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SUMMARY

In this paper many convergence issues concerning the implementation of the Gibbs sampler
are investigated. Exact computable rates of convergence for Gaussian target distributions
are obtained. Different random and non-random updating strategies and blocking
combinations are compared using the rates. The effect of dimensionality and correlation
structure on the convergence rates are studied. Some examples are considered to
demonstrate the results. For a Gaussian image analysis problem several updating strategies
are described and compared. For problems in Bayesian linear models several possible
parameterizations are analysed in terms of their convergence rates characterizing the
optimal choice.
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1. INTRODUCTION

The Gibbs sampler has enjoyed wide popularity, in particular for the implementation
of the Bayesian paradigm. Although rival techniques based on the Hastings—
Metropolis algorithm often have at least as good theoretical properties, the Gibbs
sampler is often preferred because of its easy programmability and tremendous
simplicity in implementation. Thus, the Gibbs sampler is considered as a default
option in a wide range of problems.

The Gibbs sampler iterates by sampling from the conditional distributions of some
set of co-ordinates given the values on the complement. In implementing the Gibbs
sampler, there are many practical issues which need to be considered. They range
from choosing a good starting point to finding an iteration number to stop sampling.

In this paper we address some of the most pertinent practical issues relating to
convergence of the Gibbs sampler. Broadly we investigate the following issues:

(a) the rate of convergence of the induced Markov chain;

(b) the choice of sampling (updating, scanning) strategy and the use of random
strategies;

(c) the use of blocking of some components to hasten convergence;

(d) the extent of influence of correlation structure and dimensionality of the target
distribution on the rates;
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(¢) applications of the above, e.g. to Bayesian inference in image analysis and
parameterization issues for a class of generalized linear modelling problems.

We cannot hope to answer all these in total generality; instead our aims are more
modest. We attempt to provide guidelines regarding these issues for a broad range
of problems in Bayesian statistics. First, we review and characterize the exact
computable rates of convergence of various Gibbs samplers for any multivariate
Gaussian target distribution. The convergence rates turn out to be dominant
eigenvalues of certain associated matrices. Using these rates we compare various
updating strategies and blocking combinations for fairly general structured
problems. We also obtain results on the effect of correlation on convergence, and
in examples we study the effect of dimensionality and parameterization on the speed
of convergence.

We consider two major examples (and many more minor ones) to illustrate our
results. Our first example comes from the Bayesian analysis of a corrupted Gaussian
image, where we can directly apply our results on updating schemes and blocking.
Also we analyse the hierarchically recentred parameterizations (see Gelfand et al.
(1995, 1996)) and rival parameterization schemes for the investigation of Bayesian
linear models.

1.1. Rates of Convergence of Markov Chains

The emergence and success of Markov chain Monte Carlo (MCMC) techniques
have inspired a renewed interest in Markov chains. Attention has largely focused on
obtaining theoretical bounds on rates of convergence for the appropriate Markov
chain. See Amit and Grenander (1991), Mengersen and Tweedie (1996), Polson
(1996), Roberts and Tweedie (1996), Tierney (1994) and the references therein for a
broad overview of the subject. Here we give a brief description of some of the
concepts that we require.

Suppose that {8, 1 =0, 1, . . .} is a Markov chain with stationary density function
h(0). The rate of convergence of the Markov chain can be characterized by studying
how quickly the expectations of arbitrary square h-integrable functions approach
their stationary values. Let f be a square h-integrable function of 8 and h(f) denote
the expectation of f under the target density 4.

We shall consider the rate at which P f(6®) = E,[f(6)|6] approaches A(f) in
L?. Specifically, define p to be the minimum number such that for all square A-
integrable functions f; and for all r > p,

lim (B{Pf(6) — h(AF1r™) = 0. M

For one of the Gibbs sampler variants that we consider (the random permutation
Gibbs sampler), the computation of p is not possible. However, a related linear
convergence rate, measuring the convergence rate of only linear functions, is readily
available in this case. We write p. to be the largest value such that for all linear
functions f, and for all > p, equation (1) holds. p is also a natural quantity to
consider when interest is restricted to linear functions only. Clearly, it is always true
that pp < p. However, in practice the two rates are usually equal, particularly for the
Gaussian problems that we consider.
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1.2. Designing a Gibbs Sampler: Practical Convergence Issues

Although Markov chains are well understood theoretically, bounds on conver-
gence rates are often too conservative to be of any practical value. As a result, an
assortment of convergence diagnostics based on the output of single or multiple
chains are used in practice to detect convergence. For example, see Brooks and
Roberts (1995) and Cowles and Carlin (1996) and the references therein. Though the
diagnostics convey important information about the behaviour of the Markov chain,
their interpretation must be treated with extreme care, and they cannot be used
emphatically to prove convergence.

The choice of updating strategy for the sampler can often dramatically affect its
speed of convergence. Recently, Fishman (1996) has studied a collection of random
and non-random updating strategies for finite state space Markov random field
target distributions. All the strategies considered there induce reversible Markov
chains. Consequently a complete analysis of the various strategies was performed
using eigenvalues of appropriate transition matrices.

Comparing upper bounds on rates of convergence of the Gibbs samplers on
Gaussian target distributions, Amit and Grenander (1991) recommended the use of
random updating strategies for arbitrary correlation structure. Barone and Frigessi
(1990) also considered this problem and showed examples where random schemes are
faster. In this paper we show that deterministic schemes are better in two classes of
problem: for a class of hierarchically structured problem and for the class of densities
with non-negative partial correlations. However, we also demonstrate that deter-
ministic updating strategies can be considerably slower to converge outside both of
our classes. We give guidelines on which updating strategy should be adopted in
practical problems and illustrate these with some practical examples.

Gaussian Markov random field priors with Gaussian data are used routinely in
image analysis. See Winkler (1995) and the references therein. For such problems we
show that deterministic updating strategies are faster to converge than random
strategies. We also consider a checker-board type of updating scheme which is more
convenient to use in such situations.

It is generally believed that blocking of the components leads to faster convergence
rates, e.g. ‘the larger the blocks that are updated simultaneously —the faster the
convergence’ (Amit and Grenander, 1991). Updating in a block or group is often
more computationally demanding than the corresponding componentwise updating
scheme. However, blocking is still worth consideration, because it ‘moves any high
correlation . . . from the Gibbs sampler over to the random vector generator’
(Seewald, 1992). Liu et al. (1994) compared blocking and collapsing for the three-
component Gibbs samplers and the related data augmentation schemes by using
norms of the forward and backward operators of the induced Markov chains.
However, as they mentioned, comparisons using spectral radii (which describe the
true rate of convergence) are less clear from their analysis. Besag et al. (1995) noted
that blocking or grouping some components of a multivariate normal target
distribution which has all partial correlations non-negative reduces the variance of
ergodic averages.

Here we obtain a result that is similar in spirit to that cited by Besag et al. (1995),
giving sufficient conditions (but certainly not necessary) for blocking to improve the
convergence of a sampler. However, it is important to emphasize that blocking can
also make an algorithm converge more slowly. We give two examples to illustrate this
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in Section 2.4. Furthermore, any gain in reducing the rate of convergence may be
offset by other computational concerns, since block updating requires more
computational effort. However, in this paper we do not consider such issues and
restrict ourselves to examining cases where blocking reduces the rate of convergence.

It is well known that high correlations between the co-ordinates diminish the speed
of convergence of the Gibbs sampler; see, for example, Hills and Smith (1992). The
correlations among the co-ordinates are determined by the particular parameteriza-
tion of the problem. Gelfand et al. (1995, 1996) argue that a hierarchically centred
parameterization leads to faster convergence and mixing because it generally leads to
smaller intercomponent correlations among the co-ordinates in practical problems in
Bayesian linear models. Using the results of this paper, we give a complete analysis of
the hierarchically centred parameterization and some of its rival parameterizations,
demonstrating that hierarchical recentring gives faster mixing Gibbs samplers than
others for such problems.

1.3.  Plan of the Paper

The remainder of the paper is organized as follows. Section 2 analyses the Gibbs
sampler for a Gaussian target distribution. In Section 2.1 we introduce all the
updating strategies. We develop general methodology for calculating the exact rate of
convergence of the Gibbs sampler in Section 2.2. Using these exact rates we compare
different updating strategies in Section 2.3. Theoretical results on blocking are
discussed in Section 2.4. In Section 3 we calculate rates for two practical examples.
The analysis of Gaussian Markov random field target distributions is given in
Section 3.1. Section 3.2 considers a Gaussian target distribution with exchangeable
correlation structure, and in this simple class of examples the effect of correlation
structure on the Gibbs sampler updating scheme is investigated in detail. We also
study the effect of dimensionality on the Gibbs sampler for this problem. Section 4
analyses the hierarchically centred parameterization, and other schemes for Gaussian
linear models, and a summary is given in Section 5. To enhance clarity and con-
tinuity, we have placed many of the proofs of our results in Appendix A.

2. RATES OF CONVERGENCE

2.1. Gibbs Sampler and Updating Strategies
Suppose that our m-dimensional target vector 6 has a density 4(8). To sample from
the distribution 4(6), the Gibbs sampler creates a transition from 8° to 6“*" as
follows. We partition @ into s blocks, i.e. 8 = (64, 6, ., 8;), where the ith block
contains r; components with X r; = m. We obtain 6 as a draw from the con-

ditional density,

(1)
1

16,16, 69, . . ., 69).
We then obtain 8" as a draw from
n(6,16¢", 69, . . ., 6

and so on, until finally ‘Y is drawn from
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1 1 1
ho,161", 6510, ., 6",

whence 6 has been fully updated. This is the most widely used version of the Gibbs
sampler. Also this is the deterministic sweep strategy considered by Amit and
Grenander (1991); henceforth we call it DUGS. Note that this sampler updates the
components in the natural ordering. In what follows, we shall also consider and
compare updating orders other than the natural order.

We also consider a reversible version of DUGS. For this version we perform one
forward update, i.e. update in the order 1, 2, . . ., s immediately followed by one
backward update, i.e. update in the order s, s — 1, . . ., 1. We label this strategy as
REGS. In practice the behaviour of REGS will be very similar to that of DUGS.
However, the reason that it has been considered in the literature is that, unlike
DUGS, it induces a reversible Markov chain and in general such Markov chains are
easier to analyse.

Next we describe the random sweep strategy Gibbs sampler. At any update, we
generate a uniformly distributed random variable i over {1, 2, . . ., s} and decide to
update the block 6;. We repeat this s times and treat the entire exercise as one
iteration for meaningful comparison with other strategies. We name this strategy
RSGS for future reference. Amit and Grenander (1991) and also Fishman (1996)
considered a variant of this strategy in which successive updated components are
required to be distinct. But we do not consider that here.

For the final updating strategy, suppose that at the rth iteration we generate a
random permutation Z = (z1, z, . . ., z5) of {1, 2, . . ., s} and decide to update the
components in that order. The resulting Gibbs sampler, denoted by RPGS, is called a
random permutation Gibbs sampler.

To examine blocking issues we investigate how to group univariate components of
6. We compare strategies which update each blocked component of 8 simultaneously
against the strategy which updates each univariate component of at least one block,
say 0; with r; > 1, sequentially. Without loss of generality, we only consider strategies
which group only the adjacent components of 8. If we wish to consider the effect
of blocking non-adjacent components, we can permute the individual (univariate)
components of @ so that they become adjacent and proceed from there.

2.2. Exact Rate of Convergence of Gibbs Sampler for Gaussian Target Distributions

We assume that A(6) is the density of an m-dimensional Gaussian target vector 8
with mean p and dispersion X. Let u;, r; x 1, denote the mean for the ith component
block of . We partition ¥ and Q = £ according to the Gibbs sampler blocking
scheme being considered, i.e.

211 212 o .. Els Qll Ql2 e le
21 Xn ... Ezs Q21 Q22 [ st

Y = . . . and Q = . . . . s (2)
Esl Z:s2 oo 2:ss Qsl Qs2 LR st

where ¥; and Qj are matrices of order 7; x r;. Let
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A =T1—diag(Q1}, . . ., 05)0 3)

where 7 is the identity matrix of order m. We partition A also in this manner and let
Ay of order r; x r; denote the (i, j)th block of 4. Observe that all the diagonal blocks
of A are null matrices. In what follows, the matrix A4 is the starting point in many
computations. Henceforth we shall refer to this as the 4-matrix. Straightforward
calculation yields

E©6,j#) =) 4;6;+a;,
j=1

J=
disp(6:16), j # i) = Q'

where
s
a;= Qi Z Qi
Jj=1

The first of the above identities simply expresses the means of the complete con-
ditionals as linear combinations of the other components. Let L be the block lower
triangular matrix with blocks in the lower triangle being identical with those of 4 and
U = A — L. Immediately, we can calculate the transition kernel for the Markov chain
induced by DUGS. Define

B=(I-L)'U, )

and b = (I — B)u. Note that if ¥ is positive definite it is guaranteed that the inverse
of I — L exists.

Lemma 1. The Markov chain induced by DUGS has a normal transition density
with mean

E@“169) = BO® +b (5)

and dispersion £ — BEB. Thus {8} induced by DUGS is a multivariate AR(1)
process.

The matrix B, given in equation (4), describes the rotational component of the
affine map studied in Amit and Grenander (1991). Since the Gibbs sampler is positive
recurrent the roots of B should lie inside the unit disc but might not be all real. It
turns out that the maximum modulus eigenvalue of B, i.e. the spectral radius of B,
denoted by p(B), is the exact rate of convergence of DUGS.

Theorem 1. Suppose that the Markov chain 6 follows the transition law
N(BO“V +b, © — BEB). The rate of convergence of the Markov chain to its
stationary distribution N(u, X) is given by p = p(B).

We label this convergence rate ppugs for future reference. Very similar results have
also been obtained by other researchers. Goodman and Sokal (1989) showed that
autocorrelation functions of @ decay by this rate. Barone and Frigessi (1990)
obtained this to be the rate for variational norm convergence.

Observe that B defined in equation (4) corresponds to the update ordering (1,
2, ..., s). However, if we use a different updating order, say Z = (zy, z,, . . ., z5), We
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shall end up with a different coefficient matrix, say Bz, satisfying equation (5) and

there is no guarantee that the maximum modulus eigenvalues of B and Bz are equal.

For each different Z, we need to evaluate the matrix Bz and the rate thereof.
Henceforth, we use the following notation:

(a) Bz to denote the matrix B in equation (5) for any general updating order Z;
(b) B, to denote the matrix B in equation (4) to emphasize the forward updating

order;
(c) B_ to denote the matrix B in equation (5) for the backward updating order (s,
s—1,...,2,1);

(d) we drop the subscript when the order is irrelevant or is understood from the
context without confusion.

We can obtain Bz in three steps. First, we obtain a block matrix 4* with A,, =
A In the second step, we split 4* into two matrices L* and U* as above, i.e. L* is
strictly block lower triangular and U* is strictly block upper triangular. Then we set
B* = (I— L*)"'U*. B* is the coefficient matrix in equation (5) when 6 is ordered
according to Z. At the final step, we rearrange the blocks of the B*-matrix to obtain
Bz. More precisely, we set the (z;z;)th block of Bz to be B}. We remark that in
general the first two steps do not commute, i.e. B} is not the same as B,

The optimal DUGS updating order is a permutation Z such that Bz has the least
spectral radius. Consider the indices {z1, z,, . . ., z;} placed on the circumference of a
circle. DUGS corresponding to the updating order 2 can be thought of as visiting
each index in the clockwise direction. It is clear by simple argument that DUGS for
two updating orders have equal convergence rates if the orders give rise to the same
circular permutation of the indices {1, 2, . . ., s}. Note that there are (s — 1)! distinct
circular permutations. Though we cannot provide a general method of choosing the
best order we can halve the number of permutations to be searched for because of the
result given below.

Lemma 2. The matrices By and B_ have the same eigenvalues.

Therefore the forward updating strategy has the same convergence rate as the
backward updating strategy, i.e. the rate of convergence of the Gibbs sampler is not
affected by the direction (clockwise or anticlockwise) in which it updates. Hence, we
can restrict attention to (s — 1)!/2 of the possible s! DUGS.

Recall that REGS updates one in the order 1, 2, . . ., s immediately followed by
one in the order s, s— 1, . . ., 1, i.e. REGS operates on @ twice, once with B, and
then with B_. Hence, we take the positive square root of the maximum eigenvalue of
the product B, B_ as the convergence rate to provide a meaningful comparison with
other strategies. We call this convergence rate pregs.

The RSGS convergence rate can be found by using an expansion of functions by
the Hermite polynomials considered by Amit (1995). Let A(4) denote the maximum
eigenvalue of the matrix A defined in equation (3). We point out that in general
A(A4) # p(A), the spectral radius of 4.

Theorem 2. The RSGS convergence rate for target distribution N(u, X) is

prsas = [ {s — 1 + MA))T'. (6)
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In the absence of any blocking, i.e. s =m, this rate is exactly equal to the con-
vergence rate given by Amit. For RPGS we can find py. analytically.

Theorem 3. Consider the following random scan sampler. Let Ci, 1 <i < n, be
m x m matrices and W;, 1 < i < n, be m x m non-negative definite matrices. Given
6Y, 8V is chosen from N(C:8“ + ¢;, W;), with probability wi, 0 < w; < 1 for each i
and ¥ w; = 1. Thus at each transition the chain chooses from a mixture of auto-
regressive alternatives. For this chain, pr is the maximum modulus eigenvalue of the
matrix C = T, w;C;.

Following theorem 3, for RPGS we average over all possible Bz-matrices
corresponding to all possible permutations Z. The pr, for RPGS is the spectral radius
of the matrix (1/s!) £z Bz. We call the convergence rate (pr) for this strategy precs.
Since pregs is the convergence rate corresponding to the linear functions only, it is
not directly comparable with ppugs. However, pregs provides a lower bound to the
true rate of convergence of RPGS and we use this lower bound to compare its
performance with the other updating strategies considered here.

We summarize the above presentation in the following theorem.

Theorem 4.

(@) poucs = p(B). 3

(b) prEGs = p(B+B-) .

(©) prses =[s"'{s — 1+ MA)}T.

(d) pr for RPGS is p{(1/s!) £z Bz} where the summation is over all possible
permutations Z of (1, 2, . . ., s).

Using theorem 4, we can calculate the exact convergence rate for any updating
strategy and any blocking structure when the target dispersion matrix ¥ is given. If
any other form of random updating strategy is considered then we can use theorem 3
to find the convergence rate for the linear functionals. For example, consider the
following random updating strategy. At each iteration we make a forward or a
backward update with equal probability. Following theorem 3 we find the exact
convergence rate for the linear functionals to be the maximum modulus eigenvalue of
;(B++ B-).

2.3. Comparing Deterministic Updating with Random Sweep Gibbs Sampling

Insight into the behaviour of the samplers for the Gaussian case comes from the
study of the iterative solution of linear equations Qx = ¢, where ¢ is a vector of
constants. It is well known that DUGS and RSGS have non-stochastic counterparts
in the numerical analysis literature; see, for example Barone and Frigessi (1990),
Goodman and Sokal (1989) and Neal (1995). Non-stochastic versions of DUGS and
RSGS are known as the Gauss—Siedel and Jacobi relaxation techniques respectively.
Varga (1962) and Young (1971) are among the key references on these topics.
However, care must be taken in the possible reformulation and applicability of the
numerical analysis results in our stochastic cases. Sometimes the non-stochastic
versions may not converge at all, whereas their random counterparts will; for
example, consider a Q-matrix for which p(4) > 1, where 4 is given in equation (3). In
such a situation the Jacobi method will fail to converge but RSGS will converge
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without any difficulty. However, we can still reformulate some of the matrix theory
results to study the stochastic versions. In the remainder of this subsection we
examine DUGS and RSGS from the theoretical perspective. Applications to par-
ticular cases are considered in Sections 3 and 4.

Stochastic overrelaxation and underrelaxation techniques are suggested to speed
up convergence and/or to improve efficiency in estimation; see, for example, Barone
and Frigessi (1990), Green and Han (1992) and Neal (1995). In this paper we do not
consider these since they have limited applicability in the non-Gaussian case. How-
ever, see, for example, Neal (1995), who reviews generalizations of these methods and
gives many references including Green and Han (1992), who showed how these
methods can be used for non-Gaussian image analysis problems by incorporating the
relaxation parameter in a Metropolis proposal distribution.

We first consider a structured situation that is often encountered in practice.
Suppose that after suitable permutation of the rows and the corresponding columns,
if necessary, the inverse dispersion matrix Q has the block tridiagonal form, i.e. Q; is
a null matrix for |i — j| > 1. Therefore Q can be written in the form (7). We consider
the Gibbs samplers which use this blocking scheme. Note, however, that this
blocking strategy includes sequential updating of all the components of any block,
say the ith, for which Q; is diagonal:

On Qn 0 ... 0 0
Q21 sz Q23 . 0 0
0 QOn 0On ... 0 0
o0=1 . : Do : : (7)
0 0 0 e Qs—l,s—l Qs—l,s
0 0 0 ce Qs,s—] st

Theorem 5. If a Gaussian target density has the inverse dispersion matrix Q of the
form (7), then the rate of convergence of DUGS (with the above blocking scheme)
can be found as follows.

poucs = A(4)”. ®)

Theorem 5 has many important implications. We do not need to compute the matrix
B to find the rate of convergence. It turns out that many practical examples can be
analysed using the above theorem; for example see the image model (11) and the
hierarchical version of the model (14). Also in many general hierarchical models we
deal with such covariance structure; see, for example, Smith and Roberts (1993),
section 5.2.

Corollary 1. For Gaussian target distributions having inverse dispersion matrix Q
in the block tridiagonal form (7), prsgs = ppuas.

Corollary 2. For Gaussian target distributions having inverse dispersion matrix Q
in the block tridiagonal form (7),

lim (l_ﬁ@) -2
ppugs—1\ 1 — PRSGS

Therefore, RSGS will take approximately twice as many iterations as DUGS will
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take to achieve the same level of accuracy (at least for fairly slowly converging
problems). This is parallel to the result from the numerical analysis literature that the
Gauss—Siedel method is twice as fast as the Jacobi method in this type of situation;
see Goodman and Sokal (1989) for more in this regard.

Sometimes a checker-board type of updating order is suggested for the correlation
structure Q in equation (7). In this scheme an update of all the odd-numbered
blocked components is followed by an update of all the even-numbered components.
Hence the basic Gibbs sampler here is a two-component sampler and parallel
updating can be performed within each block. See the image analysis example in
Section 3.1 for a practical application of this. However, the rates of convergence for
the two Gibbs samplers are the same as the following corollary demonstrates.

Corollary 3. The rate of convergence of the blocked deterministic checker-board
updating order and the rate for the blocked lexicographic updating order are the
same for the Gaussian target distribution with inverse dispersion matrix Q of the
form (7).

Though theorem 5 gives many nice results, it should be used with caution on two
counts. We emphasize that the rate relationship (8) is only true for the updating
orders which put Q in the form (7). It may not be true for DUGS corresponding to
other updating orders for which Q is not of the form (7). Also the role of blocking is
important. When components of one block, say 6;, are updated by using a sequential
updating scheme, but r; > 1 and Q; is not diagonal, the above result, i.e. equation
(8), may not hold. However, it is valid if we update each component of 8; sequentially
with r; > 1 but the corresponding Q; is diagonal, i.e. components of 6; are con-
ditionally independent.

The results that we describe below are for the case when all the off-diagonal
elements of Q are non-positive, i.e. all partial correlations are non-negative. This type
of correlation structure for the Gibbs sampler has been studied previously. The
physical field for the Gaussian density is ‘attractive’ (see, for example, Barone and
Frigessi (1990)) and overrelaxation leads to faster convergence. (Recall that partial
correlation between the components i and j is —g; /\{(q,,ql,), see, for example,
Whittaker (1990), p. 143.) For such a Q-matrix £ (= Q') = 0, elementwise, i.e. all
ordinary correlations are non-negative. For a proof of this fact, see Young (1971),
pages 43-44. But note that in general ¥ > 0 elementwise does not imply that Q has
all non-positive off-diagonal elements.

Theorem 6. If all partial correlations of a Gaussian target density are non-negative,
i.e. all off-diagonal elements of Q (= X™') are non-positive, then prsgs > ppuas.

Theorem 6 and corollary 1 of theorem 5 demonstrate that the random strategies
can be slower than the deterministic strategies. However, the conclusions of theorem
6 are often false when the above assumptions are relaxed. In Section 3.2 we consider
cases where the random strategies converge substantially faster. Many practical
examples can be studied by using theorem 6, e.g. the imaging model (11) in Section
3.1 and the hierarchical version of the Bayesian linear model (14) in Section 4.2.

We conclude this discussion by considering one more structured situation.
Sometimes it is necessary to compare the strategies for two different target inverse
dispersion matrices. We obtain the following result which has important practical
applications, e.g. the imaging model (11) in Section 3.1.
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Theorem 7. Suppose that we have two target inverse dispersion matrices Q and V.
Also suppose that s = m (i.e. no blocking) and

Gii < Vi for each i and g; = vy < 0 for i #j. )

Then we have ppucs(V) < ppucs(Q) and also prsas(¥) < prscs(Q), where ppucs(H)
and prsgs(H) denote respectively DUGS and RSGS rates of convergence for the

Gaussian target distribution with inverse dispersion matrix H.

2.4. Blocking Strategies

In the description of the Gibbs sampler in Section 2.1, there is scope for updating
one or all of the complete conditionals in blocks as each r; can be bigger than 1. We
aim to compare the blocked scheme with a scheme which updates all the components
of at least one blocked component sequentially.

First, suppose that all the components of 6; with r; > 1 are conditionally
independent. Such a block is termed a ‘coding set’ by Besag et al. (1995), section
2.4.4. Then, it is clear that the blocked strategy (blocking all components in the
coding set) and the unblocked strategy which updates the components in the ith
block using the sequential univariate updating procedure lead to the same 4- and B-
matrices as given in equations (3) and (4). Hence this blocking does not reduce ppucs
and A\(A4) remains unaltered for the two schemes.

However, note that prsgs as given in equation (6) is an increasing function of s, the
number of blocks, when A(4) is held fixed. Therefore, this convergence rate improves
when we block the conditionally independent components in a single group (because
this reduces s without altering the matrix A). Section 3.1 gives an example of this
blocking structure. In the remainder of this section we only compare DUGS for
various blocking strategies.

We next consider the case when all partial correlations of a Gaussian target density
are non-negative, i.e. g; < 0 for all i # j. Suppose that, written as a block matrix, the
inverse dispersion matrix Q is as in equation (2). We want to compare the corres-
ponding blocked DUGS with the scheme which updates at least one block which has
more than one component, say the ith such that r;, > 1, componentwise and also at
least one of the off-diagonal elements in the matrix Q; is non-zero, i.e. Q; is not
diagonal.

Theorem 8. If all partial correlations of a Gauss1an target density are non-negative,
i.e. all the off-diagonal elements of Q (= £™') are non-positive, then the blocked
DUGS has a faster rate of convergence than the DUGS which updates at least one
block, say the ith, componentwise for which r; > 1 and Qj is not a diagonal matrix.

What happens if the non-negativity assumptions of all partial correlations do not
hold? For general correlation structure, it is difficult to formulate a blocking strategy
which will guarantee a decrease in the DUGS rate of convergence. We investigate a
three-dimensional Gaussian target distribution with the following inverse dispersion
matrix:

. 1 g2 qi3
T =0=|q2 1 g (10)
qi3 g3 1
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(Without loss of generah we have assumed that all diagonal elements of Q are 1.)
Let A = 0| =1 — qi2 — qi3 — ¢33 + 2412913923

Consider the DUGS wh1ch blocks the first two components together. By direct
calculations, it is easy to see that the rate of convergence of this DUGS is
1-A/1- q22) Observe that this is a non-increasing function of |g;2|. Hence, we
have the following theorem.

Theorem 9. For a three-dimensional Gaussian target distribution, the DUGS
which blocks the two components having the maximum absolute partial correlation
is faster than any other two-component DUGS for the same target distribution.

The more important question regarding the comparison of the best two-
component DUGS with the usual three-component scheme is more involved. The
convergence rate for the three- component DUGS is the maximal root of the
quadratic A — b\ + ¢ =0, where b = g+ g+ q23 — qu2q13923 and ¢ = q12q13923.
Several cases depending on the roots being real or imaginary arise.

Theorem 10. For a three-dimensional Gaussian target distribution, with inverse
covariance matrix Q given in equation (10), the DUGS which blocks components 1
and 2 is faster than the three-component DUGS if any one of the following con-
ditions holds:

(@) b2—4c and b/2>1—A/(1—q22),

(b)b > 4c and g, — gab+ ¢ < 0;

(©) b >dcand gh — gib+c¢>0and /2> 1 —A/(1 — gh);
(d) b* <4cand \J/c>1—A/(1 - gh).

Otherwise the univariate componentwise DUGS is faster than the blocked DUGS.

We illustrate these results by considering two examples. Both the examples reveal
that blocking may worsen the rate of convergence.
Example 1 is taken from Liu et al. (1994). Suppose that we have the following

target dispersion matrix:
1
YX=1| a 1 .
0.5 05 1

For a > 1, the dispersion matrix satisfies the conditions of theorem 8; therefore
blocking any two components will lead to a faster rate of convergence. When a <
the DUGS which blocks components 1 and 2 will be slower than the full three-
component scheme by theorem 10.

Example 2, taken from Whittaker (1990), p. 319, demonstrates a real situation
where blocking worsens the rate of convergence. Here the inverse dispersion matrix is

1
( 0.611 1 \
—0.108  —0.152 1
o=| 025 0277 —0.1 1

0248 0294 —0.105 0572 1
0410  0.446 —0.213 0489 0597 1
\ 0331 0303 —0.153 0.335 0478 0.651 I }
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The unblocked DUGS rate is 0.4843, whereas if components 1 and 2 are blocked the
rate is 0.4928.

3. EXAMPLES

3.1. Exact Rates of Convergence for Bayesian Image Analysis
In image analysis problems (see, for example, Winkler (1995)), often the true image
0 and the observed corrupted image y are modelled as follows. First, an Ising model
type of prior distribution on the p x p lattice with the inverse temperature 8 > 0 is
assumed, e.g.

7(6) o exp { B - ej)z}

[is]

where the sum is over all neighbours. In the second step, y; for each pixel i is assumed
to follow an independent Gaussian distribution with mean 6; and variance . Hence
the posterior distribution is of the form

m(0ly) o () exp { - 2—(173 Z Ooi— 9:')2} (1)

where the sum is over all pixels i. We assume orthogonal neighbourhood structure.
Each pixel has four neighbours except for those in the boundary of the lattice which
have three or two. Four corner pixels have two neighbours each and all other
boundary pixels have three neighbours.

There are many possible updating orders and blocking schemes for this problem.
First, the most popular lexicographic updating order can be used. Also we can
consider a checker-board type of updating order as below. Suppose that we partition
the pixels as in Fig. 1 (for p = 5) into two types: black and white. The checker-board
type of DUGS updates each pixel of one colour and then updates each pixel of the
other colour. This scheme may be preferred because a suitable parallel updating
schedule may be implemented here. It is guaranteed by lemma 2 that the rate of
convergence is unaffected by the order in which the colours are updated. The inverse
dispersion matrix for the checker-board type of updating scheme is in the form (7)

L O NON |
Ol NON NGO
L JON NON
Ol BON N0
| O NOMN

Fig. 1. Checker-board type of updating in a Markov random field
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with s = 2. Here Q1 and Q5 are diagonal matrices. Hence we can use theorem 5 to
find its rate of convergence. However, we cannot use corollary 3 to compare the
above two deterministic schemes because we update the pixels sequentially in the
lexicographic case. However, see the numerical illustration below. There we see
numerically that both of the schemes have an identical rate of convergence.

We also consider a blocked lexicographic updating order where pixels in each
row are put into separate blocks. Here block updating can be done easily by using
Cholesky decomposition for moderate dimensional problems. However, this will be
impractical for high dimensional problems, e.g. p = 64. The inverse dispersion matrix
for this scheme is of the form (7). Also consider the following blocked checker-board
type of updating scheme. Here we update all the odd-numbered blocks first and then
we update all the even-numbered blocks. By corollary 3, the two updating orders will
converge at the same rate. Again, parallel updating can be implemented for the later
scheme.

DUGS for any updating order is faster than RSGS for this example. However, it is
easy to observe that the two types of pixel are conditionally independent given the
other type. Hence, recalling the discussion in Section 2.4, we shall succeed in reducing
the RSGS rate of convergence by blocking the pixels of each colour together. This
grouping structure is also advocated by Besag e? al. (1995) and Fishman (1996) for
the discrete case. This is also known in the numerical analysis literature as the red—
black ordering; see, for example, Goodman and Sokal (1989). Observe that the
deterministic updating scheme corresponding to this random scheme is the checker-
board type of updating protocol described above.

The role of ¢%, the inverse precision, can be studied by using theorem 7. The
posterior inverse covariance matrix differs from the prior inverse covariance matrix
only in the diagonal elements. The data only increase the diagonal elements of
the inverse covariance matrix by o2, leaving all off-diagonal elements unaltered.
Theorem 7 applies directly to this case. (Observe that all the off-diagonal elements of
the prior inverse covariance matrix are non-positive.) Hence, the precision of the
data directly improves the rate of convergence of the Gibbs sampler.

We give a few illustrative examples of rates of convergence for both the unblocked
and the blocked schemes. We take o to be 5 as in Green and Han (1992). In each case
we have considered both DUGS and RSGS. The exact rates for three different
inverse temperatures, 8 = 0.001, 0.01, 0.1, and for two different lattice sizes p = 16
and p =25 are given in Table 1. The rates of convergence for the pixelwise
lexicographic and checker-board type of updating schemes were found to be the same
in each case. It may be observed from Table 1 that DUGS in each case has a faster
convergence rate than RSGS agreeing with corollary 2. The parameter 3 has a large
influence on the convergence of the algorithm; however, we do not investigate it in
detail here.

3.2. Exchangeable Correlation Structure
Here we assume that the target dispersion matrix is of the form

Yoxm = al + bJ, a>0, a+mb>0, (12)

where J is an m x m matrix of all 1s.
Correlation between any two components is b/(a + b) whereas partial correlation
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TABLE 1
Convergence rates for the imaging model (11)%

B Convergence rates for the following values of p:
p=16 p=25
Pixelwise updating Blocked Pixelwise updating Blocked
DUGS RSGS bUGS RSGS DUGS RSGS DUGS RSGS
0.001 0.02688  0.33870 0.00799  0.29670 0.02739 0.33959 0.00815  0.29716
0.010 0.43425  0.68805 0.24315 0.55734 0.43953 0.69137 0.24685  0.56014
0.100 0.90191 0.95032 0.81839  0.90692 0.90403 0.95141 0.82194  0.90879

tDUGS rates correspond to both the checker-board and the lexicographic updating orders. RSGS rates for the
pixelwise updating case were computed by blocking the pixels of each colour together. The blocked scheme refers to
blocking of the pixels row-wise.

is ¢ = b/{a+ (m — 1)b}. Therefore, the matrix 4 in equation (3) has all elements ¢
except the diagonals, which are 0, i.e. 4 = g(J — I). It is easy to see that by symmetry
ppbucs 1s not dependent on the updating order. We can compute the B-matrix as
defined in equation (4) exactly as follows.

Lemma 3. The B-matrix for a normal target distribution with dispersion matrix
(12) has elements b; given by

gi(g+ 1) = (g+ D7}, i<i
by=1 ql(g+ 1)~ -1}, ji=i
g{(g + 1Y}, j>i

Consider first the trivial case b = 0, in which case b; = 0 for all i and j. All the
variants of the Gibbs sampler, except RSGS, have rate exactly 0, i.e. they will
converge immediately. The exact RSGS rate is (1 — 1/m)™ which approaches exp(—1)
as m — 0o. RSGS is less effective because it does not guarantee to update all the
components in any fixed number of iterations.

The target dispersion matrix of the form (12) has been used extensively in the
literature as a test case for proving effectiveness of convergence diagnostics (see, for
example, Raftery and Lewis (1992)) and new MCMC algorithms (see, for example,
Polson (1996)). The tractability of its convergence rate makes it appealing in this
respect. To illustrate this, we take a = 0.1 and b =0.9. For m = 10, Raftery and
Lewis (1992) recommended a DUGS burn-in period of 36 iterations, but for accurate
estimation their method diagnoses over 20000 iterations, i.e. they need more than
20000 samples from the chain to estimate any feature of the distribution accurately.
Theoretical bounds due to Amit (1991) suggest that a running time of 180 million
iterations suffices for adequate convergence. Polson (1996) stipulates a running time
of 13.8 million iterations to achieve an accuracy of 0.001 for a local jump Metropolis
algorithm named the ‘FKP Metropolis algorithm’. We find that the exact con-
vergence rate of DUGS for this target distribution is 0.9758. Consequently, to
achieve an accuracy of 0.001 we need to run DUGS for a burn-in period of 282
(= log 0.001/log 0.9758) iterations only!
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The rates of convergence for the remaining schemes (described in Section 2.1) can
be found easily by using theorem 4. The REGS convergence rate is

preGs = «/p(BP BP),

with P having 1 in the reverse diagonal, i.e. pim—iv1 =1, i=1, ..., m, and the
remaining elements all 0. Again, by theorem 4, p for RPGS is the maximum
eigenvalue of the matrix with all diagonals being tr(B)/m and the off-diagonals being
1'B1 — tr(B)/m(m — 1).

Theorem 11. Suppose that we have the normal target distribution with dispersion
matrix (12). The exact RSGS convergence rate is

m-—1\"
pr—1 .
{(q+) - } if g >0,
PRSGS = m—1—g\"
—1— o
<—m ) ifg<O,
whereas pp for RPGS is
l{( +1)’"<m—1—1)+1+1} ifg>0
m q 7 7 5
PRPGS = 1 1 1
— -+ )" - mz—m—l——} if g < 0.
m(m_l){q(q )y —q p q

We can compare RSGS and RPGS exactly by using theorem 11. RSGS rates
are higher than RPGS rates if ¢ > 0. If ¢ < 0 is independent of m, RSGS has an
asymptotic rate of exp(—1 — q). However, we cannot compare DUGS with other
schemes exactly analytically. Instead, we consider a few interesting special cases
numerically. The interested reader is referred to Amit and Grenander (1991) and
Barone and Frigessi (1990): both compared the updating schemes asymptotically
(and also numerically) when the inverse dispersion matrix is circulant.

First, we investigate the case when all the components are negatively correlated.
We take a=1 and b= —1/(m+ ) in the region 0 < § < 1. For § =0 the dis-
tribution is singular. RSGS has an asymptotic rate of exp{—6/(1 + 6)} whereas
RPGS has a rate of 1/(1 + 8). To compare these with DUGS and REGS rates we
plot the exact convergence rates for all the four updating strategies in Fig. 2(a) when
dim(m) is 100. DUGS and REGS are almost indistinguishable from one another.
Both of them behave very badly. Surprisingly, the randomized strategies are far
better. We shall consider one common practical example having this type of
correlation structure in Section 4.1.

We consider another class of special cases with a =1 and b = k/(m + 1) where
k > —1. As k increases to 0, correlation between any two components decreases to 0
but remains negative. The rates for m = 100 are plotted in Fig. 2(b) for —1 < k < 0.
It may be a little surprising that RPGS has an asymptotic rate of 0 whereas the
asymptotic RSGS rate is exp(—1).

Continuing with the previous example we examine the situation for £ > 0. As k£
increases, correlation between the components also increases. Using theorem 6 we
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Fig. 2. Convergence rates and running times for various target X-matrices: (a) X =
I—-J/(100+6) (0<6<1); (b) Zio=T+kJ/(100+1) (-1 <k <O0); (c) Zioo =T+ kJ/(100+ 1)
(1/(1 = p) for k > 0); (d) £ = 0.174+0.97 (1/(1 — p) for 10 < m < 200) ( , DUGS; «eeeveeee , RSGS;
- - - -, RPGS; — — —, REGS)

conclude that the deterministic strategies have faster rates of convergence. RPGS has
an asymptotic rate of

kP \Txk

whereas the asymptotic RSGS rate is exp{—1/(1 + k)}. We consider the quantity
T=1/(1—-p) to see how increasing correlation affects the running times of the
algorithms. Fig. 2(c) provides a plot of T for all the strategies when m is 100. It is
clear from Fig. 2(c) that increasing positive correlation only increases the running
time approximately linearly.

We investigate the effect of increasing dimension on the running times of various
Gibbs sampling schemes for the target correlation structure with a = 0.1 and b = 0.9.
We plot T'= 1/(1 — p) in Fig. 2(d) as the dimension increases from 10 to 200. We see
that DUGS is uniformly better than any other strategy. It is equivalent to the
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random permutation strategy asymptotically. Also the running times increase
approximately linearly as the dimension increases.

As in the previous example when a >0 and b >0 are fixed, ¢ (the partial
correlation) goes to 0 as the reciprocal of dimension goes to 0, i.e. ¢ = O(m™"). From
the exact calculation of prsgs in theorem 11, we see that the convergence rate goes to
1 at the same rate as m — oo. Thus in this simple example, if partial correlations
are O(m™"), the RSGS algorithm has polynomial (in fact linear) complexity in
dimension. However, if partial correlations are O(1), then the DUGS algorithm
has exponential complexity, i.e. the algorithm exhibits critical slowing down. Thus
the interplay between correlation and dimension is complicated, even in this simple
example. For highly structured hierarchical models, the inverse covariance matrix
typically contains O(m) non-zero elements. The complexity of such a class of
algorithms is clearly difficult to analyse without imposing further (and possibly
artificial) restrictions. However, it is reasonable to conjecture that a suitably well-
defined class of such algorithms might be polynomial in dimension.

4. OPTIMUM PARAMETERIZATIONS FOR GAUSSIAN LINEAR MODELS

4.1. One-way Analysis of Variance
We consider the customary one-way analysis of variance with random effects. We
assume that the error variance o% is known and after reducing by sufficiency we have
a single observation y; for each population, i.e.

y,~=,u+a,~+e,-, i=1,2,...,n, (13)

where ¢; are independent and identically distributed (IID) N(O, 0?) and o; are IID
N(0, 0%). We assume that u has a flat prior, i.e. m(u) = 1. Let y be (1, - - -, y.) and y
be © Yi / n.

For this model we consider three possible parameterizations. We call the above
p—a representation of the model the standard parameterization. It is immediate that
the exact rate for DUGS is 1 — k by using theorem 1, where £ = 02/(a% + 02), and
for RSGS the asymptotic rate (as n — oo) is exp{+/(1 — k) — 1}. Hence DUGS is
better than RSGS for this parameterization asymptotically for large data sets.

Following Gelfand et al. (1996), model (13) can also be written in a hierarchical
form. Defining y; = u + o, we have yi|y; ~ N(vi, 02), yilw ~ N(0, 03) and a flat prior
for . We call the u—y representation the hierarchically centred parameterization. The
exact rate for DUGS is « and the asymptotic RSGS rate is exp(/x — 1). As claimed
by Gelfand et al. (1996), the hierarchically centred parameterization will be a better
choice when o? < o2 for both DUGS and RSGS.

Next we consider the parameterization by sweeping as analysed by Gilks and
Roberts (1996). They imposed the restriction that a@ = 0. With the above restriction,
p and a will be independent a posteriori and the posterior for a will be n—1
dimensional. With «, deleted, their method tries to sample from the (n— 1)-
dimensional normal distribution with mean 7(y_, — y1,-1) and dispersion 7(I — J/n)
where T = 0%0% /(0% 4 05) and Y =015 - o Vn_1). After scaling etc. the Gibbs
sampler for this parameterization tries to sample from an (n — 1)-dimensional
normal distribution with dispersion matrix I — J/n. This target dispersion matrix has
been studied as the first example in the previous section with § =1 in Fig. 2(a).
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Hence, a random permutation Gibbs sampler is the best choice for this param-
eterization. Also RPGS has an asymptotic rate of 0.5 whereas RSGS converges
at the rate of exp(—0.5). The systematic schemes, e.g. DUGS and REGS, have
asymptotic rates 1.

When the variance components are unknown (as in most practical situations), the
posterior distribution will cease to be Gaussian. The variance components will be
included in the model with their respective prior specifications. The Gibbs sampler
needs to sample from the joint posterior distribution of the us, as and the variance
components. However, the conditional distribution of x and « given the variance
components will still be the above normal distributions. Consequently, the behaviour
of the Gibbs sampler for various parameterizations should still be guided by the
above investigation.

4.2. Multilevel Mixed Linear Models
The findings of Section 4.1 can be generalized for the multilevel or nested mixed
linear models. These models have been considered by Gelfand ez al. (1995) to show
that a hierarchically centred model specification leads to a more efficient Gibbs
sampling scheme. With our exact rate calculation we can reveal more about the
striking features of the posterior distributions arising out of these model specifica-
tions. Let, after reducing by sufficiency,

yij=u+a;+ﬂij-+e;j, j=1,...,n,~, i=1,...,], (14)

where ¢; are IID normal random variables with mean 0 and variance o7. The
standard model spe01ﬁcat10n assumes that the g; are IID N(0, 02) and «; are IID
N, o2). Again all the variance components are assumed known The centring
specification assumes that n; = p+ o + Bij, whence y;i|n; ~ N(n s, 02). Further, we
define ; = 1 + o; so that iglvi ~ N(vi, oﬁ) and Vil ~ N(u, aa) The Bayesian model
spec1ﬁcat10n in each case is completed by assuming a flat prior for pu.

It is straightforward to write the conditional distributions needed for the Gibbs
sampling in both the cases. Let us define n = X;n;, y.. = X yy/n, yi. = X;yy/ni. The
complete conditionals for the uncentred specifications (u—a—@3) are

an; Bii
ulai,ﬂ;j~N( N —e)
n;o-e
Qi P ~ i, — a__— ’
11> By {n, 0e? + 0a° (y we E ) nioz? + oa }

082 1
Bylp, ai ~ N g ) p= Oi—p—o), ———¢»

Oe +0ﬁ

whereas the centred parameterization leads to the conditional distributions
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In the p—a—B-parameterization the o;s are conditionally independent given the
others, i.e. u and ;. It is also true for the §js, ;s and nys. Therefore, blocking them
together does not alter the performance of the Gibbs sampler. Henceforth, we
consider the three-block Gibbs samplers on u, a and 3 in the standard param-
eterization case and u, « and 7 in the hierarchical situation.

In the y—a—@3 parameterization the partial correlation between any component of
one block and any component of any other block is negative whereas for the y—y-—n
case it is non-negative. Moreover, for the u—y-n-case all partial correlations between
w and 7 are exactly 0.

Examples in Section 3.2 demonstrate that DUGS can be slower than RSGS or
RPGS when partial correlations are all negative. Therefore, we can infer that DUGS
for the u—a—@-parameterization is likely to be slower than RSGS or RPGS. Hence,
we recommend random updating schemes for this parameterization.

In contrast, for the u—y—n-parameterization the appropriate inverse dispersion
matrix Q can be written in the form (7). Also it satisfies the conditions of theorem 6,
i.e. all partial correlations are non-negative. Therefore, using theorem 6 we see that
random updating methods will be slower than DUGS. Hence, we shall choose
DUGS in this case.

5. DISCUSSION

In this paper we have dealt only with the Gaussian models for reasons of analytical
tractability. However, we may hope that the results described here can hold in more
realistic non-Gaussian cases, particularly for the models which have a linear mean
part. Also we can use a very crude Gaussian approximation of the target density to
find an approximate rate of convergence of the Gibbs sampler. We can then use the
approximate rates to decide on many practical issues discussed in Section 1. We
investigate these ideas in Roberts and Sahu (1996).
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APPENDIX A
To prove theorem 1 we need the following lemma from Horn and Johnson (1990), p. 299.
Lemma 4. Let P be an m x m given complex matrix, and let ¢ > 0 be given. There is a
constant C = C(P, ¢) such that

I(P);1 < Clp(P) + €}

forallk=1,2, 3,...andalljj=1,2,3,...m, where p(P) is the spectral radius of P.
Proof of theorem 1. The x*-distance between #?(89, .), the density at the zth iteration
started from @, and the target density 4 is defined as

{6, 6) — WO
h(0)

OO, ), by = j a6

For h = Ny(ps, =) the DUGS induces a normal density 2 with mean p® and variance =@
where

b = p+ B'O° — p),
20 =¥ + B(=® — =)(BY

with 89 is the starting point having dispersion ©©. Here, the x2-distance between 4© and £ is

\WI2W — 17" exp(S/2) - 1 (15)
where

W=wE=x3x9" =1+ B - 5)B)'z"
and
§= (0 — W BYEO I+ @W - DT}B'(6° - p).

Using lemma 4 we see that, for sufficiently large ¢, W(S©®) approaches the identity matrix.
This already shows more than we require (i.e. pointwise convergence from all starting

configurations with finite dispersion matrix, according to the x’-distance). For theorem 1
itself, we firstly note that by integrating expression (15) with respect to A

EDC{H(O, ), il = [WO)I12W(©) - 1|7 21DE - 117 — 1, (16)
where
D =(BY{Z - B'S(B)'}' I+ {2 W(0) - }'1B.
Hence, for large ¢, Ex*{'(0, -), h}] is of the order p(B)>. Therefore, we have p, < p(B),
where p2 is the rate by which equation (16) goes to 0.

It remains to show that p(B) = p, the rate corresponding to the definition (1). It is easy to
observe that p, < p(B) = pr. which is less than or equal to p. As for the other inequality, i.e.

ox > P, a7
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we proceed as follows.

t(0) _ 2
5P 76 - hi1= [ { [ L5019 6,616 6™ a0

< 115 B (69, -, .

Here ||-|| denotes the L?-norm with respect to 4, and the inequality follows by the Cauchy—
Schwartz inequality. O

Proof of lemma 2. We give the proof when all r; = 1. The extension to the general case
is 1mmed1ate Recall that the matrix 4 for the natural updating order is A =
I- dlaggqu s ... gs)0 =L+ U where L is strictly lower triangular. Also we have B, =
(I— L)™' U. Let A_ be the starting matrix for the deterministic updating in the reverse order.
We write A_ = L_ + U_ where L_ is a strictly lower trlangular matrix and U_ is a strictly
upper triangular matrix. By definition, we have B_ = (I — L_)"' U_. Let P be the permutation
matrix which has elements p;;—;1 =1 and all other elements 0. Here we have 4_ =
PAP = P(L + U)P. But note that PUP=L_ and PLP = U_ where L_ is a strictly lower
triangular matrix and U_ is a strictly upper triangular matrix. Hence it is easy to see that
B_ is similar to B,. O

Proof of theorem 2. The basic proof is due to Amit (1995). Here we generalize the proof
given by Amit to the block updating case. The proof involves the generating function of
Hermite polynomials. Before we start the proof we define the following. Let D; be an m x m
matrix blocked in the same pattern as Q and with all blocks null except the (i, i)th block
which is an identity matrix of order r;, i =1, . . ., 5. Let V be a symmetric square-root matrix
of Q. Again we partition V according to Q. Let

I 0 ... 0

(0 7 7 o)
Ci=|dn Ao ... A
0 0 .. 0

\o o .. 1)

Note that C; = I — D; + D;A. Let T? be the projection m R™ onto the vector space spanned
by the rows of C;. Also note that C; = I — diag(0, . . ., Qi', . . ., 0)Q. Let FY denote the pro-

jection in R™ onto the vector space spanned by the jth row of the matrix Oy (Q,l, .. Q,s)
Observe that 79 can be written as a direct sum of the matrices =I1—F; , ji=1...,n,
and the rows of Wf’) can be taken orthogonal to the rows of the other W(’)

Following Amit we define a multi-index a = (avy, . . ., @;), and x = (x), xz, v Xs) where
o= (0, ..., 05,) € Z+, and Xi= Xigs - o X)) € R" We also define x{* = xf: e x,-,i
and ;! = a,,', ... o0 and x* =TT, X7 and a! =TI, a;l. Let

Ha(6) = [ ] Hal0)
i=1

where
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Ho(6) = [ ] ey (63),
=1

with #; being the kth-order Hermite polynomial (not to be confused with the target density
h).

Let £,(8) = exp(x'V0 — x'x/2) denote the generating function parameterized by x for the
family of Hermite polynomials, i.e. fy(6) can also be written as Tq x* Ho(V80)/a!. Let

P{ fx(0)} = fo(B) h(661, . . ., 01, 041, . . ., 6,)d6..
Simple computation yields

Pi(f%) = frox. (18)

Also it is easy to see that
Jrox = Ja wos

Now we use the following lemma which can be proved by using Amit’s result.

Lemma 5. If equation (18) holds, the rate of convergence of the randomly updated Gibbs
sampler (which is RSGS but without the repetition) is the largest eigenvalue of the matrix

lsT(,)
52 T

Since C; corresponds to the projection matrix 7, and ¥ C; = (s — 1)I + 4, the RSGS
convergence rate is the maximum modulus eigenvalue

(3 @) =t -vr+ar.
i=1

Observe that A4 has all eigenvalues real and less than 1. Moreover, smce the trace of 4 is 0, it
cannot have all negatlve eigenvalues. Therefore, we have prscs = [s'{s — 1 + M(4)}I’, where
A(4) is the maximum non-negative eigenvalue of A. In general MA4) # p(A).

A.l. Splitting of Matrices

We can study the various Gibbs sampling schemes by introducing the notion of splitting.
Given an inverse dispersion matrix Q, the pair (M, N) such that Q=M — N i is called a
splitting of Q. It is also called a regular splitting when M is non-singular and M~', N > 0,
elementmse DUGS and RSGS convergence rates depend on the eigenvalues of the matrix
M™'N for different choices of M and N. Before we see that, we need to introduce further
notation. We write Q = D — E — F where D is diag(Q11, . . ., Oy), E is the lower triangular
matrix with the blocks in the lower triangle being identical with those of Q but with an
opposite sign and diagonal blocks are all null and F is obtained by subtraction, i.e.
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Ou e 0 0 0 ... 0
0n ... Qxn 0 ... 0
D= N E=- . . . . H
0 st Qsl Qsz 0
0 Q12 le
0 0 O
F=- .
0 O 0

Observe that the matrices L and U defined in Section 2.2 are D™'E and D™'F respectively.
Taking M = D and N = E + F we obtain M'N =4 (= L + U), and choosing M =D — E
and N = F we obtain M~'N = B.

To prove theorem 5 we need the following lemma.

Lemma 6. We can verify by direct calculation that

|oE + o 'F—vuD|

is independent of « # 0 and for all v where Q = D — E — F is in the form (7).

Proof of theorem 5. The basic proof can be found in Young (1971). We have adapted it
here to suit our purpose. Observe that Q is of block tridiagonal form (7). We write the matrix
Q =D — E — F where D, E and F are as above.

Choosing o = +1 we have |[E+ F+vD| = | — E— F+ vD|. Hence, if v is an eigenvalue of
A =D"Y(E+F) of any multiplicity then —v is also an eigenvalue of 4 with the same
multiplicity. Therefore it follows that p(4) = AM(4). Suppose that § # 0 is an eigenvalue of
B = (D — E)"'F and v* = §. Therefore, we have

((D— E)'F—6I| = |F— v*D+ VE| = V"|vE+ v"'F—vD| = 0
and applying lemma 6 with & = v we see that |E + F — vD| = 0. Hence v is an eigenvalue of
A

'Conversely, if v is an eigenvalue of 4 and & satisfies § = v* then § is an eigenvalue of B by
using lemma 6 similarly. Therefore, we have A(4)* = p(B). O

Proof of corollary 1. Using equation (6) and theorem 5 we have

_ 12
prscs = {57 (s = 1 + pocs))-

For notational convenience, we write y = prscs and x = ppugs. At x =1, y =1, and, at
x =0, y > 0. We claim that, for any 0 < x < 1, y # x. For s = 2, it is straightforward that
y = x only at x = 1. Therefore, assume that s > 2. To have y = x, we must have

sxVf—x? =51, 19)

Note that the left-hand side of equation (19) is an increasing function which increases to the
right-hand side at x = 1. O

Proof of corollary 3. The Q-matrix for the checker-board type of updating order is also of
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the form (7). Hence by theorem 5 the DUGS rate of convergence is p(4:)? where A. is the A-
matrix for this updating order. However, note that p(4c) = p(4) since A is obtained by
permuting the rows and columns of 4 suitably. O

Before proving theorem 6 we state the following result from Varga (1962), p. 90.

Lemma 7. Let Q = £™" have all off-diagonal elements non-positive and (M, N1) and (M>,
N2) be two regular splittings of Q. If N, > N, > 0, elementwise, equality excluded (i.e.
neither N1 nor N, — N is a null matrix), then

1 > p(M3'N2) > p(MT'Ny) > 0.

Proof of theorem 6. Choose M, =D — E and Ny = F, and M, = D and N, = E+ F. Using
lemma 7 we can show that 0 < p(B,) < p(4). However, we note that p(4) = MA) <
[s7'{s — 1 + M(A)}T. The equality in the previous statement is due to the non-negativity of 4.

O

Proof of theorem 7. RSGS convergence rates are dependent on the matrices 4p and Ay
where

[ 0 —qu/qu ... —qis/qu
—q21/92 0 coo —qa/qn
Ag = . ,
\ _qsl/qss _qsz/qss cee 0
( 0 —vipfon ... —vifon
—021/022 0 e —1)7_,-/022
Ay =
\ _Dsl/vss _UsZ/Uss cee 0

Using inequality (9) we have 4g > A4y > 0. Hence by the Perron—Frobenius theorem (see, for
example, Seneta (1981), p. 22) we obtain prsgs(¥) < prsgs(Q). For DUGS we use the
splitting idea. We first write

qu 0 ... 0 onp 0 ... O

91 q» ... 0 vy Uy ... O
My=1] . . R My = .1 2

ds1 gs2 ... (ss Usti U2 ... Ug

Let Q = My — Ng and ¥ = My — Ny. Again by inequality (9) we have Ny = Ny > 0. DUGS
rates for Q and V are maximum modulus eigenvalues of By = Mp'Ny and By = M7'Ny,
respectively. The theorem will follow if we establish the claim that My' > My' > 0, element-
wise. The proof of the claim is by induction on the dimension of the matrix Q and V. We
write Mg (k) and My(k) instead of My and My to emphasize their orders. It is easy to verify
the claim if s = 1 or s = 2 where s is the dimension of the matrix Q. Let the claim be true for
s = k. We have
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My(k) 0 My(k) 0
MQ(k+1)=( Q,( ) My(k+l)=( V,( )
c Gk+1,k+1 c Uk+1,k+1

where ¢ contains the off-diagonal elements (gx+1,1, - - -, gk+1,4) - By a standard result on the
inverse of partitioned matrices, we have

Mj'\(k) 0
Mal(k+l)=< -1 Q, 1 -1 )
—Qicr1,k+1€ Mg (k) Gicrr,k41
and
M7k 0
ml(k+1)=< -1 VS)-l -1 )
—Ukp1,k1€ My (k) Oir

By assumptions and by the inductive hypothesis, we have

—1 / —1 /
—Qii1,k+1€ 2 — Vg1, k+1€ 5

My' (k) > My (k).

Multiplying these two together we obtain that Mp'(k + 1) > My'(k +1). Therefore the
claim holds. O

Proof of theorem 8. Let (M1, N1) be the regular splitting of Q with some r; > 1. Recall that
r; is the size of the ith block, 1 < i < s. Let Qi have some non-zero elements above the main
diagonal. Notice that, since N; corresponds to the block updating, all the elements of (V1)
are 0. Let (M2, N2) be the splitting of Q corresponding to a componentwise update of all the
components in the ith block, 1 <i < s. Since Qi has at least one negative off-diagonal
element, we have the corresponding element in (N2); > 0. Hence, we have N> > N, > 0,
elementwise. Using lemma 7, we immediately see that the first strategy will converge faster
than the second, i.e. blocking leads to faster convergence. O
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