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Abstract

We give families of examples where a sharp analysis of the widely used Gibbs sampler is
available. The examples involve standard exponential families and their conjugate priors.
In each case, the transition operator is explicitly diagonalizable with classical orthogonal
polynomials as eigenfunctions.

1 Introduction

The Gibbs sampler, also known as Glauber dynamics or the heat-bath algorithm, is a mainstay
of scientific computing. It provides a way to draw samples from a multivariate probability
density f(x1, x2, . . . , xp), perhaps only known up to a normalizing constant, by a sequence
of one dimensional sampling problems. From (X1, . . . , Xp) proceed to (X ′

1, X2, . . . , Xp) then
(X ′

1, X
′
2, X3, . . . , Xp), . . . , (X

′
1, X

′
2, . . . , X

′
p) where at the i-th stage, the coordinate is sampled

from f with the other coordinates fixed. This is one pass. Continuing gives a Markov chain
X,X ′, X ′′, . . ., which has f as stationary density under mild conditions discussed below.

The algorithm was introduced in 1963 by Glauber [39] to do simulations for Ising models.
It is still a standard tool of statistical physics, both for practical simulation (e.g., [61]) and as
a natural dynamics (e.g., [9]). The basic Dobrushin uniqueness theorem showing existence of
Gibbs measures was proved based on this dynamics (e.g., [41]). It was introduced as a base
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for image analysis by Geman and Geman [36]. Statisticians began to employ the method for
routine Bayesian computations following the work of Tanner and Wong [69] and numerous
papers by Allen Gelfand and Adrian Smith. Textbook accounts, with many examples from
biology and the social sciences along with extensive references are in [37, 38, 54].

Despite heroic efforts by the applied probability community, useful running time analyses
for Gibbs sampler chains is still a major research effort. An overview of available tools and
results is given at the end of this introduction. The main purpose of the present paper is to
give families of two component examples where a sharp analysis is available. These may be
used to compare and benchmark more robust techniques. They may also serve as a base for
the comparison techniques [21, 27].

Here is an example of our results. Let

fθ(x) =

(
n

x

)
θx(1− θ)n−x, π(dθ) = uniform on [0, 1], x ∈ {0, 1, 2, . . . , n}.

These define the bivariate Beta/Binomial density (uniform prior)

f(x, θ) =

(
n

x

)
θx(1− θ)n−x

with marginal density

m(x) =

∫ 1

0

f(x, θ)dθ =
1

n + 1
x ∈ {0, 1, 2, . . . , n}.

The Gibbs sampler for f(x, θ) proceeds as follows:

• From x, draw θ′ from Beta(x, n− x).

• From θ′, draw x′ from Binomial(n, θ′).

The output is (x′, θ′). Let K̃(x, θ; x′, θ′) be the transition density for this chain. While K̃ has

f(x, θ) as stationary density, the (K̃, f) pair is not reversible. This blocks straightforward use
of spectral methods. Jun Liu et al. [53] observed that the ‘x-chain’ with kernel

k(x, x′) =

∫ 1

0

fθ(x
′)π(θ|x)dθ =

∫ 1

0

fθ(x)fθ(x
′)

m(x)
dθ

is reversible with stationary density m(x). For the Beta/Binomial example

k(x, x′) =
2n

2n + 1

(
n

x

)(
n

x′

)
(

2n

x + x′

) , 0 ≤ x, x′ ≤ n. (1.1)
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The proposition below gives an explicit diagonalization of the x-chain and sharp bounds for the
bivariate chain (K̃`

n,θ denotes the density of the distribution of the bivariate chain after ` steps
starting from (n, θ)). It shows that order n steps are necessary and sufficient for convergence.
The proof is given in Section 5.

Proposition 1.1 For the Beta/Binomial example with uniform prior, we have:

(a) The chain (1.1) has eigenvalues

β0 = 1, βj =
n(n− 1) · · · (n− j + 1)

(n + 2)(n + 3) · · · (n + j + 1)
, 1 ≤ j ≤ n.

In particular, β1 = 1 − 2/(n + 2). The eigenfunctions are the discrete Tchebychev poly-
nomials (orthogonal polynomials for m(x) = 1/(n + 1) on {0, . . . , n}).

(b) For the bivariate chain K̃, for all θ, n and `,

1

2
β`

1 ≤ ‖K̃`
n,θ − f‖TV ≤ 3β

`−1/2
1 .

The calculations work because the operator with density k(x, x′) takes polynomials to poly-
nomials. Our main results give two classes of examples with the same explicit behavior:

• fθ(x) is one of the exponential families singled out by Morris [59, 60] (binomial, Poisson,
negative binomial, normal, gamma, hyperbolic) with π(θ) the conjugate prior.

• fθ(x) = g(x− θ) is a location family with π(θ) conjugate and g belongs to one of the six
exponential families above.

Section 2 gives background. In Section 2.1 the Gibbs sampler is set up more carefully both
in systematic and random scan versions. Relevant Markov chain tools are collected in Section
2.2. Exponential families and conjugate priors are reviewed in Section 2.3. The six families are
described more carefully in Section 2.4 which calculates needed moments. A brief overview of
orthogonal polynomials is in Section 2.5.

Section 3 is the heart of the paper. It breaks the operator with kernel k(x, x′) into two
pieces: T : L2(m) → L2(π) defined by

Tg(θ) =

∫
fθ(x)g(x)m(dx)

and its adjoint T ∗. Then k is the kernel of T ∗T . Our analysis rests on a singular value
decomposition of T . In our examples, T takes orthogonal polynomials for m(x) into orthogonal
polynomials for π(θ). This leads to explicit computations and allows us to treat the random
scan, x-chain and θ-chain on an equal footing.
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The x-chains and six θ-chains corresponding to the six classical exponential families are
treated in Section 4. There are some surprises; while order n steps are required for the
Beta/Binomial example above, for the parallel Poisson/Gamma example, log n + c steps are
necessary and sufficient. The six location chains are treated in Section 5 where some standard
queuing models emerge (e.g. the M/M/∞ queue). All of the operators studied above turn out
to be compact. In Section 6 we show this persists for more general families and priors. The
final section points to other examples with polynomial eigenfunctions and other methods for
studying present examples.

Our examples are just illustrative. It is easy to sample from any of the families f(x, θ)
directly. Further, we do not see how to carry our techniques over to higher component problems.
Basic convergence properties of the Gibbs sampler can be found in [4, 70]. Explicit rates of
convergence appear in [64, 65]. These lean on Harris recurrence and require a drift condition
of type E(V (X1)|X0 = x) ≤ aV (x) + b for all x. Also required are a minorization condition
of the form k(x, x′) ≥ εq(x′) for ε > 0, some probability density q, and all x with V (x) ≤ d.
Here d is fixed with d ≥ b/(1 + a). Rosenthal [64] then gives explicit upper bounds and shows
these are sometimes practically relevant for natural statistical examples. Finding useful V and
q is currently a matter of art. For example, a group of graduate students tried to use these
techniques in the Beta/Binomial example treated above and found it difficult to make choices
giving useful results. This led to the present paper. A marvelous expository account of this
set of techniques with many examples and an extensive literature review is given by Jones
and Hobart in [45]. In their main example an explicit eigenfunction was available for V ; our
Gamma/Gamma examples below generalize this. Some sharpenings are in [8] which also makes
useful connections with classical renewal theory.

2 Background

This section gives needed background. The two component Gibbs sampler is defined more
carefully in Section 2.1. Bounds on convergence using eigenvalues are given in Section 2.2.
Exponential families and conjugate priors are reviewed in Section 2.3. The six families with
variance a quadratic function of the mean are treated in Section 2.4. Finally, a brief review of
orthogonal polynomials is in Section 2.5.

2.1 Two-Component Gibbs Samplers

Let (X ,F) be a measurable space equipped with a σ-finite measure µ. Let (Θ,G) be a measur-
able space equipped with a probability measure π. Let {fθ(x)}θ∈Θ be a family of probability
densities with respect to µ. These define a probability measure on X ×Θ via

P (A×B) =

∫
B

∫
A

fθ(x)µ(dx)π(dθ) A ∈ F , B ∈ G.
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The marginal density on X is

m(x) =

∫
Θ

fθ(x)π(dθ) (so

∫
X

m(x)µ(dx) = 1)

The posterior density is given by

π(θ|x) = fθ(x)/m(x).

For simplicity, we assume that this formula defines a probability density with respect to π(dθ),
for every x ∈ X . In particular, we assume that 0 < m(x) < ∞ for every x ∈ X . The probability
P splits with respect to m(dx) = m(x)µ(dx) in the form

P (A×B) =

∫
A

∫
B

π(θ|x)π(dθ)m(dx) A ∈ F , B ∈ G.

The systematic scan Gibbs sampler for drawing from the distribution P proceeds as follows.

• Starting from (x, θ), first, draw x′ from fθ(·); second, draw θ′ from π(·|x′).

The output is (x′, θ′). This generates a Markov chain (x, θ) → (x′, θ′) → · · · having kernel

K(x, θ; x′, θ′) = fθ(x
′)fθ′(x

′)/m(x′)

with respect to µ(dx′)π(dθ′). A slight variant exchanges the order of the draws.

• Starting from (x, θ), first, draw θ′ from π(·|x); second, draw x′ from fθ′(·).

The output is (x′, θ′). The corresponding Markov chain (x, θ) → (x′, θ′) → · · · has kernel

K̃(x, θ; x′, θ′) = fθ′(x)fθ′(x
′)/m(x)

with respect to µ(dx′)π(dθ′). Under mild conditions these two chains have stationary distribu-
tion P .

The “x-chain” (from x draw θ′ from π(θ′|x) and then x′ from fθ′(x
′)) has transition kernel

k(x, x′) =

∫
Θ

π(θ|x)fθ(x
′)π(dθ) =

∫
Θ

fθ(x)fθ(x
′)

m(x)
π(dθ) (2.1)

Note that
∫

k(x, x′)µ(dx′) = 1 so that k(x, x′) is a probability density with respect to µ.
Note further that m(x)k(x, x′) = m(x′)k(x′, x) so that the x chain has m(dx) as a stationary
distribution.

The “θ-chain” (from θ, draw x from fθ(x) and then θ′ from π(θ′|x)) has transition density

k(θ, θ′) =

∫
X

fθ(x)π(θ′|x)µ(dx) =

∫
X

fθ(x)fθ′(x)

m(x)
µ(dx). (2.2)
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Note that
∫

k(θ, θ′)π(dθ) = 1 and that k(θ, θ′) has π(dθ) as reversing measure.

Example (Poisson/Exponential) Let X = {0, 1, 2, 3, . . .}, µ(dx) = counting measure, Θ =

(0,∞), fθ(x) = e−θθx/x!. Take π(dθ) = e−θdθ. Then m(x) =
∫∞

0
e−θθx

x!
e−θdθ = 1/2x+1. The

conditional density is π(θ|x) = fθ(x)/m(x) = 2x+1e−θθx/x!. Finally, the x-chain has kernel

k(x, x′) =

∫ ∞

0

2x+1θx+x′e−2θ

x!x′!
dθ =

2x+1

3x+x′+1

(
x + x′

x

)
, 0 ≤ x, x′ < ∞,

whereas the θ-chain has kernel

k(θ, θ′) = 2e−θ−θ′
∞∑

x=0

(2θθ′)x

(x!)2
= 2e−θ−θ′I0

(√
4θθ′

)
where I0 is the classical modified Bessel function; see Feller [35, Sec. 2.7] for background.

A second construction called the random scan chain is frequently used. From (x, θ), pick
a coordinate at random and update it from the appropriate conditional distribution. More
formally, for g ∈ L2(P )

K̄g(x, θ) =
1

2

∫
Θ

g(x, θ′)π(θ′|x)π(dθ′) +
1

2

∫
X

g(x′, θ)fθ(x
′)µ(dx′). (2.3)

We note three things; First, K̄ sends L2(P ) → L2(P ) and is reversible with respect to P .
This is the usual reason for using random scans. Second, the right side of (2.3) is the sum of a
function of x alone and a function of θ alone. That is K̄ : L2(P ) → L2(m) + L2(π) (the range
of K̄ is contained in L2(m) + L2(π)). Third, if g ∈ (L2(m) + L2(π))⊥ (complement in L2(P )),
then K̄g = 0 (Ker K̄ ⊇ (L2(m)+L2(π))⊥). Indeed, for any h ∈ L2(P ), 0 = 〈g, K̄h〉 = 〈K̄g, h〉.
Thus K̄g = 0. We diagonalize random scan chains in Section 3.

2.2 Bounds on Markov chains

2.2.1 General results

We briefly recall well-known results that will be applied to either our two-component Gibbs
sampler chains or the x- and θ-chains. Suppose we are given a Markov chain described by its
kernel K(ξ, ξ′) with respect to a measure µ(dξ′) (e.g., ξ = (x, θ), µ(dξ) = µ(dx)π(dθ) for the
two component sampler, ξ = θ, µ(dθ) = π(dθ) for the θ-chain, etc.). Suppose further that the
chain has stationary measure m(dξ) = m(ξ)µ(dξ) and write

K̄(ξ, ξ′) = K(ξ, ξ′)/m(ξ′), K̄`
ξ(ξ

′) = K̄`(ξ, ξ′) = K`(ξ, ξ′)/m(ξ′)

for the kernel and iterated kernel of the chain with respect to the stationary measure m(dξ).
We define the chi-square distance between the distribution of the chain started at ξ after ` steps

6



and its stationary measure by

χ2
ξ(`) =

∫
|K̄`

ξ(ξ
′)− 1|2m(dξ′) =

∫
|K`(ξ, ξ′)−m(ξ′)|2

m(ξ′)
µ(dξ′).

This quantity always yields an upper bound on the total variation distance

‖K`
ξ −m‖TV =

1

2

∫
|K̄`

ξ(ξ
′)− 1|m(dξ′) =

1

2

∫
|K`(ξ, ξ′)−m(ξ′)|µ(dξ′),

namely,
4‖K`

ξ −m‖2
TV ≤ χ2

ξ(`).

Our analysis will be based on eigenvalue decompositions. Let us first assume that we are
given a function φ such that

Kφ(ξ) =

∫
K(ξ, ξ′)φ(ξ′)µ(dξ′) = βφ(ξ), m(φ) =

∫
φ(ξ)m(ξ)µ(dξ) = 0

for some (complex number) β. In words, φ is a generalized eigenfunction with eigenvalue β.
We say “generalized” here because we have not assumed here that φ belongs to a specific L2

space (we only assume we can compute Kφ and m(φ)). The second condition (orthogonality to
constants in L2(m)) will be automatically satisfied when |β| < 1. Such an eigenfunction yields
simple lower bound on the convergence of the chain to its stationary measure.

Lemma 2.1 Referring to the notation above, assume that φ ∈ L2(m(dξ)) and
∫
|φ|2dm = 1.

Then
χ2

ξ(`) ≥ |φ(ξ)|2|β|2`.

Moreover, if φ is a bounded function, then

‖K`
ξ −m‖TV ≥

|φ(ξ)||β|`

2‖φ‖∞
.

Proof This follows from the the well-known results

χ2
ξ(`) = sup

‖g‖2,m≤1

{|K`
ξ(g)−m(g)|2} (2.4)

and

‖K`
ξ −m‖TV =

1

2
sup

‖g‖∞≤1

{|K`
ξ(g)−m(g)|}. (2.5)

For chi-square, use g = φ as a test function. For total variation use g = φ/‖φ‖∞ as a test
function. More sophisticated lower bounds on total variation are based on the second moment
method (e.g., [66, 72]). �
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To obtain upper bounds on the chi-square distance, we need much stronger hypotheses.
Namely, assume that K is a self-adjoint operator on L2(m) and that L2(m) admits an or-
thonormal basis of real eigenfunctions ϕi with real eigenvalues βi ≥ 0, β0 = 1, ϕ0 ≡ 1, βi ↓ 0
so that ∫

K̄(ξ, ξ′)ϕi(ξ
′)m(dξ′) = βiϕi(ξ).

Assume further that K acting on L2(m) is Hilbert-Schmidt (i.e.,
∑
|β|2i < ∞). Then we have

K̄`(ξ, ξ′) =
∑

i

β`
i ϕi(ξ)ϕi(ξ

′) (convergence in L2(m×m))

and
χ2

x(`) =
∑
i>0

β2`
i ϕ2

i (x). (2.6)

2.2.2 Application to the two-component Gibbs sampler

All of the bounds in this paper are derived via the following route: bound L1 by L2 and use the
explicit knowledge of eigenvalues and eigenfunctions to bound the sum in (2.6). This however

does not apply directly to the two-component Gibbs sampler K (or K̃) because these chains
are not reversible with respect to their stationary measure. Fortunately, the x-chain and the θ-
chain are reversible and their analysis yields bounds on the two component chain thanks to the
following elementary observation. The x-chain has kernel k(x, x′) with respect to the measure
µ(dx). It will also be useful to have k̄(x, x′) = k(x, x′)/m(x′), the kernel with respect to the
probability m(dx) = m(x)µ(dx). For ` ≥ 2, we let k`

x(x
′) = k`(x, x′) =

∫
k(x, y)k`−1(y, x′)µ(dy)

denote the density (w.r.t. µ(dx)) of the distribution of the x-chain after `-th and set k̄`
x(x

′) =
k̄`(x, x′) =

∫
k̄(x, y)k̄`−1(y, x′)m(dy) (the density w.r.t. m(dx)).

Lemma 2.2 Referring to the K, K̃ two-compoent chains and x-chain introduced in Section 2.1,
for any p ∈ [1,∞], we have

‖(Kx,θ/f)− 1‖p
p,P ≤

∫ ∥∥k̄`−1
z − 1

∥∥p

p,m
fθ(z)µ(dz) ≤ sup

z

∥∥k̄`−1
z − 1

∥∥p

p,m

and
‖(K̃x,θ/f)− 1‖p

p,P ≤
∥∥k̄`−1

x − 1
∥∥p

p,m
.

Similarly, for the θ-chain, we have

‖(K̃x,θ/f)− 1‖p
p,P ≤

∫ ∥∥k`−1
θ − 1

∥∥p

p,π
π(dθ) ≤ sup

θ

∥∥k`−1
θ − 1

∥∥p

p,π

and
‖(Kx,θ/f)− 1‖p

p,P ≤
∥∥k`−1

θ − 1
∥∥p

p,π
.

8



Proof We only prove the results involving the x-chain. The rest is similar. Recall that the
bivariate chain has transition density

K(x, θ; x′, θ′) = fθ(x
′)fθ′(x

′)/m(x′).

By direct computation

K`(x, θ; x′, θ′) =

∫
fθ(z)k`−1(z, x′)

fθ′(x
′)

m(x′)
µ(dz).

For the variant K̃, the similar formula reads

K̃`(x, θ; x′, θ′) =

∫
k`−1(x, z)

fθ′(z)

m(z)
fθ′(x

′)µ(dz).

These two bivariate chains have stationary density f(x, θ) = fθ(x) with respect to µ(dx)π(dθ).
So, we write

K`(x, θ; x′, θ′)

f(x′, θ′)
− 1 =

∫ (
k̄`−1(z, x′)− 1

)
fθ(z)µ(dz)

and
K̃`(x, θ; x′, θ′)

f(x′, θ′)
− 1 =

∫ (
k̄`−1(x, z)− 1

)
fθ′(z)µ(dz).

To prove the second inequality in the lemma (the proof of the first is similar), write

‖(K̃`
x,θ/f)− 1‖p

p,P =

∫ ∫ ∣∣∣∣∫ (k̄`−1(x, z)− 1
)
fθ′(z)µ(dz)

∣∣∣∣p fθ′(x
′)µ(dx′)π(dθ′)

≤
∫ ∫ ∫ ∣∣k̄`−1(x, z)− 1

∣∣p fθ′(z)µ(dz)fθ′(x
′)µ(dx′)π(dθ′)

≤
∫ ∣∣k̄`−1(x, z)− 1

∣∣p m(z)µ(dz) =

∫ ∣∣k̄`−1(x, z)− 1
∣∣p m(dz).

This gives the desired bound. �

To get lower bounds, we observe the following.

Lemma 2.3 Let g be a function of x only (abusing notation, g(x, θ) = g(x)). Then

K̃g(x, θ) =

∫
k(x, x′)g(x′)µ(dx′).

If instead, g is a function of θ only then

Kg(x, θ) =

∫
k(θ, θ′)g(θ′)π(dθ′).
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Proof Assume g(x, θ) = g(x). Then

K̃g(x, θ) =

∫ ∫
fθ′(x)fθ′(x

′)

m(x)
g(x′)µ(dx′)π(dθ′)

=

∫
k(x, x′)g(x′)dµ(x′).

The other case is similar. �

Lemma 2.4 Let χ2
x,θ(`) and χ̃2

x,θ(`) be the chi-square distances after ` steps for the K-chain

and the K̃-chain respectively, staring at (x, θ). Let χ2
x(`), χ2

θ(`) be the chi-square distances for
x-chain (starting at x) and the θ-chain (starting at θ), respectively. Then we have:

χ2
θ(`) ≤ χ2

x,θ(`) ≤ χ2
θ(`− 1),

‖k`
θ − 1‖TV ≤ ‖K`

x,θ − f‖TV ≤ ‖k`−1
θ − 1‖TV,

and
χ2

x(`) ≤ χ̃2
x,θ(`) ≤ χ2

x(`− 1),

‖k`
x −m‖TV ≤ ‖K̃`

x,θ − f‖TV ≤ ‖k`−1
x −m‖TV.

Proof This is immediate from Lemma 2.3 and (2.4)-(2.5). �

2.3 Exponential families and conjugate priors

Three topics are covered in this section: exponential families, conjugate priors for exponential
families and conjugate priors for location families.

2.3.1 Exponential families

Let µ be a σ-finite measure on the Borel sets of the real line R. Define Θ = {θ ∈ R :∫
exθµ(dx) < ∞}. Assume that Θ is non-empty and open. Hölder’s inequality shows that Θ is

an interval. For θ ∈ Θ, set

M(θ) = log

∫
exθµ(dx), fθ(x) = exθ−M(θ).

The family of probability densities {fθ, θ ∈ Θ} is the exponential family through µ in its
“natural parameterization”. Allowable differentiations yield the mean m(θ) =

∫
xfθ(x)µ(dx) =

M ′(θ) and the variance σ2(θ) = M ′′(θ).
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Statisticians realized that many standard families can be put in such form so that properties
can be studied in a unified way. Standard references for exponential families include [7, 10, 48,
49, 50].

Example Let X = {0, 1, 2, 3, . . .}, µ(x) = 1/x!. Then Θ = R, and M(θ) = eθ,

fθ(x) =
exθ−eθ

x!
x = 0, 1, 2, . . . .

This is the Poisson(λ) distribution with λ = eθ.

2.3.2 Conjugate priors for exponential families

With notation as above, fix n0 > 0 and x0 ∈ the interior of the convex hull of the support of
µ. Define a prior density with respect to Lebesgue measure dθ by

πn0,x0(dθ) = z(x0, n0)e
n0x0θ−n0M(θ)dθ

where z(n0, x0) is a normalizing constant shown to be positive and finite in Diaconis and
Ylvisaker (1979) which contains proofs of the assertions below. The posterior is

π(dθ|x) = π
n0+1,

n0x0+x
n0+1

(dθ).

Thus the family of conjugate priors is closed under sampling. This is sometimes used as the
definition of conjugate prior. A central fact about conjugate priors is

E(m(θ)|x) = ax + b.

This linear expectation property characterizes conjugate priors for families where µ has infinite
support. Section 3 shows that linear expectation implies that the associated chain defined at
(2.1) always has an eigenvector of the form x− c with eigenvalue a, and c equal to the mean of
the marginal distribution.

Example For the Poisson example above the conjugate priors are of form

z(n0, x0)e
n0x0θ−n0eθ

dθ.

Setting λ = eθ, θ = log λ, dθ = dλ/λ, the priors transform to

z(n0, x0)λ
n0x0−1e−n0λdλ

and we see that z(n0, x0) = nn0x0
0 /Γ(n0x0). This is the usual Gamma prior for Poisson(λ).

In the example, the Jacobian of the transformation θ → m(θ) blends in with the rest of the
prior so that the same standard priors are used for the mean parameterization. In [18], this is
shown to hold only for the six families discussed in Section 2.4 below. See [14, 42] for more on
this.
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2.3.3 Conjugate priors for location families

Let µ be Lebesgue measure on R or counting measure on N. In this section we consider random
variables of the form Y = θ + ε, with θ having density π(θ) and ε having density g(x) (both
with respect to µ). This can also be written as (densities w.r.t. µ(dx)× µ(dθ))

fθ(x) = g(x− θ), f(x, θ) = g(x− θ)π(θ)

In [24], a family of ‘conjugate priors’ π is suggested via posterior linearity. See [56] for further
developments. The idea is to use the following well known fact: If X and Y are independent
random variables with finite means and the same distribution, then E(X|X +Y ) = (X +Y )/2.
More generally, if Xr and Xs are random variables which are independent with Xr (resp Xs)
having the distribution of the sum of r (resp s) independent copies of the same random variable
Z then E(Xr|Xr +Xs) = r

r+s
(Xr +Xs). Here r and s may be taken as any positive real numbers

if the underlying Z is infinitely divisible.
With this notation, take g as the density for Xr and π as the density for Xs and call these

a conjugate location pair. Then the marginal density m(y) is the convolution of g and π.

Example Let g(x) = e−λλx/x! for x ∈ X = {0, 1, 2, . . .}. Take Θ = X and let π(θ) = e−ηηθ/θ!.
Then m(x) = e−(λ+η)(λ + η)x/x! and

π(θ|x) =

(
x

θ

)(
η

λ + η

)θ (
λ

λ + η

)x−θ

, 0 ≤ θ ≤ x < ∞.

The Gibbs sampler (bivariate chain K) for this example becomes

• From x, choose θ from Binomial(x, λ/(η + λ)).

• From θ, choose x = θ + ε with ε ∼ Poisson(λ).

The x-chain may be represented as Xn+1 = SXn + εn+1 with Sk ∼ Binomial(x, λ/(η + λ))
and ε ∼ Poisson(λ). This also represents the number of customers on service in a M/M/∞
queue observed at discrete times: If this is Xn at time n, then Sxn is the number served in the
next time period and εn+1 is the number of unserved new arrivals. The exlicit diagonalization
of the M/M/∞ chain, in continuous time, using Charlier polynomials appears in [3].

This same chain has yet a different interpretation: Let fη(j) =
(

η
j

)
pj(1 − p)η−j. Here

0 < p < 1 is fixed and η ∈ {0, 1, 2, . . .} is a parameter. This model arises in under-reporting
problems where the true sample size is unknown. See [58]. Let η have a Poisson(λ) prior. The
Gibbs sampler for the bivariate distribution f(j, η) =

(
η
j

)
pj(1− p)η−je−λλη/η! goes as follows:

• From η, choose j from Bin(η, p)

• From j, choose η = j + ε with ε ∼ Poisson(λ(1− p)).

Up to a simple renaming of parameters, this is the same chain discussed above. Similar ‘trans-
lations’ hold for any location problem where π(θ|x) has bounded range.
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2.4 The six families

Morris [59, 60] has characterized exponential families where the variance σ2(θ) is a quadratic
function of the mean: σ2(θ) = v0+v1m(θ)+v2m

2(θ). These six families have been characterized
earlier by Meixner [57] in the development of a unified theory of orthogonal polynomials via
generating functions. In [43] the same families are characterized in a regression context: For
Xi independent with a finite mean, X̄ = 1

n

∑
Xi, S

2
n = 1

n−1

∑
(Xi − X̄)2, one has

E(S2
n|X̄ = x̄) = a + bx̄ + cx̄2

if and only if the distribution of Xi is one of the six families. In [30, 31], the six families are
characterized by a link between orthogonal polynomials and martingales whereas [32] makes a
direct link to Lie theory. Finally, Consonni and Veronese [18] find the same six families in their
study of conjugate priors: The conjugate priors in the natural parameterization given above
transform into the same family in the mean parameterization only for the six families.

Extensions are developed by Letac and Mora [52] and Casalis [14] who give excellent surveys
of the literature. Still most useful, Morris [59, 60] gives a unified treatment of basic (and not so
basic) properties such as moments, unbiased estimation, orthogonal polynomials and statistical
properties. We give the six families in their usual parameterization along with the conjugate
prior and formula for the moments Eθ(X

k), Ex(θ
k) of x and θ under dP = fθ(x)dµ(x)π(dθ),

given the value of the other.

Binomial: X = {0, . . . , n}, µ counting measure, Θ = [0, 1].

fθ(x) =

(
n

x

)
θx(1− θ)n−x, 0 < θ < 1.

π(dθ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1dθ, 0 < α, β < ∞.

Eθ(X
k) =

k∑
j=0

ajθ
j, aj = n(n− 1) · · · (n− j + 1), 0 ≤ k ≤ n.

Ex(θ
k) =

k∑
j=0

ajx
j, aj = [(α + β + n)(α + β + n + 1) . . . (α + β + n + j − 1)]−1.

Poisson: X = N, µ counting measure, Θ = (0,∞).

fθ(x) =
e−θθx

x!
, 0 < θ < ∞.

π(dθ) =
θa−1e−θ/α

Γ(a)αa
dθ, 0 < α, a < ∞.

Eθ(X
k) =

k∑
j=0

ajθ
j, aj = 1, Ex(θ

k) =
k∑

j=0

ajx
j, aj =

( α

α + 1

)j

.
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Negative Binomial: X = N, µ counting measure, Θ = [0, 1].

fθ(x) =
Γ(x + r)

Γ(r)x!
θx(1− θ)r, 0 < θ < 1, r > 0.

π(dθ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1dθ, 0 < α, β < ∞.

Eθ(X
k) =

k∑
j=0

aj

( θ

1− θ

)j

, ak = r(r + 1) · · · (r + k − 1).

Ex

((
θ

1− θ

)k
)

=
k∑

j=0

ajx
j, ak = [(β + r − 1)(β + r − 2) · · · (β + r − k)]−1, k < β + r.

Normal: X = Θ = R, µ Lebesgue measure.

fθ(x) =
1√

2πσ2
e−

1
2
(x−θ)/σ2

, 0 < σ2 < ∞

π(dθ) =
1√

2πτ 2
e−

1
2
(θ−v)2/τ2

dθ, −∞ < v < ∞, 0 < τ < ∞.

Eθ(X
k) =

k∑
j=0

ajθ
j, ak = 1

Ex(θ
k) =

k∑
j=0

ajx
j, ak = (τ 2/(τ 2 + σ2))k.

Gamma: X = Θ = (0,∞), µ Lebesgue measure.

fθ(x) =
xa−1e−x/θ

θaΓ(a)
, 0 < a < ∞.

π(dθ) =
cbθ−(b+1)e−c/θ

Γ(b)
dθ, 0 < b, c < ∞.

Eθ(X
k) = a · · · (a + k − 2)(a + k − 1)θk

Ex(θ
k) =

k∑
j=0

ajx
j, ak = [(a + b− 1)(a + b− 2) · · · (a + b− k)]−1, 0 ≤ k < a + b.

Hyperbolic: X = Θ = R, µ Lebesgue measure.

fθ(x) =
2r−2

πr(1 + θ2)r/2
erx tan−1 θβ

(
r

2
+

irx

2
,

r

2
− irx

2

)
, r > 0.

π(dθ) =
Γ
(

ρ
2
− ρδi

2

)
Γ
(

ρ
2

+ ρδi
2

)
Γ
(

ρ
2

)
Γ
(

ρ
2
− 1

2

)√
π

eρδ tan−1 θ

(1 + θ2)ρ/2
dθ, −∞ < δ < ∞, ρ ≥ 1.
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Eθ(X
k) =

k∑
j=0

ajθ
j, ak = k!.

Ex(θ
k) =

k∑
j=0

ajx
j, ak = rk[(r + ρ− 2) · · · (r + ρ− (k + 1))]−1, 0 < k ≤ r + ρ− 1

Proof A unified way to prove the formulas involving Eθ(X
k) follows from Morris (1983, (3.4)).

This says, for any of the six families with m(θ) the mean parameter and pk(x, m0) the monic,
orthogonal polynomials associated to the parameter θ0,

Eθ(pk(x, m0)) = bk(m(θ)−m(θ0))
k,

where, if the family has variance function σ2(θ) = v2m
2(θ) + v1m(θ) + v0,

bk =
k−1∏
i=0

(1 + iv2).

For example, for the Binomial(n, p) family, m(p) = np, σ2(p) = np(1− p), so v2 = −1/n and

Ep(pk(x, m0)) =
{ k−1∏

i=0

(n− i)
}

(p− p0)
k.

Comparing lead terms and using induction, gives the first binomial entry. The rest are similar;
the values of v2 are v2(Poisson) = 0, v2(NB) = 1/r, v2(Normal) = 0, v2(Gamma) = 1/r,
v2(Hyperbolic) = 1. Presumably, there is a unified way to get the Ex(θ

k) entries, perhaps using
[60, Th 5.4]. This result shows that we get polynomials in x but the lead coefficients do not
come out as easily. At any rate they all follow from elementary computations. �

Remarks 1. The moment calculations above are transformed into a singular value decom-
position and an explicit diagonalization of the univariate chains (x-chain, θ-chain) in Section
3.

2. Note that not all moments are finite. Indeed, consider the geometric fθ(x) = θx(1 − θ)

with a uniform prior. The marginal is
∫ 1

0
θx(1− θ)dθ = 1/(x + 1)(x + 2) on 0 ≤ x < ∞. This

admits no moments. None the less, the moments that are available are put to good use in [20].
3. The first five families are very familiar, the sixth family less so. As one motivation,

consider the generalized arc sine densities

fθ(y) = ya−1(1− y)(1−a)−1Γ(a)Γ(1− a) 0 ≤ y, a < 1.

Transform these to an exponential family via x = log(y/(1 − y)), η = πa − π/2. This has
density

gη(x) =
exη+log(cos η)

2 cosh(π
2
x)

, −∞ < x < ∞, −π

2
< η <

π

2
.
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The appearance of cosh explains the name hyperbolic. This density appears in [35, pg. 503]
as an example of a density which is its own Fourier transform (like the normal). Many further
references are in [28, 59, 60]. In particular, g0(x) is the density of 2

π
log |C| with C standard

Cauchy. The mean of gη(x) is tan(η) = θ. Parameterizing by the mean leads to the density
shown with r = 1. The average of r independent copies of independent variates with r = 1 gives
the density with general r. The beta function is defined as usual; β(a, b) = Γ(a)Γ(b)/Γ(a + b).
Because Γ(a) = Γ(ā), the norming constant is real valued.

The conjugate prior for the mean parameter is of Pearson Type IV. When δ = 0 this is a
rescaled t density. For general δ the family is called the skew t in [28] which contains a wealth
of information. Under the prior, the parameter θ has mean ρδ/(ρ− 2) and satisfies

(ρ− (k + 2))E(θk+1) = kE(θk−1) + ρδE(θk), 1 ≤ k < ρ− 2.

This makes it simple to compute the Ex(θ
k) entry. Moments past ρ are infinite.

The marginal distribution m(x) can be computed in closed form. Using Stirling’s formula

in the form |Γ(σ+ it)| ∼
√

2π e−π|t|/2|t|σ− 1
2 . As |t| ↑ ∞ shows that m(x) has tails asymptotic to

c/xρ. It thus has only finitely many moments, so the x-chain must be studied by non-spectral
methods. Of course, the additive version of our set-up has moments of all order. We give a
brief treatment in Section 6. The relevant orthogonal polynomials being Meixner-Pollaczek.

2.5 Some background on orthogonal polynomials

A variety of orthogonal polynomials are used crucially in the following sections. While we
usually just quote what we need from the extensive literature, this section describes a simple
example. Perhaps the best introduction is in [17]. We will make frequent reference to [44]
which is through and up to date. The classical account [68] contains much that is hard to find
elsewhere. The on line account [47] is very useful. For pointers to the literature on orthogonal
polynomials and birth and death chains, see, e.g., [71].

As an indication of what we need, consider the Beta/Binomial example with a general
Beta(α, β) prior. Then the stationary distribution for the x-chain on X = {0, 1, 2, . . . , n} is

m(x) =

(
n

x

)
(α)x(β)n−x

(α + β)n

where (a)x =
Γ(a + x)

Γ(a)
= a(a + 1) · · · (a + x− 1).

The choice α = β = 1 yields the uniform distribution while α = β = 1/2 yields the discrete
arc-sine density from [34, Chap. 3],

m(x) =

(
2x
x

)(
2n−2x
n−x

)
22n

.

The orthogonal polynomials for m are called Hahn polynomials. They are developed by [44, Sec.
6.2] who refers to the very useful treatment of Karlin and McGregor [46]. The polynomials are
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given explicitly in [44, pg. 178–179]. Shifting parameters by one to make the classical notation
match present notation, the orthogonal polynomials are

Q`(x) = 3F2

(
−`, ` + α + β − 1,−x

α,−n

∣∣∣∣ 1) , 0 ≤ ` ≤ n.

Here

rFs

(
a1 . . . ar

b1 . . . bs

∣∣∣z) =
∞∑

n=0

(a1a2 . . . ar)n

(b1b2 . . . bs)n

zn

n!
with (a1 . . . ar)n =

r∏
i=1

(ai)n.

These polynomials satisfy

Em(Q`Qm) = δ`m
`!(n− `)!(β`(α + β + `− 1))n+1(α + β)n

(n!)3(α + β + 2`− 1)(α`

When α = β = 1 these become the discrete Chebychev polynomials cited in Proposition 1.1.
From our work in Section 2.2, we see we only need to know Q`(x0) with x0 the starting position.
This is often available in closed form for special values, e.g., for x0 = 0 and x0 = n,

Q`(0) = 1, Q`(n) =
(−β − `)`

(α + 1)`

, 0 ≤ ` ≤ n. (2.7)

For general starting values, one may draw on the extensive work on uniform asymptotics; see
e.g. [68, Chap. 8] or [5].

We note that [59, Sect. 8] gives an elegant self-contained development of orthogonal poly-
nomials for the six families. Briefly, if fθ(x) = exθ−M(θ) is the density, then

pk(x, θ) = σ2k
{ dk

dkm
fθ(x)

}/
fθ(x)

(derivatives with respect to the mean m(θ)). If σ2(θ) = v2m
2(θ) + v1m(θ) + v0 then

Eθ(pnpk) = δnkakσ
2k with ak = k!

k−1∏
i=0

(1 + iv2).

We also find need for orthogonal polynomials for the conjugate priors π(θ).

3 A singular value decomposition

The results of this section show that the Gibbs sampler Markov chains associated to the six
families have polynomial eigenvectors, with explicitly known eigenvalues. This includes the
x-chain, θ-chain and the random scan chain. Analysis of these chains is in Sections 4 and
5. Section 6 explains the connection with the compactness of the associated operators. For
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a discussion of Markov operators related to orthogonal polynomials, see, e.g., [6]. For closely
related statistical literature, see [12] and the references therein.

Throughout, notation is as in Section 2.1. We have {fθ(x)}θ∈Θ a family of probability
densities on the real line R with respect to a σ-finite measure µ(dx), for θ ∈ Θ ⊆ R. Further,
π(dθ) is a probability measure on Θ. These define a joint probability P on R×Θ with marginal
density m(x) (w.r.t. µ) and conditional density π(θ|x)(w.r.t.π) given by π(θ|x) = fθ(x)/m(x).

Let c = #supp m(x). This may be finite or infinite. For simplicity, throughout this section,
we assume supp(π) is infinite. Moreover we make the following hypotheses:

(H1) For some α1, α2 > 0,
∫

eα1|x|+α2|θ|P (dx, dθ) < ∞.

(H2) For 0 ≤ k < c, Eθ(X
k) is a polynomial in θ of degree k with lead coefficient ηk > 0.

(H3) For 0 ≤ k < ∞, Ex(θ
k) is a polynomial in x of degree k with lead coefficient µk > 0.

By (H1), L2(m(dx)) admits a unique monic, orthogonal basis of polynomials pk, 0 ≤ k < c,
with pk of degree k. Also, L2(π(dθ)) admits a unique monic, orthogonal basis of polynomials
qk, 0 ≤ k < ∞, with qk of degree k. As usual, η0 = µ0 = 1 and p0 ≡ q0 ≡ 1.

Theorem 3.1 Assume (H.1)-(H.3). Then

(a) The x-chain (2.1) has eigenvalues βk = ηkµk with eigenvectors pk, 0 ≤ k < c.

(b) The θ-chain (2.2) has eigenvalues βk = ηkµk with eigenvectors qk for 0 ≤ k ≤ c, and
eigenvalues zero with eigenvectors qk for c < k < ∞.

(c) The random scan chain (2.3) has spectral decomposition given by

eigenvalues
1

2
± 1

2

√
ηkµk, eigenvectors pk(x)±

√
ηk

µk

qk, 0 ≤ k < c

eigenvalues
1

2
, eigenvectors qk c ≤ k < ∞.

The proof will follow from a sequence of propositions. The first shows that the expectation
operator with respect to fθ takes orthogonal polynomials into orthogonal polynomials.

Proposition 3.2 Eθ[pk(X)] = ηkqk(θ), 0 ≤ k < c.

Proof For k = 0, Eθ[p0] = 1 = η0q0. For 0 < k < c, note that for 0 ≤ i < k, the unconditional
expectation is given by

E[θipk(X)] = E[pk(X)E(θi|X)] = E[pk(X)p̂(X)]

with p̂ a polynomial of degree i < k. By orthogonality, since 0 ≤ i < k < c, E[pk(X)p̂(X)] =
0. Thus 0 = E[θipk(X)] = E[θiEθ(pk(X))]. By assumption (H.2), η−1

k Eθ[pk(X)] is a monic
polynomial of degree k in θ. Since it is orthogonal to all polynomials of degree less than k, we
must have Eθ[pk(X)] = ηkqk(θ). �

The second proposition is dual to the first.
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Proposition 3.3 Ex[qk(θ)] = µkpk(x), 0 ≤ k < c. If c < ∞, Ex(qk(θ)) = 0 for k ≥ c.

Proof The first part is proved as per Proposition 3.2. If c < ∞, and k ≥ c, by the same
argument we have, for 0 ≤ j < c, E[pj(X)Ex[qk(θ)]] = 0. But {pj}0≤j<c form a basis for
L2(m(dx)). and Ex[qk(θ)] ∈ L2(m(dx)) since

E[(Ex(qk(θ))
2] ≤ E[q2

k(θ)] < ∞.

It follows that Ex[qk(θ)] = 0. �

Proof of Part (a) of Theorem 3.1 Suppose 0 ≤ k < c. From the definitions, the x-chain operates
on pk as

Ex[Eθ(pk(X
′))] = Ex[ηkqk(θ)] = ηkµkpk(x)

with equalities from Propositions 3.2, 3.3. Hence, ηkµk are eigenvalues of the x chain with pk

as eigenfunctions. This proves (a). �

Proof of Part (b) Suppose first 0 ≤ k < c. Then, arguing as above, µkηk are eigenvalues of the
θ-chain with qk as eigenvectors. If c = ∞, we are done. If c < ∞, then, for k ≥ c, Proposition
3.3 shows that qk is an eigenfunction for the θ-chain with eigenvalue zero. �

Proof of Part (c) From the development in Section 2.1, the random scan chain K takes L2(P )
into L2(m) + L2(π) ⊆ L2(P ) and ker K ⊇ (L2(m) + L2(π))⊥. We have

Kg(X, θ) =
1

2
Ex[g(x, θ′)] +

1

2
Eθ[g(X ′, θ)].

For 0 ≤ k < c, consider K acting on pk(x) +
√

ηk

µk
qk(θ). The result is

1

2

(
pk(x) + Ex[qk(θ

′)]

√
ηk

µk

)
+

1

2

(
Eθ[pk(x)] +

√
ηk

µk

qk(θ)
)

=(1

2
+

1

2

√
ηkµk

)(
pk(x) +

√
ηk

µk

qk(θ)

)
.

Similarly,

K
(
pk −

√
ηk

µk

qk

)
(x, θ) =

(1

2
− 1

2

√
ηkµk

)(
pk(x)−

√
ηk

µk

qk(θ)
)
.

Suppose first that c < ∞. For k ≥ c, Proposition 3.3 shows Exqk(θ) = 0 for all x. Thus
Kqk(x, θ) = 1

2
qk(θ). Further

span
{

pk(x)±
√

ηk

µk
qk(θ) 0 ≤ k < c, qk(θ) c ≤ k < ∞

}
= span {pk(x) 0 ≤ k < c, qk(θ), 0 ≤ k < ∞} = L2(m) + L2(π).
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It follows that K is diagonalizable with eigenvalues/eigenvectors

1

2
± 1

2

√
µkηk, pk(x)±

√
ηk

µk

qk(θ), for 0 ≤ k < c,

1

2
, qk(θ), for c ≤ k < ∞,

and Kg = 0 for g ∈ (L2(m) + L2(π))⊥.
Suppose next that c = ∞, then, K is diagonalizable with eigenvalues/eigenfunctions(1

2
±√

ηkµk

)
, pk(x)±

√
ηk

µk

qk(θ), 0 ≤ k < ∞.

Again span
{

pk(x) ±
√

ηk

µk
qk(θ) 0 ≤ k < c

}
= span {pk(x), qk(θ)} = L2(m) + L2(π) and

Kg = 0 for g ∈ (L2(m) + L2(π))⊥. This completes the proof of (c). �

Remark The theorem holds with obvious modification if #supp (π) < ∞. This occurs for
binomial location problems. It will be used without further comment in Section 5. Further,
the arguments work to give some eigenvalues with polynomial eigenvectors when only finitely
many moments are finite.

4 Exponential family examples

This section carries out the analysis of the Gibbs sampler for five examples. The x and θ chains
for the beta/binomial, Poisson/Gamma and normal families. For each, we set up the results
for general parameter values and carry out the bounds in some natural special cases.

4.1 Beta/Binomial

4.1.1 The x-chain for the Beta/Binomial

The Gibbs sampler for this chain was used as a simple expository example in [15]. The case of a
uniform prior appears in Section 1 above. Fix α, β > 0. On the state space X = {0, 1, 2, . . . , n},
let

k(x, y) =

∫ 1

0

(
n

y

)
θα+x+y−1(1− θ)β+2n−(x+y)−1 Γ(α + β + n) dθ

Γ(α + x)Γ(β + n− x)

=

(
n

y

)
Γ(α + β + n)Γ(α + x + y)Γ(β + 2n− (x + y))

Γ(α + x)Γ(β + n− y)Γ(α + β + 2n)
. (4.1)

When α = β = 1 (uniform prior), k(x, x′) is given by (2.1). For general α, β, the stationary
distribution is the Beta/Binomial:

m(x) =

(
n

x

)
(α)x(β)n−x

(α + β)n

where (a)j =
Γ(a + j)

Γ(a)
= a(a + 1) · · · (a + j − 1).
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From our work in previous sections we obtain the following result.

Proposition 4.1 For n = 1, 2, . . . , and α, β > 0, the Beta/Binomial x-chain (4.1) has:

(a) Eigenvalues β0 = 1 and βj = n(n−1)···(n−j+1)
(α+β+n)j

1 ≤ j ≤ n.

(b) Eigenvectors Qj, 0 ≤ j ≤ n, the Hahn polynomials of Section 2.5.

(c) For any ` ≥ 1 and any starting state x

χ2
x(`) =

n∑
i=1

β2`
i Q2

i (x)zi, zi =
(α + β + 2i− 1)(α + β)n(α)i

(β)i(α + β + i− 1)n+1

(
n

i

)
.

We now specialize this to α = β = 1 and prove the bounds announced in Proposition 1.1.

Proof of Proposition 1.1 From (a), βi = n(n−1)···(n−i+1)
(n+2)(n+3)···(n+i+1)

. From (2.7), Q2
i (n) = 1. By elemen-

tary manipulations, zi = βi(2i + 1). Thus

χ2
n(`) =

n∑
y=0

(k`(n, y)−m(y))2

m(y)
=

n∑
i=1

β2`+1
i (2i + 1).

We may bound βi ≤ βi
1 =

(
1− 2

n+2

)i

, and so

χ2
n(`) =

n∑
i=1

β2`+1
i (2i + 1) ≤

n∑
i=1

β
i(2`+1)
1 (2i + 1)

Using
∑∞

1 xi = 1/(1− x),
∑∞

1 ixi = x/(1− x)2, we obtain

3β2`+1
1 ≤ χ2

n(`) ≤ 3β2`+1
1

(1− β2`+1
1 )2

≤ 27β2`+1
1 .

By Lemma 2.4, this gives (for the K̃ chain)

3β2`+1
1 ≤ χ̃2

n,θ(`) ≤ 27β2`−1
1 .

For a lower bound in total variation, use the eigenfunction ϕ1(x) = x− n
2
. This is maximized

at x = n and the lower bound follows from Lemma 2.1. �

Remark Essentially, the same results hold for any Beta(α, β) prior in the sense that, for fixed
α, β, starting at n, order n steps are necessary and sufficient for convergence.
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4.1.2 The θ-Chain for the Beta/Binomial

Fix α, β > 0. On the state space [0, 1], let

k(θ, η) =
n∑

j=0

(
n

j

)
θj(1− θ)n−j Γ(α + β + n)

Γ(α + j)Γ(β + n− j)
ηα+j−1(1− η)β+n−j−1. (4.2)

This is a transition density with respect to Lebesgue measure dη on [0, 1]. It has stationary
density

π(dθ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1dθ.

The relevant orthogonal polynomials are Jacobi polynomials P a,b
i , α = a − 1, β = b − 1,

given on [−1, 1] in standard literature [47, 1.8]. We make the change of variables θ = (x + 1)/2
and write pi(θ) = Pα−1,β−1

i (2θ − 1). Then, we have∫ 1

0

pj(θ)pk(θ)π(θ)dθ =
1

2j + α + β − 1

Γ(α + β)

Γ(α)Γ(β)

Γ(j + α)Γ(j + β)

Γ(j + α + β − 1)j!
δjk = z−1

i δjk. (4.3)

This defines zi.

Proposition 4.2 For α, β > 0, the θ-chain for the Beta/Binomial (4.2) has:

(a) Eigenvalues β0 = 1, βj = n(n−1)···(n−j+1)
(α+β+n)j

1 ≤ j ≤ n, βj = 0 for j > n.

(b) Eigenvectors pj, the shifted Jacobi polynomials.

(c) With zi from (4.3), for any ` ≥ 1 and any starting state θ ∈ [0, 1],

χ2
θ(`) =

n∑
i=1

β2`
i p2

i (θ)zi.

The following proposition gives sharp chi-square bounds, uniformly over α, β, n in two cases:
(i) α ≥ β, starting from 1 (worst starting point), (ii) α = β, starting from 1/2 (heuristically,
the most favorable starting point). The restriction α ≥ β is not really a restriction because of
the symmety P a,b

i (x) = (−1)iP b,a
i (−x). For α ≥ β > 1/2, it is known (e.g., [44, Lemma 4.2.1])

that

sup
[0,1]

|pi| = sup
[−1,1]

|Pα−1,β−1
i | = pi(1) =

(α)i

i!
.

Hence, 1 is clearly the worst starting point from the viewpoint of convergence in chi-square
distance, that is,

sup
θ∈[0,1]

{χ2
θ(`)} = χ2

1(`).
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Proposition 4.3 For α ≥ β > 0, n > 0, set N = log[(α + β)(α + 1)/(β + 1)]. The θ-chain for
the Beta/Binomial (4.2) satisfies:

(i) • χ2
1(`) ≤ 7e−c for ` ≥ N+c

−2 log β1
, c > 0.

• χ2
1(`) ≥ 1

6
ec, for ` ≤ N−c

−2 log β1
, c > 0.

(ii) Assuming α = β > 0,

• χ2
1/2(`) ≤ 13β2`

2 for ` ≥ 1
−2 log β2

.

• χ2
1/2(`) ≥

1
2
β2`

2 , for ` > 0.

Roughly speaking, part (i) says that, starting from 1, `(α, β, n) steps are necessary and sufficient
for convergence in chi-square distance where

`(α, β, n) =
log[(α + β)(α + 1)/(β + 1)]

−2 log(1− (α + β)/(α + β + n))
.

Note that if α, n, n/α tend to infinity and β is fixed,

`(α, β, n) ∼ n log α

α
, β1 ∼ 1− α

n
.

If α, n, n/α tend to infinity and α = β,

`(α, α, n) ∼ n log α

4α
, β1 ∼ 1− 2α

n
.

The result also says that, starting from 1, convergence occurs abruptly (i.e., with cutoff) at
`(α, β, n) as long as α tends to infinity.

Part (ii) indicates a completely different behavior starting from 1/2 (in the case α = β).
There is no cutoff and convergence occurs at the exponential rate given by β2 (β2 ∼ 1 − 4α

n
if

n/α tends to infinity).

Proof of Proposition 4.3(i) We have χ2
1(`) =

∑n
1 β2`

i pi(1)2zi and

β2`
i+1pi+1(1)

2zi+1

β2`
i pi(1)2zi

=

(
n− i

α + β + n + i

)2`
2i + α + β + 1

2i + α + β − 1

i + α + β − 1

i + 1

i + α

i + β

≤ 5

6

(α + β)(α + 1)

β + 1

(
1− α + β + 2

α + β + n + 1

)2`

(4.4)

The lead term in χ2
1(`) is (

(α + β + 1)α

β

)
β2`

1 .
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From (4.4), we get that for any

` ≥ 1

−2 log β1

log[(α + β)(α + 1)/(β + 1))]

we have
β2`

i+1pi+1(1)
2zi+1

β2`
i pi(1)2zi

≤ 5/6.

Hence, for such `,

χ2
1(`) ≤

(
(α + β + 1)α

β

)
β2`

1

(
∞∑
0

(5/6)k

)

≤ 5

(
(α + β + 1)α

β

)
β2`

1 .

With N = log[(α + β)(α + 1)/(β + 1)] as in the proposition, we obtain

χ2
1(`) ≤ 7e−c for ` ≥ N + c

−2 log β1

, c > 0;

χ2
`(1) ≥ 1

6
ec for ` ≤ N − c

−2 log β1

, c > 0.

�

Proof of Proposition 4.3(ii) When a = b, the classical Jacobi polynomial P a,b
k is given by

P a,a
k (x) =

(a + 1)k

(2a + 1)k

C
a+1/2
k (x)

where the Cν
k ’s are the ultraspherical polynomials. See [44, (4.5.1)]. Now, formula [44, (4.5.16)]

gives Cν
n(0) = 0 if n is odd and

Cν
n(0) =

(2ν)n

2n(n/2)!(ν + 1/2)n/2

if n is even. Going back to the shifted Jacobi’s, this yields p2k+1(1/2) = 0 and

p2k(1/2) =
(α)2k

(2α− 1)2k

C
α−1/2
2k (0)

=
(α)2k

(2α− 1)2k

(2α− 1)2k

22kk!(α)k

=
(α + k)k

22kk!
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We want to estimate

χ2
1/2(`) =

bn/2c∑
1

β2`
2i p2i(1/2)2z2i

and thus we compute

β2`
2(i+1)p2(i+1)(1/2)2z2(i+1)

β2`
2i p2i(1/2)2z2i

=

(
(n− 2i)(n− 2i− 1)

(2α + n + 2i)(2α + n + 2i + 1)

)2`

×4i + 2α + 1

4i + 2α− 1

2i + 2α− 1

2i + 2α + 1

2i(2i + 1)(2α + 2i + 1)(2α + 2i)

(2i + α)2(2i + α + 1)2

(
(α + 2i)(α + 2i + 1)

4(α + i)(i + 1)

)2

≤ 9

5
β2`

2 (4.5)

Hence

χ2
1/2(`) ≤ 10β2`

2 p2(1/2)2z2 for ` ≥ 1

−2 log β2

.

As

p2(1/2) =
α + 1

4
and z2 =

4(2α + 3)

α(α + 1)2
,

this gives χ2
1/2(`) ≥

1
2
β2`

2 and, assuming ` ≥ 1
−2 log β2

, χ2
1/2(`) ≤ 13β2`

2 . �

4.2 Poisson/Gamma

4.2.1 The x-Chain for the Poisson/Gamma

Fix α, a > 0. For x, y ∈ X = {0, 1, 2, . . .} = N, let

k(x, y) =

∫ ∞

0

e−λ(α+1)/αλa+x−1

Γ(a + x)(α/(α + 1))a+x

e−λλy

y!
dλ

=
Γ(a + x + y)( α

2α+1
)a+x+y

Γ(a + x)( α
α+1

)a+xy!
. (4.6)

The stationary distribution is the negative binomial

m(x) =
(a)x

x!

(
1

α + 1

)x(
α

α + 1

)a

, x ∈ N.

When α = a = 1, the prior is a standard exponential, an example given in Section 2.1. Then,

k(x, y) =
(1

3

)x+y
(

x + y

x

)/(
1/2
)x

, m(x) = 1/2x+1.
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The orthogonal polynomials for the negative binomial are Meixner polynomials [47, (1.9)]:

Mj(x) = 2F1

( −j − x
a

∣∣∣∣− α
)
. These satisfy [47, (1.92)]

∞∑
x=0

Mj(x)Mk(x)m(x) =
(1 + α)jj!

(a)j

δjk.

Our work in previous sections, together with basic properties of Meixner polynomials gives
the following propositions.

Proposition 4.4 For a, α > 0 the Poisson/Gamma x-chain (4.6) has:

(a) Eigenvalues βj = (α/(1 + α))j, 0 ≤ j < ∞.

(b) Eigenfunctions Mj(x), the Meixner polynomials.

(c) For any ` ≥ 0 and any starting state x

χ2
x(`) =

∞∑
y=0

(k`(x, y)−m(y))2

m(y)
=

∞∑
i=1

β2`
i M2

i (x)zi zi =
(a)i

(1 + α)ii!
.

Proposition 4.5 For α = a = 1, starting at n,

χ2
n(`) ≤ 2−c for ` = log2(1 + n) + c, c > 0;

χ2
n(`) ≥ 2c for ` = log2(n− 1)− c, c > 0.

Proof From the definitions, for all j and positive integer x

|Mj(x)| = |
j∧x∑
i=0

(−1)i

(
j

i

)
x(x− 1) . . . (x− i + 1)| ≤

j∑
i=0

(
j

i

)
xi = (1 + x)j.

Thus, for ` ≥ log2(1 + n) + c,

χ2
n(`) =

∞∑
j=1

M2
j (n)2−j(2`+1) ≤

∞∑
j=1

(1 + n)2j2−j(2`+1)

≤ (1 + n)22−(2`+1)

1− (1 + n)22−(2`+1)
≤ 2−c−1

1− 2−c−1
≤ 2−c.

The lower bound follows from using only the lead term. Namely

χ2
n(`) ≥ (1− n)22−2` ≥ 2c for ` = log2(n− 1)− c.

�

Remark Note the contrast with the Beta/Binomial example above. There, order n steps are
necessary and sufficient starting from n and there is no cutoff. Here, log2 n steps are necessary
and sufficient and there is a cutoff. See [21] for further discussion of cutoffs.
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4.2.2 The θ-chain for the Poisson/Gamma

Fix α, a > 0. For θ, θ′ ∈ Θ = (0,∞), let η = (α + 1)θ′/α and write

k(θ, θ′) =
∞∑

j=0

e−θθj

j!

e−θ′(α+1)/α(θ′)a+j−1

Γ(a + j)(α/(α + 1))a+j

=
e−θ−η ηa−1

α/(α + 1)

∞∑
j=0

(θη)j

j!Γ(a + j)

=
e−θ−η

α/(α + 1))

(η

θ

)a−1
2

∞∑
j=0

(
√

θη)2j+a−1

j!Γ(a + j)

=
e−θ−η

α/(1 + α)

(η

θ

)a−1
2

Ia−1(2
√

θη)

=
e−θ−(α+1)θ′/α

α/(1 + α)

((α + 1)θ′

αθ

)a−1
2

Ia−1(2
√

(α + 1)θθ′/α). (4.7)

Here Ia−1 is the modified Bessell function. For fixed θ, k(θ, θ′) integrates to one as discussed in
[35, pg. 58-59]. The stationary distribution of this Markov chain is the Gamma:

π(dθ) =
e−θ/αθa−1

Γ(a)αa
dθ.

To simplify notation, we take α = 1 for the rest of this section. The relevant polynomials
are the Laguerre polynomials [47, Sec. 1.11]

Li(θ) =
(a)i

i!
1F1

(−i
a

∣∣∣∣ θ) =
1

i!

i∑
j=0

(−i)j

j!
(a + j)i−jθ

j.

Note that classical notation has the parameter a shifted by 1 whereas we have labelled things
to mesh with standard statistical notation. The orthogonality relation is∫ ∞

0

Li(θ)Lj(θ)π(θ)dθ =
Γ(a + j)

j!Γ(a)
δij = z−1

j δij.

The multilinear generating function formula [44, Theorem 4.7.5] gives

∞∑
i=0

Li(θ)
2zit

i =
e−2tθ/(1−t)

(1− t)a

∞∑
0

1

j!(a)j

(
θ2t

1− t2

)j

.

Combining results, we obtain the following statements.

Proposition 4.6 For α = 1 and a > 0, the Markov chain with kernel (4.7) has:

27



(a) Eigenvalues βj = 1
2j 0 ≤ j < ∞.

(b) Eigenvectors Lj the Laguerre polynomials.

(c) For any ` ≥ 1 and any starting state θ,

χ2
θ(`) =

∞∑
j=1

β2`
j L2

j(θ)
j!Γ(a)

Γ(a + j)
=

e
− 2−2`+1θ

1−2−2`

(1− 2−2`)a

∞∑
0

1

j!(a)j

(
θ22−2`

1− 2−4`

)j

− 1

Proposition 4.7 For α = 1 and a > 0, the Markov chain with kernel (4.7) satisfies

• For θ > 0, χ2
θ(`) ≤ e22−c if ` ≥ 1

2
log2[2(1 + a + θ2/a)] + c, c > 0.

• For θ ∈ (0, a/2) ∪ (2a,∞), χ2
θ(`) ≥ 2c if ` ≤ 1

2
log2[

1
2
(θ2/a + a)] − c, c > 0.

Proof For the upper bound, assuming ` ≥ 1, we write

χ2
θ(`) = (1− 4−`)−ae

− 2θ4−`

1−4−`

∞∑
0

1

j!(a)j

(
θ24−`

1− 4−`

)j

− 1

≤
exp

(
(2θ2/a)4−`

)
(1− 4−`)a

− 1

≤ 2(θ2/a + a)4−`

(
exp

(
2(θ2/a)4−`

)
(1− 4−`)a+1

)

For ` ≥ 1
2
(log2[2(1 + θ2/a + a)] + c), c > 0, we obtain χ2

θ(`) ≤ e22−c.
The stated lower bound does not easily follows from the formula we just used for the

upper bound. Instead, we simply use the first term in χ2
θ(`) =

∑
j≥1 β2`

j L2
j(θ)

j!Γ(a)
Γ(a+j)

, that is,

a−1(θ − a)24−`. This easily gives the desired result. �

Remark: It is not easy to obtain sharp formula starting from θ near a. For instance, starting
at θ = a, one gets a lower bounds by using the second term χ2

θ(`) =
∑

j≥1 β2`
j L2

j(θ)
j!Γ(a)
Γ(a+j)

(the

first term vanishes at θ = a). This gives χ2
a(`) ≥ [2a/(a + 1)]4−2`. When a is large, this is

significantly smaller than the upper bound proved above.

4.3 The Gaussian case

Here, the x-chain and the θ-chain are essentially the same and indeed the same as the chain
for the additive models so we just treat the x-chain. Let X = R, fθ(x) = e−

1
2
(x−θ)2/σ2

/
√

2πσ2

and π(dθ) = e−
1
2 (θ−ν)2/τ2

√
2πτ2

dθ. The marginal density is Normal(v, σ2 + τ 2).
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A stochastic description of the chain is

Xn+1 = aXn + εn+1 with a =
τ 2

σ2 + τ 2
, ε ∼ Normal

(
σ2ν

σ2 + τ 2
, σ2

)
. (4.8)

This is the basic autoregressive (AR1) process. Feller [35, pg. 97-99] describes it as the discrete
time Ornstein-Uhlenbeck process. The diagonalization of this Gaussian Markov chain has
been derived by other authors in various contexts. Goodman and Sokal [40] give an explicit
diagonalization of vector valued Gaussian autoregressive processes which specialize to (a), (b),
(c) above. Donoho and Johnstone [26, Lemma 2.1] also specializes to (a), (b), (c) above. Both
sets of authors give further references. Since it is so well studied, we will be brief and treat the
special case with ν = 0, σ2 + τ 2 = 1/2. Thus the stationary distribution is Normal(0, 1/2). The
orthogonal polynomials are now Hermite polynomials [47, 1.13]. These are given by

Hn(y) = (2y)n
2F0

(
−n/2,−(n− 1)/2

−−

∣∣∣∣− 1

y2

)
= n!

[n/2]∑
k=0

(−1)k(2y)n−2k

k!(n− 2k)!

They satisfy
1√
π

∫ ∞

−∞
e−y2

Hm(y)Hn(y)dy = 2nn!δmn.

There is also a multilinear generating function formula which gives ([44, Example 4.7.3])

∞∑
0

Hn(x)2

2nn!
tn =

1√
1− t2

exp

(
2x2t

1 + t

)
.

Proposition 4.8 For ν = 0, σ2 + τ 2 = 1/2, the Markov chain (4.8) has:

(a) Eigenvalues βj = (2τ 2)j (as σ2 + τ 2 = 1/2, we have 2τ 2 < 1).

(b) Eigenvectors the Hermite polynomials Hj.

(c) For any starting state x and all ` ≥ 1

χ2
x(`) =

∞∑
k=1

(2τ 2)2k`H2
k(x)

1

2kk!
=

exp
(

2x2(2τ2)2`

1+(2τ2)2`

)
√

1− (2τ 2)4`
− 1.

The next proposition turns the available chi-square formula into sharp estimates when x
is away from 0. Starting from 0, the formula gives χ2

0(`) = (1 − (2τ 2)4`)−1/2 − 1. This shows
convergence at the faster exponential rate of β2 = (2τ 2)2 instead of β1 = 2τ 2.
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Proposition 4.9 For ν = 0, σ2 + τ 2 = 1/2, x ∈ R, the Markov chain (4.8) satisfies:

χ2
x(`) ≤ 8e−c for ` ≥ log(2(1 + x2)) + c

−2 log(2τ 2)
, c > 0.

χ2
x(`) ≥ x2ec

2(1 + x2)
for ` ≤ log(2(1 + x2))− c

−2 log(2τ 2)
, c > 0.

χ2
0(`) = (1− (2τ 2)4`)−1 − 1 ≥ (2τ 2)4`.

Proof For the upper bound, assuming

` ≥ 1

−2 log(2τ 2)

(
log(2(1 + x2)) + c

)
, c > 0,

we have
(2τ 2)2` < 1/2, 2x2(2τ)2` < 1

and it follows that

χ2
x(`) =

exp
(

2x2(2τ2)2`

1+(2τ2)2`

)
√

1− (2τ 2)4`
− 1 ≤

(
1 + 2(2τ 2)4`

) (
1 + 6x2(2τ 2)2`

)
− 1

≤ 8(1 + x2)(2τ 2)2`.

For the lower bound, write

χ2
x(`) =

exp
(

2x2(2τ2)2`

1+(2τ2)2`

)
√

1− (2τ 2)4`
− 1 ≥ exp

(
x2(2τ 2)2`

)
− 1 ≥ x2(2τ 2)2`.

�

5 Location families examples

In this section fθ(x) = g(x− θ) with g and π members of one of the six families of Section 2.4.
To picture the associated Markov chains it is helpful to begin with the representation x = θ+ ε.
Here θ is distributed as π and ε is distributed as g. The x-chain goes as follows: from x, draw
θ′ from π(·|x) and then go to x′ = θ′ + ε′ with ε′ independently drawn from g. It has stationary
distribution m(x)dx, the convolution of π and g. For the θ-chain, starting at θ, set x′ = θ + ε
and draw θ′ from π(·|x′). It has stationary distribution π.

Eθ(X
k) = Eθ((θ + ε)k) =

k∑
j=0

(
k

j

)
θjE(εk−j).
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Thus (H.2) of Section 3 is satisfied with ηk = 1. To check the conjugate condition we may use
results of [60, Sect. 4]. In present notation, Morris shows that if pk is the monic orthogonal
polynomial of degree k for the distribution π and p′k the monic orthogonal polynomial of degree
k for the distribution m, then

Ex(pk(θ)) =

(
n1

n1 + n2

)k

bkp
′
k(x).

Here π is taken as the sum of n1 copies and ε the sum of n2 copies of one of the six families and

bk =
k−1∏
i=0

1 + ic
n1

1 + ic
n1+n2

where c is the coefficient for var = a + bµ + cµ2 for the family. Comparing lead terms gives
(H.3) with an explicit value of µk. In the present set-up, µk = βk the k-th eigenvalue.

We now make specific choices for each of the six cases.

5.1 Binomial

For fixed p, 0 < p < 1 let π = Bin(n1, p), g = Bin(n2, p). Then m = Bin(n1 + n2, p) and

π(θ|x) =

(
n1

θ

)(
n2

x−θ

)(
n1+n2

x

)
is hypergeometric. The θ-chain progresses as a population process on 0 ≤ θ ≤ n1: from θ, there
are ε new births and the resulting population of size x = θ + ε is thinned down by random
sampling. The x-chain has an autoregressive cast: From x, the process is decreased and then
increased as

Xn+1 = SXn + εn+1 (5.1)

with Sx a hypergeometric with parameter n1, n2, Xn and εn+1 drawn from Bin(n2, p).
For the binomial, the parameter c is c = −1 and the eigenvalues of the x-chain are

βk =
n1(n1 − 1) · · · (n1 − k + 1)

(n1 + n2)(n1 + n2 − 1) · · · (n1 + n2 − k + 1)
, 0 ≤ k ≤ n1 + n2.

Note that βk = 0 for k ≥ n1 + 1. The orthogonal polynomials are Krawtchouck polynomials
([47, 1.10], [44, pg 100])

kj(x) = 2F1

(
−j − x
−n

∣∣∣∣ 1p
)

which satisfy
n∑

x=0

(
n

x

)
px(1− p)n−xkj(x)k`(x) =

(
n

j

)−1(
1− p

p

)j

δj`.
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Proposition 5.1 Consider the chain (5.1) on {0, . . . , n1 + n2} with 0 < p < 1, starting at
x = 0. Set N = n1 + n2, q = p/(1− p). Then we have

e−c ≤ χ2
0(`) ≤ e−cee−c

whenever

` =
log(qN) + c

−2 log(1− n2/N)
, c ∈ (−∞,∞).

Note two cases of interest: (i) For p = 1/2, the proposition shows that log(2N)
−2 log(1−n2/N)

steps are

necessary and sufficient. There is a chi-square cutoff when N tends to infinity. (ii) For p = 1/N ,
there is no cutoff.

Proof We have k2
j (0) = 1 for all j and the chi-square distance becomes

χ2
0(`) =

n1∑
j=1

β2`
j

(
N

j

)
qj

with N = n1 + n2, q = p/(1− p). For j ≤ n1, the eigenvalues satisfy

βj =

j−1∏
i=0

(
1− n2

N − i

)
≤
(
1− n2

N

)j

= βj
1.

Hence, we obtain

χ2
0(`) ≤

N∑
j=1

(
N

j

)
(qβ1)

j =

(
1 + qβ2`

1

)N

− 1 ≤ qNβ2`
1

(
1 + qβ2`

1

)N−1
.

This gives the desired result since we also have χ2
0(`) ≥ Nqβ2`

1 . �

5.2 Poisson

Fix positive reals µ, n1, n2. Let π = Poisson(µn1), g = Poisson(µn2). Then

m = Poisson(µ(n1 + n2)) and π(θ|x) = Bin
(
x,

n1

n1 + n2

)
.

The x-chain is related to the M/M/∞ queue and the θ-chain is related to Bayesian missing
data examples in Section 2.3.3. Here, the parameter c = 0 so that

βk =

(
n1

n1 + n2

)k

0 ≤ k < ∞.

The orthogonal polynomials are Charlier polynomials ([47, 1.12], [44, pg. 177]):

Cj(x) = 2F0

(
−j,−x
−−

∣∣∣∣− 1

µ

)
,
∑ e−µµx

x!
Cj(x)Ck(x) = j!µ−jδjk.

We carry out a probabilistic analysis of this problem in [20].
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5.3 Negative binomial

Fix p with 0 < p < 1 and positive real n1, n2. Let π = NB(n1, p), g = NB(n2, p). Then
m = NB(n1 + n2, p) and

π(θ|x) =

(
x

θ

)
Γ(n1 + n2)Γ(θ + n1)Γ(x− θ − n2)

Γ(x + n1 + n2)Γ(n1)Γ(n2)
, 0 ≤ θ ≤ x

which is a negative hypergeometric. A simple example has n1 = n2 = 1 (geometric distribution)
so π(θ|x) = 1/(1 + x). The x-chain becomes: From x, choose θ uniformly in 0 ≤ θ ≤ x and let
X ′ = θ + ε with ε geometric. The parameter c = 1 so that

β0 = 1, βk =
n1(n1 + 1) · · · (n1 + k − 1)

(n1 + n2)(n1 + n2 + 1) · · · (n1 + n2 + k − 1)
, 1 ≤ k < ∞.

The orthogonal polynomials are Meixner polynomials discussed in Section 4.2 above.

5.4 Normal

Fix reals µ and n1, n2, v > 0. Let π = Normal(n1µ, n1v), g = Normal(n2µ, n2v). Then

m = Normal((n1 + n2)µ, (n1 + n2)v) and π(θ|x) = Normal
(

n1

n1+n2
x, n1n2

n1+n2
V
)
. Here c = 0 and

βk =

(
n1

n1 + n2

)k

0 ≤ k < ∞.

The orthogonal polynomials are Hermite, discussed in Section 4.3 above. Both the x and
θ-chains are classical autoregressive processes as described in Section 4.3.

5.5 Gamma

Fix positive real n1, n2, α. Let π = Gamma(n1, α), g = Gamma(n2, α). Then

m = Gamma(n1 + n2, α), π(θ|x) = x · Beta(n1, n2).

A simple case to picture is α = n1 = n2 = 1. Then, the x-chain may be described as follows:
From x, choose θ uniformly in (0, x) and set X ′ = θ + ε with ε standard exponential. This is
simply a continuous version of the examples of Section 5.3. The parameter c = 1 and so

β0 = 1, βk =
n1(n1 + 1) · · · (n1 + k − 1)

(n1 + n2)(n1 + n2 + 1) · · · (n1 + n2 + k − 1)
, 0 < k < ∞.

The orthogonal polynomials are Laguerre polynomials, discussed in Section 4.2 above.
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5.6 Hyperbolic

The density of the sixth family is given in Section 2.3 in terms of parameters r > 0 and
|θ| < π/2. It has mean µ = r tan(θ) and variance µ2/r + r. See [59, Sect. 5]) or [28] for
numerous facts and references. Fix real µ and positive n1, n2. Let the density π be hyperbolic
with mean n1µ and r1 = n1(1 + µ2). Let the density g be hyperbolic with mean n2µ and
r2 = n2(1 + µ2). Then m is hyperbolic with mean (n1 + n2)µ and r = (n1 + n2)(1 + µ2). The
conditional density π(θ|x) is ‘unnamed and apparently has not been studied’ ([60, pg. 581]).

For this family, the parameter c = 1 and thus

β0 = 1, βk =
n1(n1 + 1) · · · (n1 + k − 1)

(n1 + n2) · · · (n1 + n2 + k − 1)
.

The orthogonal polynomials are Meixner-Pollaczek polynomials ([68, pg. 395], [47, 1.7], [44,
pg. 171]). These are given in the form

P λ
n (x, ϕ) =

(2λ)n

n!
2F1

(
−n, λ + ix

2λ

∣∣∣∣ 1− e−2iϕ

)
einϕ (5.2)

1

2π

∫ ∞

−∞
e(2ϕ−π)x|Γ(λ + ix)|2P λ

mP λ
n dx =

Γ(n + 2λ)

n!(2 sin ϕ)2λ
δmn

Here −∞ < x < ∞, λ > 0, 0 < ϕ < π. The change of variables y = rx
2
, ϕ = π

2
+ tan−1(θ)

λ = r/2 transforms the density e(2ϕ−π)x|Γ(λ + ix)|2 to a constant multiple of the density fθ(x)
of Section 2.4.

We carry out one simple calculation. Let π, g have the density of 2
π

log |C|, with C standard
Cauchy. Thus

π(dx) = g(x)dx =
1

2 cosh(πx/2)
dx. (5.3)

The marginal density is the density of 2
π

log |C1C2|, that is,

m(x) =
x

2 sinh(πx/2)
.

Proposition 5.2 For the additive walk based on (5.3):

(a) The eigenvalues are βk = 1
k+1

, 0 ≤ k < ∞.

(b) The eigenfunctions are the Pollaczek polynomials (5.2) with ϕ = π/2, λ = 1.

(c) χ2
x(`) = 2

∞∑
k=1

(k + 1)−2`−1
(
P 1

k

(x

2
,
π

2

))2

.

Proof Using Γ(z + 1) = zΓ(z), Γ(z)Γ(1− z) = π
sin(πz)

we check that

|Γ(1 + ix)|2 = Γ(1 + ix)Γ(1− ix) = (ix)Γ(ix)Γ(1− ix) =
π(ix)

sin π(ix)
=

πx

sinh(πx)
.

The result now follows from routine simplification. �
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6 A Little Operator Theory

Most of the kernels studied in previous sections give compact operators on the associated L2

spaces. In this section we give tools for explaining this and for proving compactness in less
standard problems.

Throughout, with notation as in Section 2, let L2(m) and L2(π) be the usual L2 spaces. For
most of this section X and Θ can be general measurable spaces. Define

T : L2(m) → L2(π) T ∗ : L2(π) → L2(m)

g(x) 7−→
∫
X

fθ(x)g(x)µ(dx) h(θ) 7−→
∫

Θ

π(θ|x)h(θ)π(dθ)

It is straightforward to verify that T and T ∗ are bounded operators with norm 1. Further, T
and T ∗ are adjoints (hence the notation):

〈Tg, h〉π = 〈g, T ∗h〉m =

∫
X×Θ

g(x)h(θ)fθ(x)µ(dx)π(dθ).

It follows that the eigenvalues of TT ∗ and T ∗T are non-negative.
The mapping T corresponds to “choose x given θ from fθ(x)” while the mapping T ∗ corre-

sponds to “choose θ given x from π(θ|x). Finally, T ∗T has transition kernel k(x, x′)µ(dx′) from
L2(m) to L2(m) (the x-chain) and TT ∗ has kernel k(θ, θ′)π(dθ′) from L2(π) to L2(π).

6.1 Compactness

This topic is treated in any graduate text on functional analysis. We have found the short treat-
ment in [1, pg. 56-61]) particularly clear and useful. They call compact operators ‘completely
continuous’. The more comprehensive treatment of Ringrose [63] is also recommended.

Recall that if L, L′ are Hilbert spaces, an operator A : L → L′ is compact if for any
gi ∈ L, ‖gi‖ ≤ 1, there is a subsequence gij such that Agij converges to a limit in L′. If
A∗ : L′ → L is the adjoint of A it is known that

• A is compact iff A∗A, equivalently AA∗, equivalently A∗ is compact.

• A∗A is compact iff there is an orthonormal basis gi for L and real numbers βi ↘ 0 so that
A∗Agi = βigi.

• In this case, set hk = Agi. Then {gi : βi > 0} form an orthonormal basis for (kerA)⊥,
{hi : βi > 0} form an orthogonal basis for the range of A with 〈hi, hi〉 = β2

i . We say
{gi, hi} give a singular value decomposition of A.

Example Consider the Poisson/Exponential example of Section 2.1. The measure m(j) =
1/2j+1 is determined by its moments and T ∗T : L2(m) → L2(m) has the Meixner polynomials
as an orthonormal basis of L2(m) with T ∗TMi = βiMi, βi = 1/2i, 0 ≤ i < ∞. So T, T ∗, TT ∗ as
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well as T ∗T are compact. All of the examples of Section 4 and 5 similarly arise from compact
operators.

Example [1, pg. 60] shows that an infinite tri-diagonal matrix yields a compact operator if
and only if the elements on, above, and below the diagonal tend to zero. Consider a birth and
death chain with transition matrix K on {0, 1, 2, . . .} and stationary probability M . We can
never have K compact. We may have I −K compact (iff K(i, i) → 1). Then, since I −K has
eigenvalues tending to zero, the operator K does not have a spectral gap. In Silver [67] the
birth and death chain with K(0, 0) = K(0, 1) = 1

2
, K(i, i+1) = 1

3
K(i, i−1) = 2/3, 1 ≤ i < ∞

is studied. Aside from β0 = 1, this chain has only continuous spectrum. The point of those
examples is that compact operators do not occur easily when the state space is infinite.

The following proposition gives a simple sufficient condition for compactness in our setup.

Proposition 6.1 Each of the following conditions implies that the operators T, T ∗, T ∗T, TT ∗

are compact.

(a) sup
x

∫
Θ

π2(θ|x)π(dθ) < ∞

(b) sup
θ

∫
χ

f 2
θ (x)

m(x)
µ(dx) < ∞.

(c)

∫
f 2

θ (x)

m(x)
π(dθ)µ(dx) < ∞.

Proof Condition (a) implies that T is a bounded operator from L2(m) to L∞(π). By duality,
T ∗ must be bounded from L1(π) to L2(m) and thus TT ∗ is bounded from L1(π) to L∞(π). As
TT ∗ has kernel k(θ, θ′) with respect to π(dθ′), this implies

sup
θ,θ′
{k(θ, θ′)} < ∞. (6.1)

Recall that an operator with kernel k w.r.t. a measure π is trace class if
∫

k(θ, θ)π(dθ) < ∞.
Being trace class is a standard sufficient condition for compactness (the eigenvalues form a
summable series). As π is a probability measure, (6.1) implies that TT ∗ is trace class hence
compact. Exchanging the roles of x and θ, the same argument proves that T ∗T is compact (in
fact, trace class) starting from condition (b). Note that (a) is the same as

sup
x
{k̄(x, x)} = sup

x
{k(x, x)/m(x)} < ∞

whereas (b) is the same as
sup

θ
{k(θ, θ)} < ∞.
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Condition (c) is weaker than (a) or (b) since∫
X×Θ

f 2
θ (x)

m(x)
π(dθ)µ(dx) =

∫
X

k(x, x)

m(x)
m(dx) =

∫
Θ

k(θ, θ)π(dθ).

It exactly says that TT ∗ and T ∗T are trace class. �

Example In the Poisson/Exponential example of Section 2.1, we have π = e−θdθ, fθ(x) =
e−θθx

x!
, m(x) = 1/2x+1, π(θ|x) = fθ(x)/m(x) and

k(x, x)

m(x)
=

∫
Θ

π2(θ|x)π(dθ) =
22(x+1)

(x!)2

∫
e−3θθ2xdθ =

22(x+1)

32x+1

(
2x

x

)
∼ 4(4/3)2x

3
√

πx
.

using
(
2x
x

)
∼ 22x/

√
πx. Condition (a) is not satisfied but condition (c) is since

∑
k(x, x) =

∑ 22(x+1)

32x+1

(
2x

x

)
2−x−1 < ∞.

Example Poisson/non-exponential. Let fθ(x) = e−θθx

x!
, π(dθ) = ce−|θ|

2
dθ on (0,∞) with

c = 2/(
√

π) (normalizing constant). In this case we have, for x large enough,

m(x) =

∫
Θ

fθ(x)π(dθ) =

∫ ∞

0

e−θ

x!
θxe−θ2

dθ ≥ 1

e1/4x!

∫ ∞

0

e−(θ+1/2)2θxdθ

≥ 1

e1/42x+2x!

∫ ∞

0

e−uu(x−1)/2du =
Γ((x + 1)/2)

e1/42x+2x!

and

k(x, x) =
1

(x!)2m(x)

∫ ∞

0

e−2θθ2xe−θ2

dθ ≤ 1

(x!)2m(x)

∫ ∞

0

θ2xe−θ2

dθ

≤ 1

2(x!)2m(x)

∫ ∞

0

θx−1/2e−θdθ =
Γ(x + 1/2)

2(x!)2m(x)

≤ e1/42x+1Γ(x + 1/2)

x!Γ((x + 1)/2)
.

This shows that k(x, x) is summable and thus T, T ∗, TT ∗ and T ∗T are compact.

We close this section by observing that, in contrast with the results obtained for the system-
atic scan Gibbs sampler, the operator K̄ corresponding to the random scan Gibbs sampler is
never compact when the state space is infinite. This easily follows from Theorem 3.1(c) which
asserts that 1/2 is an accumulation point for the eigenvalues of K̄.
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7 Other models, other methods

Even in the limited context of Markov chains with polynomial eigenfunctions, there are exam-
ples not treated here and further techniques for proving convergence. The present section gives
brief pointers to these results.

7.1 Univariate Examples

Fix positive integers n, θ,N with n, θ ≤ N . Define

fθ(x) =

(
θ
x

)(
N−θ
n−x

)(
N
n

) , (n + θ −N)+ ≤ x ≤ min(θ, n).

This is the classical model for sampling without replacement from a population of size N
containing θ-‘reds’ and N − θ ‘blacks’. A sample of size n is chosen without replacement and
x is the number of reds in the sample. A Bayesian treatment puts a prior π(θ) on θ. One
standard choice is

π(θ) =

(
R
θ

)(
M−R
N−θ

)(
M
N

) , (N + R−M)+ ≤ θ ≤ min(R, N).

One may compute that the posterior π(θ|x) is again hypergeometric. In [23], it is shown that
the x-chain and the θ-chain have polynomial eigenfunctions with simple eigenvalues. By passing
to various limits, these authors show that this example includes various location models treated
above (binomial; Poisson and normal). Further, the natural q-analog involving subspaces of a
vector space gives some q-deformations of present results.

Markov chains with polynomial eigenfunctions have been extensively studied in the mathe-
matical genetics literature. This work, which perhaps begins with [33], was unified in [13]. See
[29] for a textbook treatment. Models of Fisher-Wright, Moran, Kimura, Karlin and McGregor
are included. While many models are either absorbing, non-reversible, or have intractable sta-
tionary distributions, there are also tractable new models to be found. See the Stanford thesis
work of Hua Zhou.

Further examples can be found in [12, Sec. 7-12]. In particular, one finds there a charac-
terization of circulency symmetric bivariate measures where the Gibbs sampler has polynomial
eigenfunctions. Many of these can be analysed by the methods of the present paper. Conversely,
our examples give new and different examples for understanding the alternating conditional ex-
pectations that are the central focus of [12].

A rather different class of examples can be created using autoregressive processes. For
definiteness, work on the real line R. Consider processes of form, X0 = 0, and for 1 ≤ n < ∞,

Xn+1 = an+1Xn + εn+1,
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with the pair independent and identically distributed. Under mild conditions on the distribution
of (ai, εi), the Markov chain Xn has a unique stationary distribution π which can be represented
as the probability distribution of

X∞ = ε0 + a0ε1 + a1a0ε2 + . . . .

The point here is that for any k such that moments exist

E(Xk
1 |X0 = x) = E((a1x + ε1)

k) =
k∑

i=0

(
k

i

)
xiE(ai

1ε
k−i
1 ).

If, for example, π has moments of all orders and is determined by those moments, then the
Markov chain {Xn}∞n=0 is generated by a compact operator with eigenvalues E(ai

1) 0 ≤ i < ∞
and polynomial eigenfunctions.

We have treated the Gaussian case in Section 4.5. At the other extreme, take |a| < 1
constant and let εi take values ±1 with probability 1/2. The fine properties of π have been
intensively studied as Bernoulli convolutions. See [19] and the references here. For example, if
a = 1/2, then π is the usual uniform distribution on [−1, 1] and the polynomials are Tchebychev
polynomials. Unfortunately, for any value of a 6= 0, in the ±1 case, the distribution π is known
to be continuous while the distribution of Xn is discrete and so does not converge to π in L1

or L2. We do not know how to use the eigenvalues to get quantitative rates of convergence in
one of the standard metrics for weak convergence.

As a second example take (a, ε) = (u, 0) with probability p and (1+u,−u) with probability
1 − p with u uniform on (0, 1) and p fixed in (0, 1). This Markov chain has a beta (p, 1 − p)
stationary density. The eigen values are 1/(k+1), 1 ≤ k < ∞. It has polynomial eigenfunctions.
Alas, it is not reversible and again we do not know how to use the spectral information to get
usual rates of convergence. See [19] or [51] for more information about this so called “donkey
chain”.

7.2 Multivariate Models

The present paper and its companion paper have discussed univariate models. There are
a number of multivariate models fθ(x), π(θ) with x or θ multivariate where the associated
Markov chains have polynomial eigen functions. Some analogs of the six exponential families
are developed in [14]. Preliminary thesis work of Khare and Zhou indicate that these exponential
family chains have polynomial eigenfunctions.

An important special case – high dimensional Gaussian distributions, has been studied in
[2, 40]. Here is a brief synopsis of these works. Let m(x) be a p-dimensional normal density
with mean µ and covariance Σ (i.e., Np(µ, Σ)). A Markov chain with stationary density m may
be written as

Xn+1 = AXn + Bv + Cεn+1. (7.2)
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Here εn has a Np(0, I) distribution, v = Σ−1µ, and the matrices A, B, C have the form

A = −(D + L)−1LT , B = (D + L)−1, C = (D + L)−1D1/2

where D and L are the diagonal and lower triangular parts of Σ−1. The chain (7.2) is reversible
if and only if ΣA = AT Σ. If this holds, A has real eigenvalues (λ1, λ2, . . . , λp). In [40],
Goodman and Sokal show that the Markov chain (7.2) has eigenvalues λK and eigenvectors HK

for K = (k1, k2, . . . , kp) ki ≥ 0 with

λK =

p∏
i=1

λki
i , HK(x) =

p∏
i=1

Hki
(xi)

where Hk(x) are the usual one dimensional hermite polynomials. Goodman and Sokal show how
a variety of stochastic algorithms, including the systematic scan Gibbs sampler for sampling
from m, are covered by this framework. Explicit rates of convergence using these results remain
to be carried out.

7.3 Conclusion

The present paper studies rates of convergence using spectral theory. In a companion paper
we develop a stochastic approach which uses one eigen function combined with coupling. This
is possible when the Markov chains are stochastically monotone. We show this is the case for
all exponential families, with any choice of prior, and for location families where the density
g(x) is totally positive of order two. This lets us give rates of convergence for the examples
of Section 4 when moments do not exist (negative binomial, gamma, hyperbolic). In addition,
location problems fall into the setting of iterated random functions so that backward iteration
and coupling are available. See [16, 19] for extensive references.
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