2and x = (1, 4, 5, 8), then x* = (1, 2,4, 5)
is reached by moving the second particle leftward from site 4 to site 2, then
the third particle from site 5 to site 4 and finally the fourth particle from
site 8 to site 5.] (b) Use the type 2 path from x* to y.

4. If x;, <p — 1and y,; = p, pick an occupied site at random (uniformly) from
x and call it K. (a) Move from x to x* = (x + p) — K € ./; ; deterministi-
cally by incrementing the ith coordinate in its turn, i = d,..., 1, from x; to
x¥. (b) Use the type 1 path from x* to y.

It is not hard to show by induction that the paths described do not have any
repeated edges. For example, none of the edges in part (a) of a type 3 path are
repeated in part (b). Indeed, for edges across which the dth particle remains at
site p, this is clear. The other type 3(a) edges move the dth particle leftward
and the dth particle makes at most one change of direction in the course of a
type 3 path.

Inductive analysis. We use induction to prove the following bounds on v,
(no longer the diameter of the graph since our paths are not geodesic) and b.
When these are combined with the Poincaré bound A > g|.”|/(y,b), we
obtain part (c) of Proposition 4.1.

LEMMA 4.3. Our semirandom canonical paths for the d-particle exclusion
process for simple symmetric random walk on {1, ..., p} satisfy

p
ve <5 p-1(p+2) and bs2(h) L%
j=2

Proor. We may suppose p>1and0<d <p.For ¢t=1,2,3,4,let y,(p,d)
denote the greatest possible length of a (Z)-path of type ¢; we may then
take Y = ‘)’*(P, d) = max,; 7;(p’ d) Clearly, ‘y}k(p’ d) =< 'Y*(p - 1, d - 1)’
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yi(p,d) < v4(p — 1,d), yi(p,d) <p +yi(p,d) <p +v,(p —1,d) and
yi(p,d) <p + vi(p, d)<p+7v.(p—1,d~-1). Thus
y+(p,d) <p+max(y,.(p —1,d —1),v.(p — 1,d))
<p+3(p-2)(p+1)=3(p—1)(p+2) byinduction.

We will bound the maximum & = b(p, d) over all oriented edges & of the
expected number b(&) of canonical paths through an edge &= (z,w) by
considering four cases. In each case, we will show that

(4.1) b@7<mp¢)—2()2J

For ¢t = 1,2, 3, 4, let b’(¢) denote the expected number of canonical paths of
type t through e: thus b(e) = L4_,b%(@). Likewise, we define 5%%(&) to be the
expected number of canonical paths of type 3 such that & belongs to part (a) of
the path; 5%*(2), b*3(&) and b*°(¢) are defined similarly. As a preliminary, we
prove that for any edge €,

(4.2) b2(&) <p?(5),

(4.3) b (&) <p2(fl).

Proor oF (4.2). For any j=1,...,p — 1, say that a vertex x € ./ is
J-feasible if x; = p and, for all i, x; # j. We will show

(4.4) <p?

where #/(€) is defined to be the set of j-feasible x such that the type 3(a) path
from x to (x +j) — p, call it y33(x,(x +j) — p), passes through e. Granting
(4.4) for the moment, it follows that

b3a(€) = Z (p - d)_l Z Iyaa(x,x+j—p)(é,)

(X,¥): xg=p>yq JiVix,#j

— p-1
-(PL Y x -0 E 4@
j=1

< (p;l) X(p—d)~" ><p3=p2(§),

which is (4.2). (4.3) is proved similarly.

To establish (4.4), fix j and suppose that i is the coordinate such that
w; = z; — 1. Let x € #(&). Given the sites of the ith particle in both x and
X +j — p, one can determine x from e. Indeed, it is not hard to verify that

x=[(w-w) +x+(x+j—p);+p] —J.

Thus (4.4) is established. O
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We are now prepared for the four-case proof of (4.1).

Case A. z,; = wy; = p. We show that

b(@) < zpz(‘;) + %b(p —1,d-1)

<2p*(h) + ZB(p - 1,d - 1) = B(p,d).

First observe that any path through ¢ is of type 1, 3 or 4.

Type 1: b'(&) <b(p — 1,d — 1).

Type 3: If a type 3 path passes through €, then & belongs to part (a) of the
path. Thus 53(e) = %(e) < pz(zzl.

Type 4: Part (a) of a type 4 path is handled by (4.3). As for part (b), observe
first that for any edge €, db*(&) equals

Yy Y P{type 1 path from (x + p) — &
(x,¥): xg<p=q ki x;=k for some ¢ to y passes through &7} .

In this double sum, for each fixed y and any given x’' with x/ = p, the term
P{type 1 path from x' to y’ passes through e’}
appears exactly p — d times. Thus
L, _p-d ,
b¥h(e) = 7 Y P{type 1 path from x' to y passes through e’}
X, y): x4=y4=p

p—d p—d
= —bl(e) <
g 2@ =3

Combining this with (4.3),

b(p-1,d-1).

d
b4(?) <p2(5) + pd b(p—1,d - 1)

for any edge.
Adding our upper bounds for (&), 53(&) and b*(€), we obtain the asserted
bound for (&) in Case A.

Case B. z; <p —1and w; <p — 1. We show that

— 2p p _
b(e) < 2p (d) +—Zb(p—1,d)

2( P p — =
<2p (d) + —TB(p-1,d) =B(p,d).
Any path through & is of type 2, 3 or 4.

Type 2: b%@) < b(p — 1,d).

Type 3: Just as we showed b**(&) < (p — d)/d)b(p — 1,d — 1), so one
can show b%°(&) < (d/(p — d)b(p — 1,d) for any edge €. Combining this
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with (4.2),
d
3= 2(P _
b3(&) < p (d)+ ——b(p—1,d)

for any edge.
Type 4: If a type 4 path passes through €, then € belongs to part (a) of the

path. Thus b%(e) = b*2(e) < pz(s).

Adding our upper bounds for b%(’), b3(e) and b*(e’), we obtain the asserted
bound for b(¢’) in Caze B.

Case C. z,=p and w; <p — 1. Then w, = p — 1, and any path passing
through € is a type 3 path and does so in part (a). Therefore, by (4.2),
b(@) = b°(@) < p*(%) < B(p, d) in Case C.

Case D. 2z, <p - 1and w, = p. As in Case C, b(e) < pz(s) < B(p,d). O

4.2. The exclusion process on a discrete circle. In this subsection we use
our knowledge (Proposition 4.1) about the exclusion process on {1, ..., p} to
study the labelled exclusion process on Z,, as defined in Section 1.1. The
symmetrized (i.e., reversiblized) chain is the labelled exclusion process corre-
sponding to simple symmetric random walk on Z »; denote the generator of this
symmetrized chain by G and the second smallest eigenvalue of —G by A. Here
again g = G(x,y) = (2d)"! is constant when x # y and G(x,y) > 0, so we
will again be able to use the bound A > g|.”|/(y,b). Our paths for the
symmetric circular process will be built in a straightforward fashion from
those for the linear process. We shall establish the following results about A.
We omit a detailed proof of (a)—use ¢(x) = L¢_,x; as for the linear process.

PROPOSITION 4.4. Let A be the spectral gap for the d-particle labelled
exclusion process for symmetric random walk on Z, with 2 <d <p. Set

l(p,d) = (Z) :
2[(2d - 1)p - dz][dzp(Z) N 2d—2pd+1]
and
3
ly(p,d) =

d[(p - 2)(2p* +p +3) + 3dp][(p - 2)(p + 1) +2d(p - ]

(a) Upper bound on A: A < 6/(d(p? — 1)) = (1 + o(1))6/(dp2)).
(b) Lower bound on A for d fixed: A >1(p,d) > 1 + o(1)Xd!2%d +
4d3)_1p_2.
(¢) Lower bound on A for d growing with p:
3/2

A le(p,d) = (]. +0(1))m)—.
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REMARK 4.5. (a) Suppose d grows linearly with p. Then from (c) it follows
that order p” times units are sufficient for near-stationarity for any initial
distribution; hence the clockwise exclusion process is rapidly mixing.

(b) How much time is necessary? We have not investigated this question
carefully but shall make a few heuristic remarks. For simplicity, consider the
case d = p/2 (p even).

First suppose that the initial configuration is deterministic. In the absence
of interactions, it would take time of order p® just for particle 1 to become
nearly random. We surmise that the exclusion interactions tend only to slow
the convergence to stationarity; for a theorem of Arratia (1983) along these
lines but in a somewhat different setting, see Theorem VIII.4.13 in Liggett
(1985). It then follows that time at least of order p?® is necessary for near-
stationarity of the exclusion process.

Now suppose instead, for reasons discussed in Section 5, that the initial
distribution is uniform over the d configurations (one for each possible
position of particle 1) for which all the particles are at odd-numbered sites. In
stationarity there is substantial probability of the event {at least d /2 + cd'/?
particles among the sites 0,...,d — 1} when c is constant (and not too large).
For the exclusion process to realize this event at time ¢, the particle initially at
site 1 + p — 2cd’/? must have already moved clockwise into (and perhaps out
of) the set {0, ..., d — 1} of sites. But this, we guess (again by comparison with
the no-exclusion process), takes time at least of order p3/2. Then in the
present case time at least of order p3/2 (and perhaps much greater) is
necessary for the exclusion process to become nearly stationary.

CanoNicAL pATHS. We now proceed to define the canonical paths for the
labelled exclusion process corresponding to simple symmetric random walk on
Z,. Here . consists of all clockwise rotations of strictly increasing d-tuples
from {0,...,p — 1}. We begin by specifying a canonical path between an
ordered pair of configurations x, y differing only by a rotation, say, y;, = x; + 2z
for each i. Put j =y,.

1. If x; =j, then y = x and the path is empty. Otherwise, let 2 be the first
site clockwise from j such that site % is occupied by x but site 2 + 1 is not.
Call the particle at site & the lead particle and go on to step 2.

2. Perform a unit (clockwise) rotation, that is, move each particle clockwise
one site as follows. First move the lead particle and then move the next
particle reached in the counterclockwise direction. Continue in this fashion
until the unit rotation is complete. [For example, if p = 8,d = 4, j = 0 and
x = (6, 1,2, 4), then rotate to (7,2, 3,5) by first moving the lead particle 3
from site 2 to site 3, then particle 2 from site 1 to site 2, then particle 1
from site 6 to site 7 and finally particle 4 from site 4 to site 5.]

3. Repeat step 2 until the dth particle is at site j. [With j and x as in the
previous example, y = (2, 5, 6, 0) is obtained from x by z = 4 unit rotations,
each led by particle 3.]

For future reference, we observe that no element of .~ is the terminal
vertex in too many paths of the above form. Let j € Z, and put S =
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{y € #:y,=Jj} Fory € ./}, define
A,(y) = {x € : x and y differ by a rotation}.
[Note that the sets A(y), y € ./, partition .#.] Clearly,
,A j(Y) l =D.
Next we define a canonical path between an ordered pair x,y of elements of
- having x,; = y, = j (say). This is easy to describe. Consider the underlying

graph for the labelled symmetric circular exclusion process. The subgraph
induced by . is clearly isomorphic to the underlying graph of the linear

(s - i)-exclusion process. Choose canonical paths isomorphic to those con-

structed in Section 4.1. (As before, we use entirely different schemes according
as d grows with p or not.)

The canonical path between any pair x, y of vertices in . is now defined as
the concatenation of two segments as follows. Let j =y,, z =y, — x4, and
x/=(x;+2...,x55+2z=j):

initial segment: follow the canonical (rotational) path from x to x/;

main segment: follow the canonical path from x/ toy.

REMARK 4.6. Technically, we have violated the conditions leading to the
Poincaré inequality, since it is not hard to see that our ‘“paths” can have
repeated edges. However, the inequality A > g|.#|/(y,b) remains valid pro-
vided that in calculating b of (2.24) we count ¢ canonical paths through & for
each canonical path containing the edge € ¢ times. Since the initial and main
segments are (separately) free of repeated edges, the proof of the next lemma
remains correct for this modified definition of b.

Bounps oN y, AND b. The next lemma gives bounds on vy, and b for the
labelled symmetric circular exclusion process in terms of bounds for the linear
process. When the lemma is combined with the bounds from Section 4.1 (e.g.,
Lemma 4.3) and the Poincaré bound A > g|.”|/(y, b), we obtain parts (b) and
(¢) of Proposition 4.4.

LemMmA 4.7.  Let v, (p, d) be the greatest possible length of a canonical path
and b(p, d) the largest expected number of canonical paths passing through
any oriented edge for the d-particle labelled symmetric circular exclusion
process with state space .. Let y%(p — 1,d — 1) and b%(p — 1,d — 1) denote

the corresponding quantities for the linear (Z ~ i)-exclusion process. Then
v«(p,d) <d(p—-1) +yi(p-1,d - 1)
and
b(p7d) < dp|</| +Pb0(p - 17d - 1)

PROOF. Since the maximum length of a rotational canonical path is d(p —
1), the assertion about vy, is clear. Next we bound the expected number b(&’) of
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canonical paths through any edge & = (z, w). Suppose first that the canonical
path from x to y passes through € in its initial segment. Once x, and the lead
particle in the rotation are identified, x can easily be reconstructed from &,
Hence the (deterministic) number of such paths does not exceed dp|.~|.
Finally we consider main segments. For each j, the expected number of
canonical paths through & between ordered pairs of vertices in #; does not
exceed b°(d — 1, p — 1). Since |A;(x/)| = p for any x € ., we see that the
expecved number of canonical paths from ./ to ./, through € does not exceed
pb%d — 1, p — 1). But if the main segment of a path fromx e/ toy e ./
passes through &, then we must have j = z, (= w,). The lemma is proved. O

5. Poisson blockers. In this final section we briefly describe how the
dense (p = 2d) clockwise exclusion process arises naturally in connection with -
a Poisson blockers problem from statistical mechanics, as related to the author
by P. Doyle and the physicist D. Huse via L. A. Shepp. We show how our
variation bound (1.2) yields estimates for a shortest path problem of natural
interest.

To formally describe the blockers problem, associate independent unit rate
Poisson processes (N,(¢)) with the sites j € Z,(peven). Let §,,k=1,2,...,
denote the event tlmes of N,. For each ¢ > 0, set

e im {1, if  is odd,

‘ 0, ifiiseven

and define

(5.1) v;(t) = min{l + ¢;:i € Z,1e Lij(t)}.

Here L, (¢) is the random set of nonnegative integers [ having the property
that there exist (1) a sequence JosJ1s -5 Jy of sites in Z  with (a) j, = i, (b)
J; =J and (c) each pair j,, j,,,; consisting of nelghborlng sites; and (2) a
corresponding increasing sequence f,t,,...,%,,t,,, of times with (a) ¢, =0
and (b) ¢,,, = ¢; such that no time interval [th, tj.1] contains any §,,

In less formal terms, imagine the sites of Z, arranged in a 01rcle in the
plane, with synchronized time axes protrudmg upward from each. In this
space-time diagram, mark the jth time axis with a ‘“blocker”’ § each time an
event from N; occurs. A path from site i at time O to site j at time ¢ moves
upward along the various time axes, with a sideways switch from a time axis to
either of its neighboring axes allowed at any time. A path, however, is
forbidden to pass through a §. Define the length I of such a path to be the
number of switches and its cost to be I if i is even and [ + 1if i is odd. L, (¢)
is then the set of lengths of all paths from (i, 0) to (j,¢) and vi(t) is the
minimum cost of any path from Z, at time 0 to site j at time ¢.

Observe that the nondecreasmg function »,(¢) of ¢ always has the same
parity as j and in fact that v,, (¢) = »;(#) + 1. i v; increases at time ¢, then of
course t =3, for some k. Conversely, if t= 8 i, for some k, then (with
probability 1) no other v; increases at time ¢, and v; increases (by 2) if and

onlyif vt =) =v,_(t-)-1=v,, (t-)-1



86 J. A FILL

To relate this to the dense clockwise exclusion process, declare that
a particle occupies site j at time ¢ if and only if »;(#) = v;, () + 1. We
have seen that when v; increases at time ¢, the relations »;,_; = »; + 1 and
v; =v;,; — 1 are changed to the relations v;_; =»,— 1 and v; =v;,;, + 1;

-1
tflus a particle moves from site j — 1 to sité J- Thje particle cénﬁgurations
therefore form a clockwise exclusion process (with exponential rate 1, rather
than 1/d, at each site). There are d = p/2 particles, which are initially
situated at the odd vertices of Z ,.

Turning our viewpoint around, the exclusion process we have generated has
the graphical representation described in Remark 1.2 with the same unit rate
Poisson processes N; as here and (v;(¢) — ¢;)/2 simply counts the number of
transition times through epoch ¢ at which the vacant site j again becomes
occupied.

Of natural interest is the marginal average behavior of one of the processes
v;, say, v = v,. Suppose that the exclusion process is in exact stationarity at
the stopping time T'; we claim that

b
X —t, t=0.
p—1 2
Indeed, the following argument can be made precise. At any epoch u > T, the
probability that site p — 1 is occupied and site 0 is vacant is

(BI/E) -2 x5

Conditionally given this event, the probability of a jump from site p — 1 to site
0 in the time interval (u,u + du] is du. Hence the expected number
of reoccupations of site 0 in (7, T + ¢], namely 3 X LHS(5.2), equals
p/(p — 1) X iz

Now we consider the exclusion process X started with an arbitrary distribu-
tion for the configuration of the d = p/2 particles. Let T be a maximal (i.e.,
fastest) time to coupling for the given chain X and the stationary chain Y. The
existence of such a time is guaranteed by Griffeath (1975) [for further discus-
sion, see Diaconis (1988), Chapter 4E]. Using the bound

(5.2) E[v(T+¢t) —v(T)] =

p\1/2 1
P(T >t} < (g) exp[— E(th‘8 —log2)p
of (1.2) (bear in mind that we have slowed down time by a factor of d = p/2
compared to Theorem 1.1) the following result can be derived. We omit the
proof.

PropPoSITION 5.1. There exist universal constants a > 0 and A > 0 so that
for all even p and all t > 3 the exclusion process X satisfies

p 1 logt
X —t < Ap®
—1 X gts4p

—ap® < Ev(t) - .
ap” < Exv(t) p loglog ¢

That is, Ev(¢)/t converges as ¢t — o to its stationary value p/(p — 1) X %
for each fixed p, with time of order ¢ = p®log p /loglog p sufficient for large p
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to make the discrepancy
Ev(t) p 1
t p—-1

small.

REMARK 5.2. For the rightward exclusion process on Z started with parti-
cles at the odd sites, Huse conjectures

Ev(t) = 3t + (1 +0(1))Ct'/3 ast >
for some constant C.
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