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Abstract

For many fundamental sampling problems, the best, and often the only known, approach to solving
them is to take a long enough random walk on a certain Markov chain and then return the current state
of the chain. Techniques to prove how long “long enough” is, i.e., the number of steps in the chain
one needs to take in order to be sufficiently close to the stationary distribution of the chain, are of great
importance in obtaining estimates of running times of such sampling algorithms.

In this report, we survey existing techniques to bound the mixing time of Markov chains. The mixing
time of a Markov chain is exactly captured by the “spectral gap” of its underlying transition matrix. The
spectral gap is closely related to a geometric parameter called “conductance” which is a measure of the
“edge-expansion” of the Markov chain. Conductance also captures the mixing time up to square factors.
Lower bounds on conductance, which give upper bounds on the mixing time, are typically obtained by
a technique called “canonical paths” where the idea is to find a set of paths, one between every unequal
source-destination pair, such that no edge is very heavily congested.

Unlike conductance, the canonical paths approach cannot always show rapid mixing of a rapidly
mixing chain. It is known that this “drawback” disappears if we allow the flow between a pair of states
to be spread along multiple paths. We prove that for a large class of Markov chains, including all the
ones that we use in the sampling applications we will be interested in, canonical paths does capture rapid
mixing, i.e., we show that small mixing time implies the existence of some collection of paths with low
edge congestion. Allowing multiple paths to route the flow still does help a great deal in the design of
such flows, and this is best illustrated by a recent result of Morris and Sinclair [34] on the rapid mixing
of a natural Markov chain for sampling �-� knapsack solutions; this result seems to rely critically on
fractional flows.

An entirely different approach to prove rapid mixing, which in fact historically preceded the con-
ductance/canonical paths based approach, is “Coupling”. Coupling is a very elegant technique and has
been used to prove rapid mixing of several chains where designing good canonical paths seems to be
a hideous task. “Path Coupling” is a related technique discovered by Bubley and Dyer [5] that often
tremendously reduces the complexity of designing good Couplings. We present several applications of
Path Coupling in proofs of rapid mixing, and these invariably lead to much better bounds on mixing
time than known using conductance, and moreover Coupling based proofs usually turn out to be much
simpler. These applications motivate the question of whether Coupling indeed can be made to work
whenever the chain is rapidly mixing. This question was answered in the negative in very recent work
by Kumar and Ramesh [27], who showed that no Coupling strategy can prove the rapid mixing of the
famous Jerrum-Sinclair chain for sampling perfect and near-perfect matchings (the chain is known to be
rapidly mixing via a canonical paths argument).



1 Introduction

Suppose � is a large finite set of combinatorial structures (for example the set of feasible solutions to a
combinatorial optimization problem), and let � be a probability distribution on �. The general “sampling”
problem is then to pick an element of � at random according to the distribution �. The Markov chain Monte
Carlo method, which is the subject of our study here, provides an elegant technique to efficiently solve this
general computational task in a wide variety of contexts.

Sampling problems are inherently interesting, and in addition turn out to have many computational
applications, the most notable ones being:

� Approximate counting: Here we want to estimate the size of � to a very good accuracy. It is well
known [23] that, provided a certain technical condition known as self-reducibility is met, almost uni-
form sampling (that is sampling from a distribution that is statistically close to the uniform distri-
bution) is possible in polynomial time if and only if approximate counting is. This has been one of
the main motivations, at least from the computer science point of view, behind the rapid progress
that has been made in this area. In particular, for a host of counting problems including several very
hard �� -complete problems, the Markov chain Monte Carlo method is the only known approach to
approximate the number of feasible solutions.

� Statistical physics: Here the space � represents possible configurations of statistical mechanical sys-
tem, and � is a “natural” probability distribution on �, in which the probability of a configuration
is related to its energy. The task is to sample configurations according to �, in order to examine
properties of a “typical” physical configuration.

In this report, we focus only on the sampling problem and omit the connections to counting since these
involve by now standard reductions. The Markov chain Monte Carlo method has been a great success story
in solving sampling problems. It solves the sampling problem by the following approach. An underlying
“Markov chain” � on the state space � is specified through a stochastic transition probability matrix of
dimension ��� � ��� whose ��� ���� entry specifies the probability � ��� �� that the chain moves from state
� to state � in a single step (we assume states of � are labeled by elements of �). Starting at any state
��, there is a natural random walk �� � ������ ��� � � � defined on� such that ����������� � � � � ��� �
����������� where the latter conditional probability is specified by the matrix � , i.e., ������� � ���� �
�� � � ��� ��. In other words we start at state �� and at each time step �, we make a move to a next
state ���� by moving to a random state from the current state �� according to the transition probabilities
of the chain. Note the crucial “forgetting property” of Markov chains: the state at time � � � depends
probabilistically on the state at time �, but not on the state at any other time.

To sample according to a distribution �, the Markov chain� is defined in such a way that it is ergodic,
i.e., has a (unique) stationary distribution � on � such that ����� � ���� � �� � ���� as � � �, for
all pairs of states �� � � �, and moreover the transition probabilities are set up so that � � �. Now we
may sample from � according to � as follows: starting from an arbitrary state in �, take a random walk on
the Markov chain (which we will loosely refer to as “simulating the Markov chain” in the sequel) for some
number, 	 , of steps, and then output the final state. The ergodicity of � implies that, by taking 	 large
enough, we can ensure that the output state is arbitrarily close to the desired distribution �.

One of the most appealing things about this method is its simplicity – in fact in most applications it is
not hard to construct a Markov chain having the above properties. The crux of the method, which is also its
sticking point, is to obtain good upper bounds on the mixing time of the chain, i.e., the number of simulation
steps 	 necessary before the Markov chain is close to its stationary distribution. This is critical as this forms
the crucial factor in the running time of any sampling algorithm that uses the chain. Since our aim is to
sample from a set � which is very large, we would like 	 to be much smaller than the size of �, say at most
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a polynomial in the logarithm of ���. We shall refer to such chains as rapidly mixing. Over the years several
deep and novel analytic tools have been developed and refined to bound mixing times of Markov chains. It
is the goal of this report to survey the known techniques for proving rapid mixing, to present representative
examples of their use, and to compare and contrast their scope, their relative strengths and limitations, and
their applicability to various contexts.

Organization. We begin in the next section by reviewing the relevant definitions and properties of Markov
chains, and by giving a precise characterization of when a Markov chain mixes rapidly in terms of its
spectral properties. In Section 3 we discuss the notion of conductance and its relation to the spectral gap of
the chain. Section 4 discusses the canonical paths approach and some of its generalizations that yield bounds
on the conductance and the spectral gap, and also proves that for a large class of chains a small mixing time
implies the existence of some collection of good canonical paths. We then present an illustrative application
of this technique to the problem of sampling 	-� knapsack solutions in Section 5. Section 6 discusses
Coupling which is an entirely different approach to bounding the mixing time, gives an illustrative example
of Coupling in action, and also discusses Path Coupling, which is a useful design tool in constructing
Couplings. Several elegant applications of Path Coupling are presented in Section 7. In Section 8 we
discuss the recent result of [27] which proves that Coupling is in fact weaker than conductance, in that there
are chains with large conductance which cannot be shown to be rapidly mixing by any Coupling strategy.
Finally, we conclude with a few remarks and open questions in Section 9.

Acknowledgments. This survey was written as part of the author’s Area Examination at MIT, the goal of
which was to survey the papers by Bubley and Dyer [5], Anil Kumar and Ramesh [27], and Morris and
Sinclair [34]. This survey (specifically Sections 5, 6.4, 7.1 and 8) uses liberal portions of the contents of
these papers. This work was also influenced greatly by the reading of the survey by Jerrum [19], and the
paper by Sinclair [37], among several other papers. I would like to thank Kumar and Ramesh for sending
me a copy of the most recent version of their paper [27].

2 Preliminaries on Markov Chains

A Markov chain on state space � is completely specified by the transition matrix � whose entry � ��� ��
represents the probability that the chain moves from state � to state � is a single transition; i.e., � ��� �� �
������� � ���� � �� for all � � 	. Thus in order to study and analyze the properties of the Markov chain,
it suffices to investigate the properties of this matrix � .

2.1 Basic definitions

Starting from an initial distribution 
���, the distribution of the chain after � steps 
��� is clearly given by

��� � 
���� � (here we view the distributions as row vectors in �� ). Thus, when using a Markov chain to
randomly sample from its state space, we must study the evolution of 
��� as � increases, and we would like

��� to (quickly) approach a limiting stationary distribution, say �; it is not surprising that � must be fixed
under steps of the chain.

Definition 2.1 A row vector � � �
� is a stationary distribution for a Markov chain � with transition

matrix � if (a) ���� � 	 for all � � �, (b)
�

��� ���� � �, and (c) � � �� .

Definition 2.2 A Markov chain� is said to be ergodic if it has a stationary distribution.

Clearly, we would like (and need) all Markov chains we use for sampling to be ergodic, so next we turn to
conditions on the chain which will ensure ergodicity.
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Definition 2.3 A Markov chain � (with transition matrix � ) is said to be irreducible if for all �� � � �,
there is an� such that ����� �� � 	, i.e � is eventually reachable from � with non-zero probability.

Irreducibility guarantees that the underlying chain is connected, so that starting at any state it is possible
to reach all the other states. It is clearly desirable (and necessary) to impose this requirement when using a
Markov chain to sample from a set �. We next impose another condition on the chains we will study, namely
aperiodicity; this is merely a technical condition imposed to simplify analysis, and does not cause any loss
of generality as we can turn any (periodic) chain into an aperiodic one by simply adding loop probabilities
of �
 at each state, and this clearly does not affect the stationary distribution.

Definition 2.4 A chain� over state space � is aperiodic iff for all � � �,

���� � ����� �� � 	� � ��

A central theorem in the classical theory of stochastic process is the following:

Theorem 2.1 Any finite, irreducible, aperiodic Markov chain is ergodic.

Definition 2.5 Suppose � (defined over state space �) has a stationary distribution �. � is said to be
reversible (with respect to �) iff

����� ��� �� � ����� ��� �� for all �� � � � � (1)

The conditions of (1) are known as detailed balance equations. The condition of reversibility does cause
some loss of generality, but the ease of analysis gained by making this requirement more than compensates
the sacrifice made. Moreover, reversible chains will be general enough for our applications, and for the rest
of the section we focus attention solely on finite, irreducible, aperiodic and reversible Markov chains.

The detailed balance conditions also permit an easy proof that a certain distribution is indeed the sta-
tionary distribution of an ergodic Markov chain, as is formalized below.

Lemma 2.2 For a Markov chain� defined on state space �, if there exists a probability distribution � on
� that satisfies the conditions (1), then � is a stationary distribution of� and� is reversible with respect
to �.

Proof: We easily verify that �� � �. Indeed,

��� ���� �
�
�

����� ��� �� �
�
�

����� ��� �� � ����
�
�

� ��� �� � ���� � �

Note that in the definition of ergodicity we did not require the stationary distribution to be unique, but
the conditions of Lemma 2.2 together with irreducibility, are sufficient to guarantee that � is in fact the
unique stationary distribution.

2.2 Spectral theory of reversible Markov chains

Since a stationary distribution of a Markov chain is simply a left eigenvector of its transition matrix � , it
is natural that in order to study the rate of convergence of the chain to its stationary distribution, we should
try to investigate the spectral properties of � . The reversibility constraint implies that one can view �
as a self-adjoint operator on a suitable inner product space and this permits us to use the well-understood

3



spectral theory of self-adjoint operators. This approach was first undertaken in [8] (also see [39] for a nice
exposition).

The relevant inner product space is ������� which is the space of real-valued functions on �, with the
following inner product:1

	�� �
 �
�
���

��������

����
� (2)

It is easy to check that the detailed-balance conditions (1) imply that 	��� �
 � 	�� �� 
, so that � is a self-
adjoint operator on �������. Now, by standard linear algebra, it is well known that such a � has � � ���
real eigenvalues � � �� � �� � �� � � � � � ���� � ��; the chain defined by � is ergodic iff ���� � ��.
Also, the space ������� has an orthonormal basis comprising of eigenvectors � � ��� ��� ��� � � � � ���� of
� corresponding to the eigenvalues ��� ��� � � � � ����.

Now, our initial distribution on � can be written as 
��� � ��� � ���� � � � � � �������� where

�� � 	
���� ��
 (so in particular �� �
�

�
�����������

���� � �). The distribution after � steps is then given by


��� � 
���� � � � � ���
�
��� � � � �� �����

�
�������� (3)

From the above, it is clear that the chain is ergodic whenever ���� � ��, as then all eigenvalues ��,
�  �  � � �, have absolute value less than �, and as � � �, terms corresponding to them will become
insignificant, and 
��� � �. For an ergodic chain, Equation (3) also clearly demonstrates that the rate of
convergence to � is governed by the second-largest eigenvalue in absolute value, �	
� � ������� �������.
We now make this statement precise. For � � �, denote by ����� �� the distribution of the state of the
Markov chain at time �, when the chain starts at time � � 	 in state �.

Definition 2.6 The variation distance at time � with initial state � is defined as the statistical difference
between distributions ����� �� and ����, i.e

����� �
�




�
���

�� ���� ��� ������

We will measure the rate of convergence using the function ��, which quantifies the mixing time, and which
is defined for � � 	 by

����� � ����� � ����
��  � for all �� � �� � (4)

(It is easy to see that if �����  � then ����
��  � for all �� � � as well.) With this notation, we will say a

Markov chain is rapidly mixing if ����� is ���������������� (in applications the number of states � will
be exponential in the problem size �, so this amounts to saying that we need to simulate the chain only for
������� steps in order to get a “good” sample from �). The following makes precise our intuition that a
large value of the spectral gap �� � �	
�� exactly captures the rapid convergence to stationarity. A proof
can be found in [8, 2].

Propostion 2.3 The quantity ����� satisfies

(i) �����  ��� �	
��
��
�
�������� � �� ���

�
.

(ii) ������ ����� � �
��	
���� �	
��

�� ���
����.

1It is easy to see that the stationary distribution satisfies ���� � � for all � � � whenever the chain is irreducible, so the inner
product is well-defined.
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In light of the above Proposition, if we want rapid convergence to the stationary distribution irrespective
of the starting state (which is desirable for our applications in sampling where we would like to start at some
arbitrary state), a large gap ����	
�� is both a necessary and sufficient condition. Moreover, in practice the
smallest eigenvalue ���� is unimportant: a crude approach is to add a holding probability of �
 to every
state, i.e., replace � by �

� �� � � �, where � is the � �� identity matrix. This ensures that all eigenvalues
are positive while decreasing the spectral gap �� � ��� only by a factor of 
. The upshot is that in order to
study mixing times of Markov chains, one needs to focus attention on the second-largest eigenvalue ��, and
bound it away from �.

2.3 Characterizations of second-largest eigenvalue

We now present the known characterizations of the second largest eigenvalue �� of self-adjoint matrices,
which will be useful in obtaining good bounds on the spectral gap ��� ���.

Lemma 2.4 (Rayleigh-Ritz) Let � be a self-adjoint operator on a finite-dimensional inner product space
with inner product 	�� �
. Suppose the eigenvalues of � are �� � �� � � � � � �� and �� is an eigenvector of
eigenvalue ��. Then

�� � ���
��	�

	�� �� 

	�� �
 � (5)

Proof: Let ��� ��� � � � � �� be an orthonormal basis of eigenvectors corresponding to the eigenvalues ��� � � � � ��
respectively. Since � � ��, we can write � as � � ���� � � � � � ����, so that

	�� �� 
 �
��
���

���
�
�  ��

��
���

��� � ��	�� �
�

When � � ��, equality is achieved, and hence the result follows. �

We next present another characterization which at first glance seems a bit unwieldy, but it turns out to be
quite useful in that very natural geometrical arguments about a Markov chain can yield upper bounds on ��
via this characterization [8].

Lemma 2.5 (Variational characterization) Let � be a self-adjoint operator on a finite-dimensional inner
product space �������, and for �� � � �, let ���� �� � ����� ��� �� � ���� ��. Then, the second-largest
eigenvalue of � satisfies:

�� �� � ���



�
���������� � ���������� ���

���������� � ��������������
� (6)

3 Two broad approaches to proving Rapid Mixing

We saw in the last section that establishing rapid mixing for a Markov chain amounts to bounding the second
largest eigenvalue �� of the transition matrix � away from � by a ������������ amount. The spectrum
of the chain is very hard to analyze directly, so we either need tools to analyze the spectral gap (using the
characterizations presented in the previous section), or somehow analyze the chain directly without resorting
to spectrum.
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3.1 Coupling

One simple and elegant approach to bound mixing times without explicitly bounding the spectral gap is
Coupling. A “coupling” argument is in fact the classical approach to bound mixing times of Markov chains.
Coupling was first used by Aldous [1] to show rapid mixing, and has since found several applications
in proving rapid mixing of a variety of chains. We will define Coupling formally and discuss some of its
applications in detail in later Sections, but at a very high level the idea behind Coupling is the following. One
sets up two stochastic processes � � ���� and � � ���� on the state space � both of which individually
are faithful copies of the Markov chain � (whose mixing time we wish to bound). However, their joint
evolution is set up in a way that encourages ���� and ���� to coalesce rapidly, so that �� � �� for all
sufficiently large �. The relevance to rapid mixing is obvious from the Coupling Lemma [1, 19] which states
that the probability that the coupling time exceeds some value � for a certain distribution �� for �� is an
upper bound on the variation distance between the stationary distribution � of� and the distribution of the
chain at time � starting from distribution ��. Note that we did not explicitly deal with the spectrum of the
chain, and this is one advantage of this approach. We will come back to a detailed discussion of Coupling
in Sections 6 through 8.

3.2 Conductance

Let us now look at approaches aimed at establishing rapid mixing via directly bounding the spectral gap.
These use geometric properties of the chain and the characterizations of �� given by Equations (5) and (6)
to prove a lower bound on the spectral gap �� � ���. The relevant geometric parameter is the conductance
of the chain which is defined below.

Definition 3.1 The conductance of� is defined by

� � ����
��
� ���

���
����������

���� ���

����
� (7)

where ���� �� � ����� ��� �� � ����� ��� ��, ���� is the probability density of � under the stationary
distribution � of�, and ���� ��� is the sum of ���� �� over all ��� �� � � � ��� ��.

The conductance may be viewed as a weighted version of edge expansion of the graph underlying the
chain �. For a fixed �, the quotient in Equation (7) is just the conditional probability that the chain in
equilibrium escapes from the subset � of the state space in one step, given that it is initially in �. Thus
� measures the ability of � to escape from any small region of the state space, and hence to make rapid
progress to the stationary distribution. It is not therefore very surprising that the conductance � would
govern the rapid mixing properties of the chain, which in turn is related to the second-largest eigenvalue ��
(by Proposition 2.3). This is made precise in the following result from [36, 38]; related results appear in
[3, 31, 33]. Note that the result proves that the conductance captures mixing rate up to square factors, and
thus obtaining a good lower bound on � is equivalent to proving rapid mixing.

Theorem 3.1 The second eigenvalue of a reversible chain satisfies

�� 
�  ��  �� ��



� (8)

Proof: We only prove the inequality �� � ���  
� which shows, together with Proposition 2.3, implies
that a large conductance (of the order of �������� where � is the problem size) is necessary for rapid
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mixing. Our proof follows the elegant approach of Alon [3] who proved a similar result for expansion of
unweighted graphs. A proof of the other direction: ��� ��� � ��

� , can be found in [38, 31].
In order to prove �� � ��� 
��, we use the characterization of Equation (5). The largest eigenvalue of

� equals � and has � as its eigenvector. Define a vector � � �
� (specified as a real-valued function on �)

as follows:

���� �

�
������ ��� if � � �
��������� if � � �

Note that 	�� �
 ���
��������

���� �
�

� ���� � 	, hence by Equation (5), we have

	�� �� 

	�� �
  �� � (9)

Define ����
��
� ����

���� . Now

	�� �
 �
�
�

�����

����
�
�
�

���������

�
�
��

�� �������� �
�
�� �

������������ � ������ ��� (10)

	�� �� 
 �
�
�

����
�

� ����� ��� ��

����
�
�
���

������������ ��

�
�
�

�����
�
�

���� �� �
�
���

��������� � ��������� ��

�
�
�

��������� �
��

��

��� �������� � �� ����
�
�� �

���� ��
�

�
��

�� �

�������� ��� � �����
�
��

���� ��
�

� 	�� �
 ����� ��� � ������ �������� ���� (11)

From (9), (10) and (11), we get that for any set �,

���� ���

������ ���
� �� ���

Since �� ��� � �
, this implies � � ����
� , as desired. �

Corollary 3.2 Let � be a finite, reversible, ergodic Markov chain with loop probabilities � ��� �� � �

for all states �, and let � be the conductance of �. Then the mixing time of � satisfies ����� 

������������ � �� ����.

A direct analysis of the conductance is sometimes possible by exploiting an underlying geometric inter-
pretation of�, in which states of� are identified with certain polytopes, and transitions with their common
facets. A lower bound on conductance then follows from an appropriate “isoperimetric inequality” of the
graph under consideration. This has been fruitful in a few applications, for example the estimation of the
volume of a convex body by Dyer, Frieze and Kannan [11], and a Markov chain over linear extensions of
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a partial order by Karzanov and Khachiyan [26]. A more recent example where the conductance is tackled
“directly” is the work of Dyer, Frieze and Jerrum [10] who prove an upper bound on � to show that certain
classes of Markov chains for sampling independent sets in sparse graphs do not mix rapidly. The conduc-
tance is still not very amenable to computation in general, and we need further tools that can be used to
deduce good lower bounds on the conductance. It is this task to which we turn next.

4 Rapid mixing via canonical paths

We saw in the last section that in order to prove rapid mixing of a Markov chain, all we need is a good
lower bound on the conductance (and hence the spectral gap) of the chain. In this section, we explore a
useful piece of technology developed in [20, 36, 37] to prove such a lower bound. The basic idea behind the
method is to try and associate canonical paths between every pair of states, in such a way that no transition
of the chain is used by too many paths. Intuitively, if such a set of paths exists, this means that the chain has
no severe bottlenecks which could impede mixing. We now turn to formalizing this intuition.

4.1 Bounding Conductance using Canonical paths

We first formalize some terminology and notation. Let � be an ergodic Markov chain on a finite set �.
We define the weighted directed graph  ��� with vertex set � and with an edge ! between an ordered pair
��� �� of weight ��!� � ���� �� � ����� ��� �� whenever � ��� �� � 	. We call this the underlying graph
of�.

A set of canonical paths for� is a set � of simple paths �"��� in the graph  ���, one between each
ordered pair ��� �� of distinct vertices. In order to bound the conductance, we would like to have a set of
canonical paths that do not overload any transition of the Markov chain. To measure this “overloading”, we
define the path congestion parameter [20, 36] for a set of canonical paths � as:

#��� � ���
������

�

��!�

�
�����

��������� (12)

where the maximum is over all oriented edges ! in  ���, and ��!� � ���� �� if ! � ��� ��. Think of the
Markov chain as a flow network in which �������� units of flow travel from � to � along "��, and ��!�,
which equals the probability that the Markov chain in the stationary distribution will use the transition ! in a
single step, serves as the capacity of !. The quantity #��� measures the maximum overloading of any edge
relative to its capacity. The path congestion # � #��� of the chain� is defined as the minimum congestion
achievable by any set of canonical paths, i.e.,

# � ���
�
#���� (13)

The following simple result confirms our intuition that a set of paths with low congestion implies a large
value of conductance.

Lemma 4.1 For any reversible Markov chain and any set of canonical paths �, we have

� � �


#���
�

Proof: Pick � � � with 	 $ ����  �
 such that � � �����
��� . For any choice of paths �, the total flow

from � to �� is ������ ���, and all this must flow across the cut �� � ���, which has capacity ���� ���. Hence
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there must exist an edge ! in the cut �� � ��� such that

�

��!�

�
�����

�������� � ������
���

���� ���
� ����


���� ���
�

�


�
� �

Corollary 4.2 For any reversible Markov chain, and any choice of canonical paths �, the second-largest
eigenvalue �� satisfies

��  �� �

�#����
� (14)

4.2 Relating Spectrum to congestion directly

Since the relation between # and �� � ��� above proceeded by appealing to the conductance, the bound of
Corollary 4.2 is potentially rather weak because of the appearance of the square. So we now pursue a direct
approach to bound �� based on the existence of “good” canonical paths. This was first achieved by Diaconis
and Strook [8], but we follow a treatment by Sinclair [37] as it gives the best bounds for the examples
considered later.

In order to state the new bound on ��, we modify the measure #��� to take into account the lengths of
the paths as well. For a set � � �"��� of canonical paths, the key quantity is now

�#��� � ���
�

�

��!�

�
�����

���������"�� �� (15)

where �"��� stands for the length of the path "�� . The parameter �# is defined analogously to Equation (13)
by minimizing over the choice of �.

Note that it is reasonable to allow general length functions %�!� on the edges !, compute �"��� in terms
of this length function, and thus obtain a quantity similar to �#��� above. In fact, Diaconis and Strook use
the length function %�!� � ���!�, and Kahale [24] considers good length functions that will lead to the
best bounds for specific chains. We will be content with the unit length function for our purposes.

Intuitively, the existence of short paths which do not overload any edge should imply that the chain
mixes very rapidly. Indeed, it turns out that the variational characterization (6) can now be used to bound ��
directly in terms of �#���. This is stated in the theorem below; we will not prove this theorem, but will later
prove a more general version of this result (namely Theorem 4.6, which also appears in [37].

Theorem 4.3 ([37]) For any reversible Markov chain, and any choice of canonical paths �, the second-
largest eigenvalue �� satisfies

��  �� �

�#���
� (16)

A useful way to use the above result is the following version which bounds the spectral gap in terms of
the path congestion # and the length of a longest path used in �. This version of the result is the most used
in bounding mixing times using this approach.

Corollary 4.4 For any reversible Markov chain, and any choice of canonical paths �, the second-largest
eigenvalue �� satisfies

��  �� �

#���&
� (17)

where & � &��� is the length of a longest path in �.

The above often leads to much sharper bounds on mixing times than (14) because the maximum path
length & will usually be significantly lesser than the estimate obtained for #.
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4.3 Known applications of canonical paths

The “canonical paths” approach has been applied successfully to analyze a variety of Markov chains includ-
ing those for sampling perfect matchings and approximating the permanent [20, 8], estimating the partition
function of the Ising model [21], sampling bases of balanced matroids [17], sampling regular bipartite
graphs [25], sampling 	-� knapsack solutions [12], etc. All these papers with the exception of [17] use more
or less the same technique to bound the path congestion that is due to [20] – they use the state space to
somehow “encode” the paths that use any given transition, so that the number of paths through any edge
will be comparable to the number of states of the chain. Feder and Mihail [17] give a random collection of
canonical paths and use a variant of “Hall’s condition” (for existence of perfect matchings in bipartite graph)
to show a small expected congestion and maximum path length for this collection of paths. They also prove
a version of Corollary 4.4 which applies with expected path lengths and congestion instead of worst case
values.

4.4 Path congestion is weaker than Conductance

The canonical paths technique is very useful, but it is natural to ask whether, like conductance, it too captures
rapid mixing up to some polynomial factor (recall that conductance captures mixing time up to square
factors). In other words, does a large conductance or a large spectral gap �� � ��� always imply a small
value of #��� for some choice of canonical paths �? Unfortunately we give a simple example below to show
that the answer is no — the same example also appears in [37].

Example. Consider the complete bipartite graph'����� on vertex set ��� 
� � � � � �� and edges ���� ��� �
� �� �
  �  �� where � is even, and define transition probabilities corresponding to the random walk on
this graph, namely at each step stay where you are with probability �
, else move to a neighbor chosen
uniformly at random. The stationary distribution � of this Markov chain is given by: ���� � ��
� � �!
and ���� � �
���
� for � �  � !� � � � � �, and hence��!� � �!���
� for all edges !. Since � is even it is
easy to verify that the conductance of this chain is � � �
, and hence using Equation (8) we get ��  "�.
However, since ������
� � ��# and ��!� � �!�� � 
� for all edges !, the path connecting states � and

 alone implies that the best value for #��� or �#��� obtainable using canonical paths is ����. Hence # and
�# could in fact be much larger than the quantity ��� ����� which governs the mixing time.

4.5 Resistance: a generalization of path congestion

In order to alleviate the shortcoming of the canonical paths technique which was just discussed, we now
present a natural generalization of this approach that will end up capturing mixing times exactly (and will
thus be “as good as” conductance). The idea, again due to Sinclair [37], is to spread the flow on path "��
between a pair ��� �� of states among several paths. As before, we view  ��� as a flow network where one
unit of flow has to be routed from � to � for every ordered pair ��� �� of distinct vertices, and each (oriented)
edge ! has “capacity” ��!�. The difference from the canonical paths approach is that, we now allow the flow
between � and � to be split among multiple paths, i.e., we are looking for a fractional multicommodity flow
that minimizes the congestion. Considering the similarity with the earlier approach, it is natural to suppose
that this new measure will yield similar bounds on the mixing rate. As we shall see, this will be the case, and
in fact this seemingly innocuous generalization to multiple paths allows us to capture rapid mixing exactly!

Formally, a flow in  ��� is a function � � � � �
� which satisfies

�
�����

��(� � � for all �� � � � , � �� ��
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where ��� is the set of all simple directed paths from � to � in  ��� and � � �������� . The quality of a
flow is measured by the congestion parameter ����, defined analogously to Equation (12) by

����
��
� ���

�

�

��!�

�
���

�
���������

����������(�� (18)

and one can define elongated congestion �����, similar to Equation 15, by accounting for the lengths of the
paths:

�����
��
� ���

�

�

��!�

�
���

�
���������

����������(��(�� (19)

We have the following results parallel to those of Lemma 4.1, Corollary 4.2, Theorem 4.3 and Corollary 4.4.

Lemma 4.5 For any reversible Markov chain and any flow � , we have

� � �


����
and hence ��  �� �

������
�

Theorem 4.6 For any reversible Markov chain, and any flow � , the second-largest eigenvalue �� satisfies

��  �� �
�����

� (20)

Corollary 4.7 For any reversible Markov chain, and any flow � , the second-largest eigenvalue �� satisfies

��  �� �

����&���
� (21)

where &��� is the length of a longest path ( with ��(� � 	.

We now provide a proof of Theorem 4.6 as we had promised before the statement of Theorem 4.3 (note
that the statement of Theorem 4.6 clearly generalizes that of Theorem 4.3).

Proof of Theorem 4.6: We need to prove ������ � � ����� for any flow � . We use Equation (6) to bound
��� ���, namely

�� �� � ���



�
����������� ���������� ���

���������� � ��������������
� (22)

Now for any �, and any flow � , the denominator in the above expression can be written as:�
�����

������ �������������� �
�
���

������������� � ������
�

�����

��(�

�
�
���

��������
�

�����

��(�
��

���

���!��� ��!���
��


�
���

��������
�

�����

��(��(�
�
���

���!��� ��!����

�
�
�

���!��� ��!����
�
���

�
���������

����������(��(�


�
�

���!��� ��!������!� �����

� �����
�
���

���� ������� � �������
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(Here !� and !� denote the start and end vertices of the oriented edge !, and we have used Cauchy-Schwartz
inequality in the third step above.) The result now follows from (22). �

Definition 4.1 (Resistance) The resistance � � ���� of chain � is defined as the minimum value of
���� over all flows � , and like the conductance is an invariant of the chain. Formally,

� � ���
�
���� � (23)

4.6 Resistance captures rapid mixing

By Lemma 4.5, note that ��  � � �
���

, so a small resistance leads to rapid mixing. We will now see that
in fact the converse is true, in other words a small mixing time implies a small resistance, i.e., the existence
of a flow � with small congestion ����. Thus resistance overcomes the shortcoming of path congestion
(since low path congestion was not a necessary condition for rapid mixing, as was shown by the example in
Section 4.4).

Theorem 4.8 ([37]) Consider an irreducible, reversible, ergodic Markov chain � over � and let � �
������ ����!�. Then the resistance � � ���� of� satisfies �  �#� .

Proof: We will demonstrate a flow � with ����  �#� . Let � � 
� . The flow between � and � will

be routed as follows: Consider the set ������ of all (not necessarily simple) paths of length � from � to � in

 ���, and for each ( � ����
�� route ��(� � �$�%�(� units of flow on (, where �$�%�(� is the probability that

the Markov chain makes the sequence of transitions defined by ( in the first � steps when starting in state �.
Since � � 
� , it is easy to see that for any pair �� �, ������ �� �, and in fact

� ���� ��

����
� �

�
� (24)

Thus for ( � ����
�� , we have ��(� � �$�%�(��

�
���

���
��

�$�%�)�� � �$�%�(�� ���� ��. Now let us estimate

the ����.

���� � ���
�

�

��!�

�
���

�
���

���
�� ����

���������$�%�(�

� ���� ��

 ���
�

�

��!�

�
���

�
���

���
��

���

�����$�%�(� (using (24))

 ���
�

�

��!�
� ���!� � �� � �#�

where we used the fact that the final double summation is simply the probability that the Markov chain
traverses the edge ! within � steps when started in the stationary distribution � over �, and this probability,
by the union bound, is at most � times the probability that this happens in one step, and is thus at most ���!�.
�

Remark A. It is also possible to prove (see [37]), using techniques of the approximate max-flow min-cut
theorem for uniform multicommodity flow [28], that �� � � � �� ����

�
�. This gives the weaker bound

� � ��� �����, but is interesting in its own right.
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Remark B. Note that since we used paths of length 
� in the above proof, the flow � also satisfies
����� � �����. This, together with (20), implies that �� � ���� ����� captures rapid mixing as well.
The work of Kahale [24] actually shows that the bound on �����, call it 
, obtained by minimizing over all
length functions on the transitions and all flows, can be computed to arbitrary precision by reduction to a

semidefinite program, and satisfies �� � ���� ������ �.

4.7 Path congestion almost always captures rapid mixing!

In the next section, we will see a resistance based proof (due to [34]) of rapid mixing of a natural Markov
chain for sampling 	-� Knapsack solutions. This problem was open for a long time, and had defied all
attempts to prove rapid mixing based on canonical paths. In light of the example in Section 4.4, it is natural
to ask if this chain (which we now know mixes rapidly) also cannot have low path congestion, and whether
the generalization to resistance was really necessary.

In this section, we will show that, for a broad class of Markov chains, including all the ones we consider
in applications here, the path congestion # (defined in Equations (12) and (13)) characterizes rapid mixing
up to polynomial (in the problem size) factors. We show that if you can achieve low congestion with multiple
paths, i.e., if the chain has low resistance, then you can also achieve low congestion by routing all the flow
on just a single path. The proof is actually very simple, and is based on randomized rounding to relate the
optimum congestion of “fractional” and “unsplittable” flows, but we were surprised that it does not seem to
have been observed or made explicit in the literature.

Theorem 4.9 Consider an ergodic, reversible Markov chain � with stationary distribution � on a state
space � of size � , and let the resistance of � be �. Let & � ������� ��������, and let �	�� �
�������������!�. Then there exists a set of canonical paths � such that

#��� � �
�
�� ����

&

�	��

�
�

Proof: By the definition of the resistance �, we know that there exists a flow � which routes ��������
units of flow between every ordered pair ��� �� of distinct states � �� �, such that every (oriented) edge !
has at most ��!�� units of flow passing through it. Hence there is a feasible fractional flow � which routes
��� � ��������&  � units of flow between � and �, and with “capacity” on edge ! at most *�!� �

���������
� � ��. We can now use a result of Raghavan and Thompson [35], who used randomized rounding

to show the following: There are absolute constants +� and +� such that if all edge capacities equal �, and all
demands are at most �, and there is a fractional flow satisfying all the demands with congestion on edge !
at most 
� �!� � �, then there is an unsplittable flow which satisfies all the demands by routing the demand
for each source-destination pair along a single path, and which has congestion at most +�
� �!� � +� ����
on edge !.

Applying this to our situation with 
� �!� � *�!�, we conclude that there exists a set � of canonical
paths which can route ��� units of flow from � to � such that at most +�*�!� � +� ���� units flow through
any edge !, or equivalently, it can route �������� � &��� units of flow between every pair ��� �� such that
at most +�&*�!� � +�& ���� units flow through any edge !. This implies that

#���  +������� &

�	��
�� +� &

�	��
���� �

and the stated result follows. �

Theorem 4.9 actually implies that # � ���� for a wide variety of Markov chains, and thus for these
chains # also characterizes rapid mixing. Indeed, this will be the case whenever ���� �

����
� ����,
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which will normally always be the case unless the stationary distribution varies widely in the mass it gives
to points of the state space, or there are very small non-zero transition probabilities in the chain. As an
example consider Markov chains with uniform stationary distribution. Then ���� �

����
� ���� whenever

� ��� �� � �� ����� � for all �� � such that � ��� �� � 	. For most chains in applications to sampling, we will
have � � 
���� where � is the problem size and each non-zero � ��� �� will be at least ��������, hence
this condition will indeed be met.

5 Sampling �-� Knapsack solutions

We describe an example of random walk on the truncated hypercube which was only very recently shown
to be rapidly mixing using a fractional multicommodity flow with low congestion [34], but had resisted all
efforts of proving such a result using canonical paths (with just one path between every source-destination
pair). Our result from the previous section (Theorem 4.9) applies to this chain; this shows that even though
spreading flow across multiple paths might in principle be not more powerful than sending all the flow along
a single canonical path, it could be still be easier to deal with in actually designing the flow. (The example
from this section is also covered by the framework of what Feder and Mihail [17] did, where they prove
a version of the small path congestion implies small mixing time result using expected path lengths and
congestion instead of worst case values.)

The Problem. We are interested in sampling from the set � of feasible solutions to the 	-� knapsack
problem defined by the vector � of item sizes and the knapsack capacity +; i.e., for a positive real vector
� � �,��

�
��� and a real number +,

� � ���� � �� � �	� ��� � � � � �
��

���

,���  +� �

There is a one-one correspondence between vectors � � � and subsets � of items whose aggregated
weight does not exceed +, given by � � �� � �� � ��. We will write ,��� for the weight of � , i.e.,
,��� �

�
��� ,�.

A particularly simple Markov chain�� on � has been proposed for the purposes of sampling uniformly
at random from �. If the current state is � � ��� 
� � � � � �� then

1. With probability �
 stay at � (this holding probability is to make the chain aperiodic), else

2. Pick an item � � ��� 
� � � � � �� uniformly at random. If � � � move to � � ���; if � � � and
,�� � ����  +, move to � � ���, else stay at � .

The chain is aperiodic since � ����� � �
 for all states � , and it is irreducible since every pair of
states can be connected via the empty set. Moreover, it is clear that each non-zero transition probability
� ���� �, � �� � , equals � ���� � � � ����� � �

�� . By Theorem 2.1 and Lemma 2.2 therefore, ��

is ergodic with uniform stationary distribution. Despite all the recent activity in proving rapid mixing, this
simple example was not known to be rapidly mixing until the work of [34]. The best prior known bound on
the mixing time, obtained via the canonical paths technique, was '�����

�
����� ������� [12], which beats

the trivial bound of '�������� but is still exponential.
We will now sketch the proof of [34] that this chain has a mixing time of �����, and is thus indeed

rapidly mixing. The proof will follow the resistance approach, i.e., we will find a flow � that routes one unit
of flow between every pair of unequal states, using multiple paths for each pair to “spread” the flow, and
then use Corollary 4.7 to bound the mixing time. Indeed, if ���� is the length of the longest flow carrying
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path, and *��� is the maximum flow across any (oriented) edge of the chain, then combining Corollary 4.7
and Proposition 2.3 shows that

�����  
�
*���

��� ������� �� ���� � (25)

Hence our goal now is to construct a flow � with ���� � ������� and *��� � ����������. Note
that a shortest path between states � and � can be viewed as a permutation of the symmetric difference
� � � , the set of items that must be added to or removed from the knapsack in passing from � to � . A
natural approach to defining a good flow seems to be to spread the unit flow from � to � evenly among
all permutations of � � � . The problem with this approach, however, is that many of these permutations
will tend to violate the knapsack constraint, as too many items will have been added at some intermediate
point; i.e., the permutation is unbalanced. The way to circumvent this problem is to define a family of
permutations, which are all “balanced” and also “sufficiently random”, and spread the flow evenly among
them. Proving the existence of such permutations, called balanced almost uniform permutations in [34],
forms the main technical component of this proof.

We will now define the notion of balanced almost uniform permutations formally, and state the Theorems
from [34] guaranteeing their existence. (We will not prove these theorems as they are quite technical and
doing so will take us too far away from our main theme of focusing on Markov chain techniques.) We
will, however, show how to construct a good flow � for our purposes given the existence of the necessary
balanced almost uniform permutations.

Definition 5.1 Let �-������ be a set of real weights, and let . � ������ �-�� and / �
�

�-�. Let & be
a non-negative integer. A permutation 0 � �� is &-balanced, if for all 1, �  1  �,

����/� 	� � &. 
��

���

-����  ����/� 	� � &. � (26)

Definition 5.2 Let 0 be a random variable taking values in ��, and let 2 � �. We call 0 a 2-uniform
permutation if

��
�
�0��� 
� � � � � 1� � 3 �  2�

�
�

1

���

for every 1, �  1  �, and every 3 � ��� 
� � � � ��� of size 1.

The main theorem from [34] on the existence of balanced almost uniform permutations is the following:

Theorem 5.1 ([34]) There is a universal constant * such that for any � and any set of weights �-������,
there exists a "-balanced *��-uniform permutation on �-��. Moreover, if ��� -�� � �(���� �-��, then
there exists a 	-balanced *��-uniform permutation on �-��.

Constructing a good flow

Lemma 5.2 For arbitrary weights �,�� and +, there exists a multicommodity flow � in ���� which routes
one unit of flow between every pair of unequal vertices, with *��� � �������� and ���� � ����.

Combining with Equation (25) we therefore conclude

Theorem 5.3 ([34]) The mixing time of the Markov chain �� satisfies ����� � ���� �� ���� for every
starting state � . The chain is thus rapidly mixing.
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Proof of Lemma 5.2: Let ��� be arbitrary states of �, � �� � . We wish to send one unit of flow from
� to � . As discussed earlier, our idea is to spread this flow evenly among a family of balanced almost
uniform permutations of��� , except that we isolate a constant number of “heavy” items4 from� �� ,
and route the flow along balanced almost uniform permutations of �� � � � �4 and add or remove some
elements of 4 repeatedly along the path to maintain fine balance (we always want the knapsack to be filled
to capacity between (roughly) ����,���� ,�� �� and ����,���� ,�� ��: an upper bound on the weight
packed in the knapsack is clearly necessary to define a feasible path, while the lower bound is used in the
analysis to bound the total flow through any edge by “encoding” each flow path which uses that edge using
an element of the state space).

We now proceed with the formal analysis. We wish to obtain an upper bound on the maximum flow that
passes through any state 5 (this will clearly also provide an upper bound on the flow through any transition
�5�5�� of the chain). Let ��� be states such that the flow between them passes through 5 . Let 4 be the

) elements of � � � with the largest weight (set 4 � � � � if �� � � �  
)); breaking ties according
to index order. Define 4� � 4 � � , 4� � 4 � � , � � �� � � � � 4 and � � ���. Let �-������ be
an arbitrary enumeration of the weights of items in �, where elements in � receive positive signs and those
in � receive in negative signs (since we want to add elements in � � � and remove those in � ��). The
paths we use for our flow will correspond to permutations of indices in � that satisfy the specific “balance”
requirement described below.

Claim. There is an absolute constant * such that there exists a *��-uniform family of permutations each
one (call it 0) of which satisfies the following “balance” condition:

����,�� �� ,���� 	� � ,�4� � 
��

���

-����  ����,�� �� ,���� 	� � ,�4��� (27)

for every 1, �  1  �.

Proof. We will assume �� � � � � 
), for otherwise � � � and � � 	, and there is nothing to prove.
Let/ �

��
��� -� � ,�� �� ,��� � ,�4�� � ,�4� �, and . � ���� �-��. Let us assume, w.l.o.g, that

/ � ,�4�� � ,�4� � (the other case is symmetric), so it is easy to see that the above condition (27) is
equivalent to

�,�4� � 
��

���

-���� / � ,�4� � (28)

Comparing with condition (26), and allowing for both cases / � 	 and / $ 	, it is easy to see that
an &-balanced permutation satisfies (28) above whenever &.  ����,�4� ��/ � ,�4� ��. Thus, when
�/ � � �(. , we can use 	-balanced permutations guaranteed by Theorem 5.1 for our purposes. When
�/ �  �(. , we have ,�4���,�4� � /  �(. . Also ,�4���,�4� � � ,�4� � 
). . Combining
these two inequalities we get ,�4� � � ". . Thus when/ � 	, we have ".  ����,�4� ��/�,�4� ��,
and thus we can use a *��-uniform family of "-balanced permutations to satisfy (28). When / $ 	, we
have/ � ��(. and together with ,�4��� ,�4� � / this implies

,�4� � � 
). �/



� �!. � 
/



� ". �/

and thus once again ".  ����,�4� ��/ � ,�4� ��, and we can use a "-balanced *��-uniform family
of permutations. � (Claim)

We now specify the flow paths between � and � (the flow will be evenly split among all these paths). The
paths will follow the permutations 0 of the family guaranteed by above Claim, except that along the way
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we will use elements of 4 to keep the knapsack as full as possible, and we will remove elements of 4 as
necessary to make room for elements of � � � to be added. Hence each intermediate state will be of the
form 4� � ��� � 4�� � �0���� � � � � 0�1��� for some 1  � and 4� � 4 . The path corresponding to a
particular 0 is defined by the following transitions:

� If 1 $ � and -������ � 	, then add 0�1 � �� if possible (i.e., current knapsack has room for the
item); else delete an (arbitrary) element from 4�.

� If 1 $ � and -������ $ 	, then add an element form 4 �4� if possible (so that knapsack is near
full); otherwise remove 0�1 � ��.

� If 1 � � (i.e., all elements in � have been handled), add an element of 4� if possible; otherwise
delete an element from 4� .

By the upper bound of Condition (27), we have ,��� � ,�4�� �
����

��� -����  ����,���� ,�� ��  +
so that we can always remove enough elements of 4 to make room for -������ during its turn to be added.
Moreover, the lower bound of Condition (27) implies that for any intermediate state 5 on any flow path,
,�5 � 4� � ����,���� ,�� ��, and since we always keep the knapsack as full as possible, there exist
elements 6�� 6� � 4 such that ,�5 � �6�� 6��� � ����,���� ,�� ��. In what follows 6�� 6� are fixed
elements of 4 that depend only on 5��� � .

To estimate the flow through 5 , we will “encode” each pair ��� of states whose flow paths use 5 by a
state 5� � � (plus some auxiliary information), so that we can argue that *��� is not too large compared to
���. The encoding 5� is defined by

5 � � ��� � � � � �5 � �6�� 6���� � �� � � ��
(Note that this is the complement of 5 ��6�� 6�� in the multiset � �� . Thus it is reasonable to expect that
5 � will supply a lot of the “missing” information about ��� that cannot be obtained from 5� 6�� 6�.) Now

,�5 �� � ,��� � ,�� �� ,�5 � �6�� 6���
 ,��� � ,�� ������,���� ,�� ��
� ����,���� ,�� ��  +

so that 5� � �.
We now wish to upper bound the number of pairs ���� � that could be mapped to a given 5�. Note that

5 � 5 � � � � � and 5 � � �5 � �6�� 6��� � � � � , and knowing � � � , we also know 4 (since these
form the 
) largest elements of � � � , ties broken according to index order). Thus 5�5�� 6�� 6� together
fix� � � ,� � � ,4 and � � �� � � � �4 . In order to completely specify � and � , we add some more
information to the encoding, namely the subset 3 � � that have been “affected” (i.e., added/removed) by
the time the path from � to � reaches 5 , and also 4� � 4 �� .2 Thus, the pair ���� � one of whose flow
paths passes through 5 is encoded by the (-tuple:

������ � � �5 �� 6�� 6�� 3�4
�� �

We now verify that 5 and ������ � do pinpoint ��� . Indeed, we already argued 5�5�� 6�� 6� alone fix
� � � ,� � � ,4 and �. Now it is easy to verify that � � �3 �5��� ��� �3��5�� �� � � ��4 � and
similarly � � �3 � 5� � ��� � 3� � 5�� � �� � � � � �4 �4 ��.

We are now ready to bound *��� by estimating the cumulative flow ��5� through 5 . For each ���
such that there is a flow path from � to � passing through 5 and whose encoding equals ������ � �

2The encoding � we use is slightly different from the one Morris and Sinclair [34] use in their proof.
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�5 �� 6�� 6�� 3�4
��, there will be non-zero flow only for paths corresponding to those permutations 0 of

��� 
� � � � ��� (here � � ���) that satisfy 0��� 
� � � � � �3 �� � 3 . By the *��-uniformity of the family
of permutations we use to spread the flow, we can conclude that the total flow over all such paths is at
most *��

�
�
�� �

���
. Thus summing over all 3 � �, we still have only *�� units of flow for each fixed

�5 �� 6�� 6��4
��. Now there are ��� choices for 5�, and �� choices for the pair �6�� 6��, and once �5�� 6�� 6��

are fixed, so is 4 , and thus there are at most 
�� possible choices of 4� � 4 for each choice of 5�. In all,
we have

��5�  ��� � �� � 
�� � *�� � �������� �
Thus *��� � �������� as well, and since all paths we use to route flows clearly have length ����, ���� �
����, and the proof of Lemma 5.2 is complete. �

6 Coupling and Path Coupling

We have so far focused on conductance based techniques for proving rapid mixing, and saw a non-trivial
application to sampling 	-� knapsack solutions. The classical approach to bounding the mixing time is in
fact via a different approach, viz. Coupling. The basic idea behind the coupling argument is very intuitive:
suppose we wish to show that a Markov chain � starting from distribution �� converges to its stationary
distribution � within a small number of steps. Consider running the chain on a joint process �� ��� where
both � �� are individually faithful copies of� and where � starts of at state�� distributed according to ��

and � starts of in state �� distributed according to �. Thus at any time step �, the distribution of �� equals �.
Now if the joint evolution of ���� ��� is designed to encourage them to coalesce rapidly, i.e., the “distance”
between �� and �� decreases rapidly, then for large enough �, say � � ��, we will have �� � ��, with high
probability, say �� � ��. Since the distribution of �� is �, it is easy to see that this implies that the mixing
time to get within � of the stationary distribution when the chain starts off in distribution ��, is at most �� (by
the “Coupling Lemma” which we will state and prove formally shortly).

6.1 The Coupling Lemma

Definition 6.1 (Coupling) Let� be a finite, ergodic Markov chain defined on state space � with transition
probabilities � ��� ��. A (causal) coupling is a joint process �� ��� � ���� ��� on �� �, such that each of
the processes � , � , considered marginally, is a faithful copy of�. In other words, we require that, for all
�� ��� �� �� � �,

������� � ����� � � � �� � �� � � ��� ��� and,

������� � �
���� � � � �� � �� � � ��� ��� � �

Note that the above conditions are consistent with ���� and ���� being independent evolutions of �,
but does not imply it. In fact the whole point of Coupling is to allow for the possibility that

������� � �
� � ���� � �

���� � � � �� � �� �� � ��� ���� ��� ���

in order to encourage �� and �� to coalesce rapidly.

Remark. In applications to bounding mixing time, ���� will typically be Markovian, while we allow � to
be Non-Markovian or history dependent, i.e., �� could depend upon ��� � � � �� and ��� � � � � ����, as long as
it remains faithful to the original chain�. One can also imagine allowing the process � to make its moves
dependent on future moves of � , i.e., �� can depend upon ���������, etc. Such a coupling is called a
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non-causal coupling. We will only be concerned with causal couplings here, and the term “Coupling” will
always refer only to a causal coupling.

If it can be arranged that coalescence occurs rapidly, independently of the initial states ��� ��, we may
then deduce that� is rapidly mixing. The key result here is the Coupling Lemma, which seems to have first
explicitly appeared in [2].

Lemma 6.1 (Coupling Lemma) Let � be a finite, ergodic Markov chain, and let ���� ��� be a coupling
for�. Suppose that ����� �� ���  �, uniformly over the choice of initial state ���� ���. Then the mixing
time ���� of� (starting from any state) is bounded above by �.

Proof: Let �� � � be arbitrary and let �� be distributed according to the stationary distribution � of�.
Let 7 � � be an arbitrary event. We have

����� � 7� � ����� � 7 ��� � ���

� ������� � 7������� �� ���
� ����� � 7�� �
� ��7�� ��

and this implies the variation distance between ����� �� and �, �����, is at most �, as desired. �

In light of the above Lemma, Coupling is a natural technique to prove rapid mixing of Markov chains. And
as we will convince the reader in this section and the next, Coupling is a very crisp and elegant technique
and when it works, it invariably establishes better bounds on mixing time than known through conductance,
and avoids the slackness which is typical of conductance/canonical paths based proofs. We illustrate this by
a simple example below.

6.2 An illustrative example of Coupling in action

We consider the “Bernoulli-Laplace diffusion model”, whose state space � is the set of all 1-element subsets
of ��� � ��� 
� � � � � ��, and we wish to sample an element u.a.r from �. We assume 1  �
 without loss of
generality. A natural chain on � is the following (let the current state be the subset � � ��� with ��� � 1)

� Pick 8� � �	� �� u.a.r; If 8� � 	, remain at � .

� If 8� � �, pick � � � u.a.r and 9 � ��� �� u.a.r and move to � � � � �9� � ���.
It is easy to that this chain is ergodic with uniform stationary distribution ���� � ��� for all � � �,
where � �

��
�

�
. We will show using Coupling that this chain mixes in ��1 ����1��� time (we will later

mention the sort of weak bounds that more complicated conductance/resistance based proofs give even for
this very simple example).

Theorem 6.2 The mixing time of the above Markov chain satisfies ����� � ��1 ����1��� irrespective of
the starting state � .

Proof: The proof is based on a Coupling that is actually quite simple to set up. The transition ���� ����
������ ����� is defined as follows:

1. If �� � ��, then pick ���� as� would and set ���� � ����; else

2. If 8�� � 	, set ���� � ��, and ���� � ��.
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3. If 8�� � �, then: Let � � �� � �� and 	 � �� � �� (note that ��� � �	 �); fix an arbitrary bijection
� � � � 	 . Pick � � �� u.a.r and 9 � ��� ��� u.a.r and set ���� � �� � �9� � ���. Define �� � ��
and 9� � ��� � �� as follows:

� If � � �� � ��, then �� � �, else �� � ����

� If 9 � ��, 9� � 9, else (now 9 � 	 ) 9� � ����9�.

Now set ���� � �� � �9�� � ����.
It is easy to see that ���� and ���� are individually just copies of �, so the above is a legal (in fact

Markovian) coupling. We assume 1 � 
 to avoid trivialities. Denote by :� the random variable �� � ��.
We wish to bound the expectation

���:�����:��  ��� �

1
��:�� � (29)

as this will imply ���:���:��  �� � �
� �

��:��. Since �:�� is a non-negative integer random variable, and
�:��  
1, we obtain

����:�� � 	�:��  ���:���:��

 
1 � ��� �

1
��

which is at most � provided � � 1 ���
1����. Invoking the Coupling Lemma 6.1, we obtain that the mixing
time is ��1 ���1���, as promised. It remains therefore to establish (29) which basically quantifies the fact
that �� and �� tend to “coalesce”.

Let ) � ��� � ���, and let )� � ����� � �����. We want the expectation of )� for a given ). Consider
now the choices in Step (3) of the Coupling. Four cases now arise:

(i) 9 � ��� � ��� � ��� and � � �� � ��: Then )� � ) � 
.

(ii) 9 � �� ��� and � � �� � ��: Then )� � ) � 
.

(iii) 9 � �� ��� and � � �� � ��, 9 �� ����: Then )� � ) � !.

(iv) In all other cases )� � ).

Thus the expected value of the change )� � ) is

��)
� � )� � �� 1 � )


�� 1 � )

1
� ��
� � )


�� 1 �
1 � )

1

� ��
� � )


�� 1 �
)
� �

1
� ��!�

and this gives��)��)�  ��� ���
�������)  ��� �

� �) (as 1 � 
). � (Theorem 6.2)

Comparison with performance of Canonical Paths. The best bound achievable for this problem via the
canonical paths/conductance based approach seems to be (see [37]) to bound�� by demonstrating a fractional

flow that routes one unit between every pair of unequal states, and this gives ��  ��������

������ . For 1 � ����,

say 1 � �
, this gives a bound on mixing time equal to ���� ����
��
�

�
����� � ���� � �� ��� ����, which

is significantly worse than the ��������� ��� ����� bound we proved using Coupling! In fact, in this case
(1 � �
), the second-largest eigenvalue is known exactly: �� � � � 
�, so that even getting the best
bound on the spectral gap, only yields a mixing time of ���� � � ��� ���� (using Proposition 2.3)! These
crisp and significantly improved bounds seem to be typical of Coupling whenever it works. We will later
(in Section 7.2) also see an application of sampling from subsets of ��� of size at most 1 (this is just the
“uniform” version of the knapsack problem, where all items have the same size), where Coupling gives a
much better bound mixing time than seems possible using techniques of Section 5.
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6.3 Known applications of Coupling

Owing to its intuitive appeal, Coupling has been a very popular and successful technique in rapid mixing
results. Some instructive examples of Coupling that have appeared in the literature are in sampling proper
1-colorings of a graph [18, 5, 40], linear extensions of a partial order [30, 6], points in a convex body [7],
independent sets in low-degree graphs [29, 5, 15], general contingency tables on 
 rows [13], etc. Even
Broder’s original paper [4] on sampling from the set of perfect matchings of a bipartite graph used a com-
plicated Coupling argument, which was later found to have an error [32].

6.4 Path Coupling

Despite the conceptual simplicity and appeal of Coupling, it can often get very difficult to design couplings
appropriate to specific situations that arise in sampling problems. The problem is one of “engineering”:
how do we encourage ���� and ���� to coalesce while at the same time meeting the apparently contradicting
requirement of keeping the individual processes faithful to�? This can lead to severe technical complexities
(see [30] to get an impression of this). This led Bubley and Dyer [5] to invent an elegant solution to the
task of designing Couplings: they called it “Path Coupling”. The idea behind Path Coupling is to define the
coupling only for “adjacent” states, i.e., only for pairs of states in a carefully chosen subset � of ��� (and
hopefully the task is easier for such pairs of states), and then extend the coupling to arbitrary pairs of states
by composition of adjacent couplings along a path. In fact, the discovery of Path Coupling has led to a spurt
of Coupling based rapid mixing proofs, and indeed most of the applications cited in Section 6.3 use Path
Coupling. We now state and prove the “Path Coupling” lemma (a version taken from [14]):

Lemma 6.3 (Path Coupling Lemma) Let Æ be an integer valued metric defined on � � � which takes
values in �	� �� � � � �:�. Let � be a subset of � � � such that for all ���� ��� � � � �, there ex-
ists a path �� � 5�� 5�� � � � � 5 � �� between �� and �� where �5!� 5!��� � � for 	  & $ 8, and� ��

!�� Æ�5!� 5!��� � Æ���� ���. (Equivalently, Æ is defined by specifying a graph 4 with vertex set � and
edge set �, and weights on edges in �, and Æ���� � is simply the shortest path between � and � in this
graph.) Suppose a Coupling ���� � �� ���� � �� of the Markov chain� is defined on all pairs ���� � � �
(note that ���� � �� need not lie in �) such that there exists a ; $ � such that��Æ�� �� � ���  ;��Æ���� ��

for all ���� � � �. Then the mixing time ���� of� satisfies ����  ���"#���
���$� .

Remark. One can also bound the mixing time in the case ; � � [5, 14]. For the applications we will use to
illustrate this technique, we will actually have ; $ �, so to keep things simple we do not discuss the ; � �
case.

Proof: First, we observe that the Coupling on � can be extended in an obvious way to a Coupling on
the entire space � � �. Indeed let ���� ��� � � � �. Pick a “path” �� � 5�� 5�� � � � � 5 � �� such
that Æ���� � �

� ��
!�� Æ�5!� 5!��� (use a deterministic choice rule for resolving ties). Define the coupling

���� ��� �� ������ ����� as follows: First select ���� � 5 �� � � according to the probability distribution
� ��� ��. Now select 5�� according to the distribution induced by the pairwise coupling of the adjacent states
5� and 5�, conditioned on the choice of 5��; then select 5�� using the pairwise coupling of �5�� 5��, and so
on, ending with 5� � ����. It is easy to verify, by induction of the path length 8, that ���� has been selected
according to the distribution � ���� ��, so ���� ��� �� ������ ����� does define a “legal” coupling that obeys
conditions of Definition 6.1. Now

��Æ������ ������  ��

 ���
!��

Æ�5 �!� 5
�
!����
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�

 ���
!��

��Æ�5
�
!� 5

�
!����

 ;

 ���
!��

Æ�5!� 5!���

� ;Æ���� ����

where we have used the fact that Æ is a metric, and linearity of expectation. Now as in the proof of Theo-

rem 6.2, this gives��Æ���� ����  ;�:, and thus ����� �� ���  ��Æ���� ����  � whenever � � ���"#���
���$� .

Invoking the Coupling Lemma 6.1, the claimed bound on the mixing time ���� follows. �

Remark. The notion of “adjacency” in the graph4 defined for Path Coupling need not have anything to do
with the transitions in the Markov chain that is being studied. In fact, two states that are adjacent in the Path
Coupling graph 4 need not even be reachable from one another in the Markov chain.

7 Some applications of Path coupling

In this section, we present a few applications of path coupling to Markov chains for interesting sampling
problems.

7.1 Sampling �-colorings of a graph

Given a graph  � �<�=� with maximum degree �, consider the task of sampling uniformly at random
from the set ��� � of (proper) 1-colorings of  . Let * � ��� 
� � � � � 1� be the set of colors.

A natural Markov chain for the above problem, known in the literature as “Glauber dynamics”, is the
following. Suppose the current state is a coloring �:

� Choose � � < u.a.r, and � � * u.a.r. If �		% (i.e., � with the color of � changed to �) is a proper
coloring of > , then move to �		%, else remain at � .

Jerrum [18] (see also [19]) first proved, using Coupling, that the above chain rapidly mixes for 1 � 
�.
We will now present a simple proof due to Bubley and Dyer [5] of this fact using Path Coupling. We remark
that Vigoda [40] recently established that this chain mixes rapidly for 1 � ��

� �, using Path Coupling on a
different chain, and then using that to deduce the mixing time of the Glauber dynamics.

Following [5], we present the result in a more general set-up that captures “coloring-type” problems,
and then deduce the result for coloring from that.

The general set-up is the following. Let < and * be finite sets, and let � � �< � and 1 � �*�, and
we consider a finite Markov chain � with state space � � *& , the set of functions from < to * , and
unique stationary distribution �. The transition structure of � is similar to the graph coloring case we
considered above: From a current state � � �, pick � � < according to a fixed distribution ? on < , and
and � � * according to a distribution @��	 that depends only on � and �, and make the transition to �		%

(where �		%�-� equals � if - � �, and equals ��-� otherwise). We assume that @��	��� � 	 whenever
�		% � �. Path Coupling yields the following result for this class of problems (for distributions 7 and A,
�7�A� denotes their statistical difference or variation distance):

Theorem 7.1 ([5]) Let � � *& , and let

; � ���
��� �����&

	
�� ?��� �

�
'�&

?�9��@��' � @��'� � � � ��	% for some � � *� and � �� �


�
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Then, if ; $ �, the mixing time of� satisfies ����  ���������� � ;�.
Proof: We set up a Path Coupling with “adjacency graph” being all non-equal pairs ���� � such that
� � ��	% for some �� �, and the metric Æ used is the Hamming metric (so Æ���� � � � for adjacent pairs).
For such a pair ���� � define the coupling to ���� � �� as follows: �� is distributed according to � ��� ��,
namely: pick � � < according to ? and �� � * according to @��	 , and set �� � �		%� . Next pick �� � *
as follows: with probability ������ @��	����@��	����� let �� � ��, otherwise pick �� according to the

distribution "��� � 	
�
��(	
��%��(�
��%��
�(	
��(�
��

.
It is easy to see that marginally we choose �� according to @��	 , so the above defines a “legal” coupling

for the chain�. It is also easy to verify that ����� �� ��� � �@��	 � @��	�. Now since Æ���� � changes by
at most � in one step of the chain, we have

��Æ�� �� � ��� � �����Æ�� �� � �� � 	� ����Æ�� �� � �� � 
�

� �� ?�������� � ���� � �� �
�
' ���

?�9������ �� ���� � 9�

� �� ?����� � �@��� � @����� �
�
' ���

?�9��@��' � @��'�

 ;Æ���� �

(since Æ���� � � �). The result now follows from the Path Coupling Lemma 6.3. �

Application to Coloring. Consider the Markov chain with state space all (not necessarily proper) 1-
colorings of  and transitions at state � defined as follows.

1. Choose � at random from < according to distribution ? and � u.a.r from * .

2. If � is properly colored in �		%, then move to �� � �		% else remain at � .

This is an extension of the Glauber dynamics we discussed earlier (except that we allow more general
distributions to select � from), to all of *& (we do so in order to be able to apply Theorem 7.1). This does
not cause any problems since the non-proper colorings are transient states, and the stationary distribution
is uniform over all proper 1-colorings of  , and zero elsewhere. Moreover, if we start from a proper 1-
coloring, then we visit only states that correspond to proper 1-colorings, so the mixing time of this chain
is an upper bound on the mixing time of the Glauber dynamics. Note that this chain is not reversible, but
Theorem 7.1 applies for such chains as well.

Let us now apply Theorem 7.1. Let B��� denote the degree of vertex �, and let� be the number of edges
in  . We will use ? to be proportional to the degree of the vertex, so that ?��� � B���
�. If colorings �
and � differ only on vertex �, then @��' � @��' unless 9 � � or 9 � � (here 9 � � stands for adjacency in the

graph  ). When 9 � �, @��������� � )�����
� and @��������� � �

� , and similarly for the color � ���, while
@������ � @������ for all colors � �� ����� � ���. Hence �@��� � @���� � B���1. When 9 � �, every color
that would be accepted in� (resp. � ), except possibly � ��� (resp. ����) would be accepted in � (resp. �)
as well, and hence �@��' � @��'� � �

� . Thus the parameter ; (from Theorem 7.1) satisfies

;  �� B���

�

��� B���
1

� �
�
'�

B�9�


�1
�

Hence ; $ � whenever

1 � ���
	�&

�B��� �
�
*	

B�-�

B���
� �

This condition is certainly satisfied when 1 � 
�, so using Theorem 7.1 we conclude
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Theorem 7.2 ([5]) The Glauber dynamics for sampling proper 1-colorings of a graph  with maximum
degree � is rapidly mixing (with mixing time ��1� ����������) whenever 1 � 
�.

7.2 Sampling “Uniform Knapsack” solutions

We consider another elegant application of Path Coupling. We are interested in sampling from the space
� of subsets of ��� � ��� 
� � � � � �� of size at most 1. This resembles the problem of sampling 1-element
subsets of ��� that we considered in Section 6.2, but turns out to be trickier. Note also that this problem is a
special case of the 	-� knapsack problem (which we considered in Section 5) when all items to be packed
have the same size.

The Markov chain �� we will study will be the same as the one in Section 5, namely from a state
� � ���, ���  1, pick 8� � �	� �� u.a.r. If 8� � 	 remain at � . If 8� � �, pick an � � ��� u.a.r and
move to � � ��� if � � � and to � � ��� if � � � and ��� $ 1. We will use Path Coupling to prove

Theorem 7.3 The mixing time of the Markov chain�� satisfies ���� � ��� ����1�����.

Proof: We will use Path Coupling with the (somewhat unusual) metric Æ���� � � ���� �� ����� �� ��.
Note that Æ���� � � 
 whenever � �� � . The set of “adjacent” pairs � � �� � for which we will define
the Coupling is: � � ����� � � ��� � � � Æ���� � � 
�. It is easy to see that the metric Æ and the set �
satisfy the conditions required by the Path Coupling Lemma 6.3.

Now consider ���� � � � with Æ���� � � 
; we wish to define a Coupling ���� � �� ���� � ��. There
are two possibilities for ���� �:

(i) One of ��� is a subset of the other, say � � � (the other case is symmetric), �� � � ��� � �.

(ii) ��� � �� � and �� � � � � 
.

We consider each of these cases in turn.

Case (i): Let � � � � �(� for some ( � ���. Now the Coupling ���� � �� is defined as follows:

(1) Pick 8� � �	� �� and � � ��� u.a.r. If � � ( then set 8� � �� 8� ; otherwise set 8� � 8� .

(2) If 8� � 	 set � � � � . Else if � � � set �� � � � ���, else set �� � � � ��� if ��� $ 1 and
� � � � otherwise.

(3) If 8� � 	 set � � � � . Else if � � � set � � � � � ���, else set � � � � � ��� if �� � $ 1 and � � � �
otherwise.

It is easy to see that Æ���� � �� � 
 except when � � (, in which case, since we have cleverly designed
the Coupling by setting 8� � � � 8� so that only one of ��� “fires”, Æ���� � �� � 	. Thus we have
��Æ�� �� � ��� � ��� �

��Æ���� �.

Case (ii): ��� � �� � and �� � � � � 
. Let� � � � �(� and � � � � �)� for some ( �� ). The Coupling
�� �� � �� is defined as follows:

(1) Pick 8� � �	� �� and � � ��� u.a.r. Set 8� � 8� . If � � �(� )�, set 9 � �. If � � ( (resp. )) set 9 � )
(resp. ().

(2) If 8� � 	 set � � � � . Else if � � � set �� � � � ���, else set �� � � � ��� if ��� $ 1 and
� � � � otherwise.

(3) If 8� � 	 set � � � � . Else if 9 � � set � � � � � �9�, else set � � � � � �9� if �� � $ 1 and � � � �
otherwise.
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Once again, the Coupling has been constructed so that Æ���� � �� � 
 whenever � � �(� )�; Æ���� � �� � 	
if � � ( and 8� � �, and Æ�� �� � ��  
 in all cases. Thus we have��Æ�� �� � ���  ��� �

���Æ���� �.
Combining both the above cases we get��Æ�� �� � ���  �� � �

���Æ���� � always. Also, the maximum
value : of Æ���� ��� over all pairs ���� ��� � � � � is clearly 
1. By Theorem 7.1 therefore, we have
shown that�� has mixing time ���� � ��� ����1�����, completing the proof. �

Comparison with Canonical paths. Even for this special case of 	-� knapsack, the best bound that we get
using the multicommodity flow based analysis of Section 5 (without any change) is only �����, and it is
almost inconceivable that such an approach can hope to yield a bound better than �����. Coupling gave us
a much better ��� ����1����� bound, and the proof was in fact much easier than using canonical paths!

Remark. The uniformity of weights seems critical to our argument above. The “asymmetry” created when
items have widely varying sizes seems to make it difficult for any natural Coupling strategy to work.

7.3 Linear extensions of a partial order

We are given a partially ordered set ��� � where �� � � �, and we want to sample u.a.r from the space � of
all linear orders that extend  . (A linear order extending  is a permutation ,�� ,�� � � � � ,� of the elements
of � such that ,�  ,' implies �  9.)

A natural Markov chain with uniform stationary distribution over � was shown to be rapid mixing by
Karzanov and Khachiyan via conductance arguments that exploited the geometry of the space [26]. Dyer
and Frieze [9] improved the conductance estimate, and hence the bound on the mixing time, of this chain,
and this gave a mixing time of ���� ��� �� �� ��� ����.

In this section, we will sketch a chain �+
��, which is a slight variant of the chain discussed above, and

show (using Path Coupling) that it has a mixing time of ���� ����������, which significantly improves the
best “conductance based” bound for this problem. The chain and its analysis are due to Bubley and Dyer [6]
(see also [19] for an exposition).

Actually this algorithm can be used to sample u.a.r from any set � of permutations of elements of � that
satisfies the following “closure” property: If 0 � �,�� ,�� � � � � ,�� � � and 0Æ��� 9� � �,�� � � � � ,���� ,'� ,����
� � � � ,'��� ,�� ,'��� � � � � ,�� � � (i.e., the positions of ,� and ,' can be swapped and the resulting permu-
tation still lies in �), then all permutations which are obtained from 0 by placing ,� and ,' at arbitrary
positions in the interval ��� 9�, also lie in �. Clearly the linear extensions of a partial order have this closure
property.

The transitions from one linear extension to another in the chain are obtained by (pre)-composing with a
random transposition �(� (��� (if this yields a valid linear order); however, instead of selecting ( � ��� ��
uniformly, ( is chosen according to a distribution ? on �� � �� that gives greater weight to values near the
center of the range. Formally, the chain�+

�� is defined as follows. Let the current state be��. Then the next
state ���� is defined by the following random experiment:

(1) Pick ( � ��� �� according to the distribution ? , and 8 � �	� �� u.a.r

(2) If 8 � � and �� Æ �(� (� �� � �, then ���� � �� Æ �(� (� ��; otherwise ���� � ��.

To use Path Coupling we need to specify an “adjacency” structure for the state space �. We say two
states � and �� are adjacent if �� � � Æ ��� 9� for some transposition ��� 9� with �  � $ 9  �, and the
“distance” Æ��� ��� in this case is defined to be 9 � �. Since this distance is symmetric (i.e., Æ��� ��� �
Æ���� ��), this adjacency structure yields a weighted, undirected graph 4 on vertex set �. One can verify
that the shortest path between adjacent states �� �� in 4 is the direct one that uses the edge ��� ���. We may
thus extend Æ to a metric on � by defining Æ��� 6� for arbitrary states �� 6 � � to be the length of a shortest
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path from � to 6 in4 , and all conditions of the Path Coupling Lemma 6.3 are now met. It remains to define
a coupling ��� 6� �� ���� 6�� for adjacent states �� 6 and then bound��Æ���� 6���.

The Coupling is defined as follows. Let ��� 6� be a pair of adjacent states in 4 and let 6 � � Æ ��� 9�.
Then the transition to ���� 6�� is defined by the following experiment:

(i) Pick ( � �� � �� according to distribution ? , and 8, � �	� �� u.a.r. If 9 � � � � and ( � �, set
8- � �� 8,; otherwise set 8- � 8,.

(ii) If 8, � � and � Æ �(� (� �� � � then set �� � � Æ �(� (� �� else set �� � �.

(iii) If 8- � � and 6 Æ �(� (� �� � � then set 6� � 6 Æ �(� (� �� else set 6� � 6.

Lemma 7.4 For adjacent states � and 6, for a suitable choice of the probability distribution ? , we have

� �Æ���� 6�� � �� 6� 
�
�� #

�� � �
�
Æ��� 6� �

In light of Lemma 6.3, this implies that the mixing time of�+
�� is���� ���������� (since the “diameter”

: of the graph 4 is easily seen to be at most
�
�
�

�
). It thus only remains to prove Lemma 7.4.

Proof of Lemma 7.4: We only provide the skeleton of the proof; details can be found in [6]. When
6 � � Æ ��� 9�, it is easy to see that when ( � �� � �� �� 9 � �� 9�, we will have 6� � �� Æ ��� 9� and thus
Æ���� 6�� � Æ��� 6� � 9 � �. When ( � �� � or ( � 9, it is again easily checked that� �Æ���� 6�� � �� 6� ( �
�� � ! ( � 9�  Æ��� 6� � �
.

The “interesting case” is when ( � � or ( � 9 � �. These are symmetric, so let us focus on the case
( � �. There are two sub-cases: 9 � � � � and 9 � � � 
. First, consider the case 9 � � � �. In this case, we
have made sure, by setting 8- � �� 8,, that only one of � or 6 “fires” in the Coupling, and thus �� � 6� and
therefore Æ���� 6�� � 	! In the case 9 � � � 
, by the “closure” property of � discussed earlier (this is the
only place where we use this closure property), we know both � Æ ��� � � ��, 6 Æ ��� � � �� � �, thus either
8� � 8� � 	 and then Æ���� 6�� � Æ��� 6�, or 8� � 8� � � and Æ���� 6�� � 9 � �� � � Æ��� 6�� �. Hence
Æ���� 6�� is less than Æ��� 6� in expectation.

Summing up, it follows from the above discussion that

� �Æ���� 6�� ��� 6�  Æ��� 6� � �?��� �� � ?��� � ?�9 � �� � ?�9�



� (30)

Specializing the probability distribution ?��� to be ?�(�
��
� C�(� ����� (� �� where C � #��� � �� is a

normalizing constant, and using Æ��� 6� � 9 � �, we get from (30) that� �Æ���� 6���  ��� C�Æ��� 6�. �

(Lemma 7.4)

8 Coupling is weaker than Conductance

We have seen several Coupling based proofs in the last Section which are not only extremely simple and
elegant, but also end up giving much better bounds on mixing time than known via conductance based
arguments. So, is Coupling the panacea as far as bounding mixing times goes? In particular, is Coupling as
powerful as conductance, and does it capture rapid mixing exactly?

This fundamental question was unanswered for a long time until recently when Kumar and Ramesh [27]
proved the following important result: For the famous Jerrum-Sinclair chain for sampling perfect and near-
perfect matchings, no Coupling argument can show rapid mixing (the chain is known to be rapidly mixing
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using a canonical paths argument [20]). Hence Coupling is actually “weaker” than conductance! We discuss
the salient features behind their proof in this section.

The Jerrum-Sinclair Chain. We are given a bipartite graph  � �<�� <�� =� with �<�� � �<�� � � and the
goal is to sample u.a.r from the set� of perfect and near-perfect matchings of  (a near-perfect matching is
a matching that saturates all but two vertices of  ). Jerrum and Sinclair [20] proposed the following natural
Markov chain � ! for sampling from �: At each state . , the chain moves to a state .� defined by the
following random experiment:

(i) Pick 8 � �	� �� u.a.r and an edge ! � = u.a.r.

(ii) If 8 � 	 set. � �. ; Else

(iii) If. is a perfect matching: Then set.� �. � �!� if ! �. , or else. � �. .

(iv) Suppose . is a near-perfect matching. Let ! � �D� ��. There are two cases:

(a) If D� � are both unmatched in. , set.� �. � �!�. [Add Move]

(b) If exactly one of D� � is unmatched, then set .� � . � �!�� � �!� where !� is the edge in .
incident on whichever of D� � is matched. [Swap Move]

(v) If none of the above conditions are met, set.� �. .

A special graph  . Anil Kumar and Ramesh [27] show that for a certain graph  , every Coupling strategy
on the above chain will require time exponential in �. This graph has some special properties which are
used in the proof; these are:

1.  has �� �"% � perfect matchings for some constant � � �.

2. Each vertex of  has degree at least 2�, for some 2 $ �
.

3. For every pair of vertices, the intersection of their neighborhoods has size at most 2�
.

Such a graph  can be shown to exist using the probabilistic method (see for example the final version of
[27]).

Modeling the Coupling Process. The coupling process " � �� ��� is specified by transition probabilities
(���� -� where � � �,� +� � � � �, and - � ��� B� � � � � are pairs of states in �. Note that
(���� -� could even be a function of the history, i.e., the transition probabilities could vary with time (we
do not show the time dependence for notational convenience, but it should be treated as implicit). Since we
are aiming for a negative result and wish to rule out the existence of any Coupling based proof, the only
thing we will (and can) assume about these probabilities is that the processes � and � must individually be
faithful copies of � !, or in other words: If � � ��� ��, then for each �� � � and for each time instant �,�

*�. ���� (���� -� � � ��� ��� where 	 ���� � ����� E� � E � �� and � ��� �� is the transition probabilities
of the chain� !, and a similar equation for � ��� ��� for each �� � �.

Idea behind the Proof. The basic structure of the proof is the following: Define a “distance” between the
two states��� in a Coupling, relative to which the states will have a tendency to drift away from each other
in any Coupling, i.e., most transitions of any Coupling are distance increasing. Then analyze this drifting
behavior and show that staring with two states ���� ��� at a distance *��� apart, any Coupling will require
exponential number of steps � before the states ��� �� become equal, with say a probability of �
. This
gives an exponential lower bound on the Coupling time for any strategy, as desired.
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8.1 Details of the Analysis

We partition the states of the Coupling chain " into layers ����, � � 	� � � � � 
� according to the “distance” �
between its elements, where ���� contains of all pairs �.��� � ��� such that �. �� � � �. We further
partition each set ���� into two sets ������ and ������, where ������ � ��� �� �� # vertex � which is
unmatched in exactly one of .���, and ������ � ��� �� �� either both . and � are perfect matchings
or both are near-perfect matchings with the same unmatched vertices�.

A move in " from ���� to ��9� is leftwards or distance reducing if 9 $ �, and rightwards or distance
increasing if 9 � �. Since  has ���"% � perfect matchings, with overwhelming probability, the start state of
the Coupling lies in ���� for some � � �!. For simplicity therefore, we assume that the Coupling " begins
at some state in �����, �� � �!.

The idea now is to upper bound the probabilities of the leftward transitions and lower bound the proba-
bilities of the rightward transitions, and then use these bounds to show that the Coupling has a tendency to
drift towards the right. Finally, this will imply that the (expected) number of steps to reach a state in ��	�
will be exponentially large, giving us our desired result.

The Key Lemmas. We now state the main Lemmas which bound transition probabilities between different
layers. We will later use the statements of these Lemmas give us the desired “rightward drift”. We give a
representative proof of one of the Lemmas (the proofs of the other Lemmas can be found in [27], and we do
not reproduce them here).

Lemma 8.1 No transition in " can change the distance by more than !.

Lemma 8.2 For any coupling strategy, the sum of transition probabilities from �.��� � ������ to vertices
in ��9�, 9 $ �, is at most ����

� .

Lemma 8.3 For any coupling strategy, the sum of the transition probabilities from �.��� � ������ into����
'��������� � is at least /�������

�� .

Lemma 8.4 For any coupling strategy, the sum of the transition probabilities from �.��� � ������ into
������ � ����� � 	 � is at most ���

�� .

Lemma 8.5 For any coupling strategy, all transitions from �.��� � ������ are to vertices in either
������ or in ����� � for some 9 � �� 
.

We only prove Lemma 8.3 as it is the key Lemma that establishes a tendency of any Coupling to drift to the
right. This should give a flavor of the sort of arguments necessary to prove the other Lemmas as well.

Proof of Lemma 8.3: Since �.��� � ������, three cases arise: (a) . is a near-perfect matching and �
is a perfect matching; (b). is a perfect matching and � is a near-perfect matching; and (c) Both. and �
are near-perfect matchings with at most one common unmatched vertex. Case (b) is symmetric to Case (a),
so we consider Cases (a) and (c) in turn.

Case (a): . is near-perfect and � is perfect. Let , � <� and + � <� be the unmatched vertices in . .
We consider only one situation that will increase �. � � � and then lower bound the probability that this
situation occurs. The situation is: . moves to.� �.�!��D� D�� where ! � �,� D� and �D� D�� �.�� .
Now �. � �� � � �. �� �� 
. � can move to � � where either � � � � or � � � � � � for some edge
� � � . In either case �. � �� �� � �. �� � � �. Furthermore, D� and + are unmatched in .�, and since
�D�� +� � � , at least one of them is matched in ��. We thus conclude �.�� � �� � ����� �, for some 9 � �.
Now the probability that this situation occurs is clearly at least /���0�� �

�� which is at least /���
�� , for any

coupling strategy.
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Case (b): . and � are both near-perfect. Suppose . have vertices , � <� and + � <� unmatched and �
has vertices � � <� and B � <� unmatched. Let us assume that + �� B (while � could equal ,).

We once again focus on a particular class of moves which . makes. Suppose . chooses an edge
! � �+� D�, where D is not adjacent to B and �D� D�� �. �� for some D� � <� (by our assumption about  
there exist at least 2�
��. �� � � 2�
�� such edges !. If ! is picked (i.e.,.� �.�!��D� D��) then
�. � �� � � �. �� �� 
. It is easy to verify now that the only moves for � that can reduce the distance
back by 
 are when it choose the unique edge ��� ��� � . , if any, or the unique edge �B� B�� � . , to swap
in. The probability of either of these happening is at most �

�� for any coupling strategy. Furthermore, in this
case D� � <� is unmatched in . � and must be matched in �� because �D� D�� � � (it lies in . � � ) and
�D� B� � = by the choice of D. Hence �.�� � �� lies in �����. Summing up, �. �� � �� � ����� � for 9 � �
with probability at least /�������

�� . � (Lemma 8.3)

8.2 Bounding the Coupling Time

With the above Lemmas in place, we are ready to finish off the analysis bounding the coupling time. The
rightward drifting behavior of any Coupling " can be predicted (qualitatively) given the above Lemmas. We
now see how to quantify this intuition. We define a sequence of random variables 5�� 5�� � � �which represent
the layer number of some intermediate states of the Coupling. We will show that ���5� � 	� � �!�#���,
and this will imply an exponential lower bound on the Coupling time.

Define 5� to the layer number of the starting state of the Coupling ". As discussed earlier, we assume
5� � �!. Also assume, by virtue of Lemma 8.5, that the starting state is in a ����� set rather than a �����
set.

For � � 	, the random variable 5� is defined as follows. If 5��� � 	 then 5� � 	. Otherwise, 5� is the
layer number of the first state 7 reached in the Coupling " that has the following properties:

1. 7 � ��5����.

2. 7 is in some ����� set or in ��	�.

Lemma 8.6 For every � � �, �5� � 5����  �

Proof: Follows easily from Lemmas 8.1 and 8.5. �

The Lemma below quantifies the “rightward drifting” behavior of the sequence 5�� 5�� � � �.

Lemma 8.7 Define (� �
/����������

�� and )� �
���������

�� . Then ���5� � 5����5���� � ��
�����

.

Proof: By Lemma 8.3, 5� � 5��� happens with probability at least (�. By Lemma 8.5, 5� $ 5���

only if the first vertex visited after leaving ����
��� � for the last time is either in ��9�, 9 $ �, or is in
����
��� � � ����
��� � 	 �. By Lemmas 8.2 and 8.4, this probability is at most )�. The claimed result
now follows. �

Let ; � 	 be a constant such that ��$����
/����$���  �

�� . Then it is easy to see using the above Lemma that

�
��

�5� � 5��� � 5���+ 	 $ 5���  ;�� � �

!
� (31)

Combining Lemma 8.6 with the above Equation, we will be able to bound the Coupling time by appealing
to the following submartingale inequality [27] (see also [16]).

Propostion 8.8 Let 5�� 5�� 5�� � � � be a sequence of random variables with the following properties (for
some F���. � 	):
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1. 5� � 	, for all � � 	. Further 5� � 	$ 5��� � 	, for all � � 	.

2. �5� � 5����  � for all �, � � �.

3. � �5� � 5��� � 5���+ 	 $ 5���  F� �. , for all �, � � �.

Let 	 be the random variable defined as ����� � 	�5� � 	�. Then

���	  ��5��  !�
���
	� � �!�

����	�

	� �

Note that the above is very similar in spirit to Azuma’s inequality applied to submartingales, except that the
assumption (3) above is made only when conditioned on 	 $ 5���  F, and not for any value of 5��� (as
is done in Azuma’s inequality).

Let us now apply the above Proposition to our setting. Let �# be the earliest instant at which the prob-
ability that coupling time exceeds �# falls below �. Define 	 � ����� � 	�5� � 	�. Then, applying
Proposition 8.8 with � � �,. � �!, F � ;� and 5� � �!, we get

�� �  ���	  �#�5��  �#!�#��� �

It follows that �# � ��� ��'���*����. We have thus proved the following:

Theorem 8.9 ([27]) Consider any Coupling process for the Markov chain � ! for sampling from perfect
and near-perfect matchings. The probability that this process has “coupled” exceeds ��� �� only after time
����� ��!#����. Thus, no proof of rapid mixing of� ! exists based on the Coupling Lemma.

9 Concluding Remarks and Open Questions

We have seen that the mixing rate of a Markov chain is captured by the spectral gap and also by a geometric
parameter called Conductance. We discussed ways to bound the conductance, and also ways to bound the
spectral gap directly, based on construction of canonical paths or flows between every pair of states that do
not overload any transition of the Markov chain. The “flow” based approach led to the notion of resistance
which also captures the spectral gap (up to square factors). We showed that for a large class of chains,
the existence of “good” canonical paths with low edge-congestion also captures mixing time, and thus is
no weaker than the resistance based approach. We nevertheless demonstrated that spreading the flow along
multiple paths might still be a very useful design tool by discussing the recent result of [34] on the rapid
mixing of a natural chain for sampling 	-� knapsack solutions.

We then turned to an entirely different approach to proving rapid mixing: Coupling. We discussed
“Path Coupling” which is a useful tool in designing good Couplings. We saw several simple and elegant
applications of Coupling which invariably gave much better bounds on mixing time than known through
conductance. One of these examples was the 	-� knapsack problem with uniform item sizes for which we
proved a much better mixing time bound than seems possible using the (more difficult) approach of [34].

Despite the appeal of Coupling in several applications, it turns out that Coupling is weaker than conduc-
tance in the sense that there are Markov chains with an exponential gap between their actual mixing time and
that which can be deduced using any Coupling strategy. We discussed the result of [27] which showed such
a result for the famous Jerrum-Sinclair chain for sampling uniformly from the set of perfect and near-perfect
matchings of a bipartite graph.

There are several natural questions on the relative power of the various techniques that are worthy of
more detailed study. We list some of them below.
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� The result of Kumar and Ramesh [27] is quite natural and says that Coupling cannot work when there
is a measure of distance relative to which the states have a tendency to drift away from each other
in any Coupling strategy. It will be nice to find other chains for which Coupling cannot prove rapid
mixing. This might shed some light on how to tackle the question we raise next.

� Is there a subclass of Markov chains for which Coupling characterizes rapid mixing (up to polynomial
factors)? What kinds of structure in the underlying problem enables easy design of good couplings,
i.e., what makes a problem “Coupling friendly”?

� It almost seems that whenever Path Coupling works there is a “natural” notion of adjacency and a
distance metric fixing which gives a rather easy proof of rapid mixing. For several problems for
which the natural choice for these notions does not work, no known Coupling based proof seems to
be in sight as well. It will be interesting to shed some light on this, and investigate how one may make
Coupling work when most natural choices for doing Path Coupling do not work out.

� Finally there are several questions still open about designing and analyzing rapidly mixing Markov
chains for specific sampling problems. Some of our favorite ones are:

– Bipartite graphs with a given degree sequence (for sampling regular bipartite graphs, a rapidly
mixing Markov Chain was given in [25]). More generally, contingency tables with given row
and column sums (the 
� � case was solved in [13] using Path Coupling).

– Independent sets in graphs with maximum degree (. (The case �  ! has been considered in
[29, 15], and a “negative” result for � � # appears in [10].)

– Proper 1-colorings of a graph when 1 $ ��
� �.

– Perfect matchings in a general bipartite graph.
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bilités XVII 1981/82, Springer Lecture Notes in Mathematics 986, 1983, pp. 243-297.

[2] D. Aldous. Some inequalities for reversible Markov chains. Journal of the London Mathematical So-
ciety, 25 (1982), pp. 564-576.

[3] N. Alon. Eigenvalues and expanders. Combinatorica, 6 (1986), pp. 83-96.

[4] A. Broder. How hard is it to marry at random? (On the approximation of the permanent). Proc. of 18th
STOC, pp. 50-58, 1986.

[5] R. Bubley and M. Dyer. Path coupling: a technique for proving rapid mixing in Markov chains. Proc.
of 38th FOCS, pp. 223-231, 1997.

[6] R. Bubley and M. Dyer. Faster random generation of linear extensions. Proc. of the 9th ACM Sympo-
sium on Discrete Algorithms, pp. 35-354, 1998.

[7] R. Bubley, M. Dyer and M. Jerrum. An elementary analysis of a procedure for sampling points in a
convex body. Random Structures and Algorithms, 12 (1998), pp. 213-235.

[8] P. Diaconis and D. Strook. Geometric bounds for eigenvalues of Markov chains. Annals of Applied
Probability, 1 (1991), pp. 36-61.

31



[9] M. Dyer and A. Frieze. Computing the volume of convex bodies: a case where randomness prov-
ably helps. In Probabilistic Combinatorics and its Applications, Proc. of AMS Symposia in Applied
Mathematics, 44 (1991), pp. 123-170.

[10] M. Dyer, A. Frieze and M. Jerrum. On counting independent sets in sparse graphs. Proc. of 40th FOCS,
pp. 210-217, 1999.

[11] M. Dyer, A. Frieze and R. Kannan. A random polynomial time algorithm for approximating the volume
of convex bodies. Journal of the ACM, 38 (1991), pp. 1-17.

[12] M. Dyer, A. Frieze, R. Kannan, A. Kapoor, L. Perkovic and U. Vazirani. A sub-exponential time
algorithm for approximating the number of solutions to a multidimensional knapsack problem. Com-
binatorics, Probability and Computing, 2 (1993), pp. 271-284.

[13] M. Dyer and C. Greenhill. A genuinely polynomial-time algorithm for sampling two-rowed contin-
gency tables. Proc. of the 25th International Colloquium on Automata, Languages and Programming
(ICALP), pp. 339-350, Aalborg, Denmark (1998),

[14] M. Dyer and C. Greenhill, A more rapidly mixing Markov chain for graph colourings. Random Struc-
tures and Algorithms, 13 (1998), pp. 285-317.

[15] M. Dyer and C. Greenhill. On Markov chains for independent sets. Journal of Algorithms, 35 (2000),
pp. 17 - 49.

[16] B. Hajek. Hitting time and occupation time bounds implied by drift analysis with applications. Ad-
vances in Applied Probability, 14 (1982), pp. 502-525.

[17] T. Feder and M. Mihail. Balanced Matroids. Proc. of 24th STOC, pp. 26-38, 1992.

[18] M. Jerrum. A very simple algorithm for estimating the number of k-colourings of a low-degree graph.
Random Structures and Algorithms, 7 (1995), pp. 157-165.

[19] M. Jerrum. Mathematical foundations of the Markov chain Monte Carlo method. In Probabilistic Meth-
ods for Algorithmic Discrete Mathematics, Algorithms and Combinatorics 16, Springer-Verlag, 1998,
pp. 116-165.

[20] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Computing, 18 (1989), pp.
1149-1178.

[21] M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the Ising model. SIAM Jour-
nal on Computing, 22 (1993), pp. 1087-1116.

[22] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: an approach to approximate
counting and integration. In Approximation Algorithms for NP-hard problems, D.S Hochbaum ed.,
PWS Publishing, Boston, 1997, pp. 482-520.

[23] M. Jerrum, L. G. Valiant and V. V. Vazirani. Random generation of combinatorial structures from a
uniform distribution. Theoretical Computer Science, 43 (1986), pp. 169-188.

[24] N. Kahale. A semidefinite bound for mixing rates of Markov chains. DIMACS Technical Report 95-41,
September 1995.

32



[25] R. Kannan, P. Tetali and S. Vempala. Simple Markov chain algorithms for generating bipartite graphs
and tournaments. Proc. of 8th SODA, 1997.

[26] A. Karzanov and L. Khachiyan. On the conductance of order Markov chains, Technical Report DCS
268, Rutgers University, June 1990.

[27] V.S. Anil Kumar and H. Ramesh. Coupling vs. conductance for the Jerrum-Sinclair chain. Proc. of
40th FOCS, pp. 241-251, 1999.

[28] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicommodity flow
problems with applications to approximation algorithms. Proc. of 29th STOC, pp. 422-431, 1988.

[29] M. Luby and E. Vigoda. Approximately counting up to four. Proc. of 29th STOC, pp. 682-687, 1997.

[30] P. Matthews. Generating random linear extensions of a partial order. The Annals of Probability, 19
(1991), pp. 1367-1392.

[31] M. Mihail. Conductance and convergence of Markov chains: a combinatorial treatment of expanders.
Proc. of the 30th FOCS, pp. 526-531, 1989.

[32] M. Mihail. On coupling and the approximation of the permanent. Information Processing Letters, 30
(1989), pp. 91-95.

[33] B. Mohar. Isoperimetric numbers of graphs. Journal of Combinatorial Theory, Series B, 47 (1989), pp.
274-291.

[34] B. Morris and A. Sinclair. Random walks on truncated cubes and sampling 	-� knapsack solutions.
Proc. of 40th FOCS, pp. 230-240, 1999.

[35] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7 (1987), pp. 365-374.

[36] A. Sinclair. Algorithms for random generation and counting: a Markov chain approach. Ph.D thesis,
University of Edinburgh, June 1988.

[37] A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity flow. Combina-
torics, Probability and Computing, 1 (1992), pp. 351-370.

[38] A. Sinclair and M. Jerrum. Approximate counting, uniform generation, and rapidly mixing Markov
chains. Information and Computation, 82 (1989), pp. 93-133.

[39] S. Vadhan. Rapidly mixing Markov chains and their applications. Essay, Churchill College, Cambridge
University, May 1996.

[40] E. Vigoda. Improved bounds for sampling colorings. Proc. of 40th FOCS, pp. 51-59, 1999.

33


