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This paper presents a straightforward method of approximating theoretical bounds on burn-in time
for MCMC samplers for hierarchical normal linear models. An extension and refinement of Cowles
and Rosenthal’s (1998) simulation approach, it exploits Hodges’s (1998) reformulation of hierarchical
normal linear models. The method is illustrated with three real datasets, involving a one-way variance
components model, a growth-curve model, and a spatial model with a pairwise-differences prior. In
all three cases, when the specified priors produce proper, unimodal posterior distributions, the method
provides very reasonable upper bounds on burn-in time. In contrast, when the posterior distribution for
the variance-components model can be shown to be improper or bimodal, the new method correctly
identifies convergence failure while several other commonly-used diagnostics provide false assurance
that convergence has occurred.
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1. Introduction

A critical question for users of Markov chain Monte Carlo meth-
ods for estimation and inference is determining “burn-in” time—
how many initial iterations must be discarded from MCMC sam-
pler output in the hope that the remaining iterates are drawn from
a close approximation to the target distribution. Considerable
research exists regarding theoretical upper bounds on burn-in
time, for example Meyn and Tweedie (1994), Rosenthal (1995),
and Roberts and Tweedie (1999). The usefulness of these ap-
proaches for real models is limited by the fact that they involve
extremely difficult computations even for relatively simple prob-
lems and often produce impractically large upper bounds. Jones
and Hobert (2001) compute theoretical convergence bounds in a
reasonably straightforward manner, but for a single model only.
Consequently, most MCMC users apply convergence diagnos-
tics to sampler output. Brooks and Roberts (1998), Cowles and
Carlin (1996), and Mengersen, Robert and Guihenneuc-Joyaux
(1999) found that diagnostics based on sampler output can be
fooled. Furthermore, Cowles, Roberts and Rosenthal (1999)
showed that naive use of convergence diagnostics may actually
introduce bias into MCMC output analysis.

Two recent approaches to guaranteeing or assessing MCMC
convergence are coupling from the past (“CFTP”) (see for ex-
ample Propp and Wilson 1996, Green and Murdoch 1998) and
Johnson’s (1998) two-chain coupling-regeneration diagnostic.
CFTP enables obtaining an exact draw from the target distri-
bution of an MCMC sampler; however, at present it is com-
putationally infeasible for complex samplers with continuous
state spaces. Johnson’s method, on the other hand, can be ap-
plied straightforwardly to the complex hierarchical normal lin-
ear models that are the subject of this paper. It requires fairly
minimal supplementary coding plus the running of a single aux-
iliary chain of the same length as the primary chain, the output of
which is used for inference and estimation. At intervals of length
T , the auxiliary chain is restarted from a chosen point x∗ in the
state space of the chain. The method enables graphical assess-
ment of geometric ergodicity, estimation of a lower bound on the
“effective sample size” of correlated sampler output, and deter-
mination of a skip interval k such that, with a specified probabil-
ity, a subsample consisting of every kth iterate from the sampler
constitutes an independent sample from the target distribution.

However, Johnson (1998) states (p. 246): “...when the restart
interval T is seriously underestimated and the number of restart
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intervals is small ... the MCMC algorithm may not reach equi-
librium before sampling terminates, and [the procedure] may
not provide useful diagnostic information.” For example, for a
multimodal target distribution, Johnson’s diagnostic may incor-
rectly indicate rapid convergence if one or more major modes
is missed by both the primary chain and the auxiliary chain.
Furthermore, Johnson’s diagnostic may fail to identify conver-
gence failure if no posterior distribution exists. Both cases are
illustrated in Section 5.

The limitations of existing convergence-assessment methods
suggest a continuing need for a practical method of at least ap-
proximating theoretical bounds on burn-in for the kinds of mod-
els for which MCMC is used in practice. Cowles and Rosenthal
(1998)—hereafter “C&R”— proposed the use of auxiliary sim-
ulations to verify numerically certain conditions that are known
to provide upper bounds on convergence times but that are dif-
ficult or impossible to verify analytically for complex models.
Although they successfully applied their method to two models
for which theoretical convergence bounds had not previously
been determined, they provided little guidance on how to imple-
ment their approach in more general cases.

The present paper extends C&R’s simulation approach to
complex hierarchical normal linear models (HNLMs) and pro-
vides explicit direction for applying it to general models of this
class. Section 2 reviews a theorem from Rosenthal (1995) and
Section 3 describes a reformulation of the HNLM that greatly fa-
cilitates C&R’s approach. Section 4 details application of C&R’s
method to HNLMs, using the variance-components model as an
example. Real data results are presented in Section 5, under three
different prior specifications. When the resulting posterior is
proper and unimodal, the simulation method verifies very rapid
burn-in. When the priors are altered to produce first an improper
posterior and then a bimodal posterior, the new method identi-
fies convergence failure while several popular convergence di-
agnostics, as well as Johnson’s (1998) method, do not. Section 6
applies the method to two more-complicated models—a spa-
tial model with a pairwise-differences prior and a growth-curve
model. Section 7 contains discussion.

Although the simulation-based method of convergence veri-
fication is more computationally intensive than competing con-
vergence diagnostics, it is far more reliable. It therefore is recom-
mended when correct inference based on models fit with MCMC
samplers is crucial.

2. Rosenthal’s theorem (1995)

Using coupling theory, Rosenthal (1995) proved a theorem es-
tablishing exponential convergence in total variation distance
with an explicit rate if an MCMC sampler can be shown to sat-
isfy a drift condition and a minorization condition. We briefly
review these conditions and the result of the theorem. Details
are in Rosenthal (1995) and Cowles and Rosenthal (1998).

Let {X (k)}∞k=0 be a Markov chain with state spaceX , stationary
distribution π , and transition probabilities P(X, ·). Then verify-
ing the drift condition involves specifying a function V mapping

the state space X to the non-negative real line such that:

E
(
V

(
X (m)

) ∣∣ X (0) = x
) ≤ λ V (x) + �, x ∈ X (1)

where E denotes expectation, λ < 1, � < ∞, and m is a positive
integer (number of iterations). Heuristically the drift condition
means that whenever the chain enters a region of the state space
that produces large values of V , it tends to move toward re-
gions that produce smaller values. Choosing V such that V ≥ 1
will produce tighter bounds on convergence in the computations
below, and this is assumed in what follows.

The minorization condition states that

Pmk0 (x, ·) ≥ εQ(·), x ∈ Vd (2)

where d is chosen comfortably larger than 2�
1−λ

−1, Vd = {x ∈ X ;
V (x) ≤ d}, ε > 0, Q(·) is a probability measure on X , and m and
k0 are positive integers. Intuitively, this means that a subset of
the state space Vd , defined by an upper bound on the value of
V , exists such that two parallel Markov chains starting at any
two different points in Vd would have positive probability of
“coupling” (arriving at the same point in the state space) in the
next mk0 iterations.

Two lemmas from Rosenthal (1995) facilitate verification of
the minorization condition. Lemma 7 states that the minorization
condition need be verified only for those parameters that are
updated before being used in computations at the next sampler
iteration. Lemma 6b enables determining ε when the transition
probabilities of the Markov chain are densities. It says that, if a
Markov chain satisfies Pmk0 (x, ·) = f (x, y) dy, where f (x, ·)
is a density function and dy is Lebesgue measure, then there
exists a probability measure Q(·) satisfying (2), where

ε =
∫
X

(
inf

x∈Vd

f (x, y)
)

dy (3)

If these conditions can be verified and V (x) ≥ 1 for all x ∈ X ,
then Rosenthal’s theorem provides the following bound on total
variation distance to stationarity at the kth iteration:∥∥L

(
X (k)

) − π
∥∥

var
≤ (1 − ε)[rk/mk0] + C0 (αA)−1

× (
α−(1−rk0) Ar

)[k/m]
(4)

where α−1 = λ + M�+(1−λ)(1−M)
1+ M

2 (d−1)
, A = M(λd + �) + (1 − M),

C0 = M
2 ( �

1−λ
+ Eν(V (X (0)))) + (1 − M), and ν is the distribu-

tion of the initial value of the Markov chain. Tuning constants
r and M may be chosen within the ranges 0 < r < 1 and M > 0
so as to obtain the tightest bounds.

3. Reformulating hierarchical linear models
and the Gibbs sampler

Gelman et al. (1995) and Hodges (1998) described an approach
to reformulating HNLMs as standard linear models, which
greatly simplifies C&R’s simulation approach to verifying drift
and minorization conditions.

For an HNLM, let y denote the observed data and Θ1 de-
note those parameters required to specify the expectation of y,
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i.e. E(y) = X̄1Θ1 for X1 a known design matrix. Similarly at
the second level, let Z1 and Z2 specify the mean of Θ1 con-
ditional on parameters in Θ2. Finally, let matrices W1 and W2

and vector M specify the prior means for parameters in Θ2 and
parameters in Θ1 that are not modeled at the second level of
the hierarchy. Then the entire means structure may be expressed
as: 


y

0

M


 =




X1 0

Z1 Z2

W1 W2




(
Θ1

Θ2

)
+



ψ

δ

ξ




or

Y = XΘ + E

where Y consists of known values, X is a known design matrix,
Θ is a vector of unknown parameters, and ψ, δ, and ξ are error
vectors.

The covariance matrix Σ of E is block diagonal. The upper
lefthand block is the covariance matrix of ψ, the middle block
the covariance matrix of δ, and the lower righthand block the
known prior covariance matrix.

For example, in the variance-components model, the three
stages of the standard hierarchical form are:

Yi j | θi , σ
2
y ∼ N

(
θi , σ

2
y

)
, i = 1, . . . , K , j = 1, . . . , J

θi | µ, σ 2
θ ∼ N

(
µ, σ 2

θ

)
, µ ∼ N

(
µ0, σ

2
0

)
which may be written as


yn×1

0K×1

µ0,1×1


 =




Xn×K 0n×1

−IK×K 1K×1

01×K 11×1




(
θ

µ

)
+



ψ

δ

ξ




The covariance matrix of the error terms is diagonal, with the
first n diagonal entries equal to σ 2

y and the next K diagonal
entries equal to to σ 2

θ . The final diagonal entry is equal to σ 2
0 .

The Bayesian variance-components model is completed with
priors on σ 2

y and σ 2
θ .

σ 2
y ∼ IG(a1, b1), σ 2

θ ∼ IG(a2, b2)

where a1, b1, a2 and b2 are known constants and IG denotes the
inverse gamma p.d.f.

Hodges (1998) and Sargent, Hodges and Carlin (2000) point
out that the reformulation suggests an improved MCMC sampler
for HNLMs, in which all the means parameters are generated
as a block. (The variance/covariance parameters are generated
as usual from their conjugate full conditional distributions.) For
the variance-components example, the full conditionals used at
iteration k of the sampler are:

σ 2(k)
y

∣∣θ(k−1)

∼ IG

(
a1 + JK

2
, b1 +

∑K
i=1

∑J
j=1

(
Yi j − θ

(k−1)
i

)2

2

)
(5)

σ
2(k)
θ

∣∣θ(k−1),

µ(k−1) ∼ IG

(
a2 + K

2
, b2 +

∑K
i=1

(
θ

(k−1)
i − µ(k−1)

)2

2

)
(6)

Θ(k) = [
θ(k), µ(k)

] ∣∣ σ 2(k)
y ,

σ
2(k)
θ ∼ N ([XT�−1X]−1XT�−1Y, [XT�−1X]−1) (7)

When the multivariate normal in (7) is high-dimensional, an effi-
cient computing algorithm based on the Choleski decomposition
of XT�−1X speeds up generation enormously.

4. Bounding burn-in time for an MCMC
sampler for the reformulated model

4.1. Specifying the V function

C&R gave little guidance on the choice of the function V, saying
only that

The conditions [drift and minorization] ... imply the
following informal goals for the function V : (a) if
the chain is ‘far away’, then the value of V should
tend to decrease on the next iteration; and (b) the
transition probabilities P(x, ·) should have reason-
ably large ‘overlap’ from all points x with V (x) ≤ d.

For a reformulated HNLM, choosing an appropriate mathemat-
ical form for the V function is easy. The function V needs to
“control” only those parameters whose values are used in the
next sampler iteration after that in which they are generated.
Inspection of (5)–(7) reveals that for the variance-components
model, these are θ and µ. (In contrast, new values of σ 2

y and σ 2
θ

are generated at the beginning of each iteration, and these new
values are used in the same iteration.) For general reformulated
HNLMs, V must control the means parameters designated �

in Section 3. Let T denote the vector of all variance-covariance
parameters and p(T) its prior. Then the unnormalized joint pos-
terior distribution of all parameters is:

p(T, � | Y) ∝ p(T)

× 1

|Σ|1/2
exp

(
− [Y − X�]T Σ−1[Y − X�]

2

)

For any fixed value of T, V ∗ = [Y − X�]T Σ−1[Y − X�] (the
weighted sum of squared residuals) is exactly what is needed: a
non-negative function of Θ that takes on large values for low-
posterior-probability regions of the parameter space (and thus
of the state space of the Markov chain) and small values for
high-posterior-probability regions. For the variance-components
model, this is:

V ∗ =
∑

i

∑
j (Yi j − θi )2

σ 2
y

+
∑

i (θi − µ)2

σ 2
θ

+ (µ − µ0)2

σ 2
0

(8)
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Because σ 2
y and σ 2

θ are unknown parameters treated as ran-
dom in our Bayesian model, (σ 2

0 in contrast is a known prior
variance), appropriate constants must be substituted into (8).
To choose such constants, the maximum likelihood estimate
�̂ = [

XT�−1X
]−1

XT�−1Y may be plugged into V*, pro-
ducing a profile joint posterior that is a function of σ 2

y and σ 2
θ

alone. Since the dimension is only two, their posterior modes or
posterior means may be computed by nonlinear optimization or
numeric integration respectively. Alternatively, the means or me-
dians of the posterior distributions of the variance-components
from a pilot sampler, preferably based on a different MCMC
algorithm, may be used.

Values obtained by one of these methods may be substituted
into (8), producing

V ∗∗ =
∑

i

∑
j (Yi j − θi )2

σ̂ 2
y

+
∑

i (θi − µ)2

σ̂ 2
θ

+ (µ − µ0)2

σ 2
0

, (9)

Because tighter bounds on burn-in can be obtained with a V
function that takes on values ≥1, a final useful step is to minimize
V ∗∗ over θ and µ, obtaining a minimum value, say v, and to set

V = V ∗∗

v
≥ 1 (10)

4.1.1. Analytic evidence of the appropriateness
of this V function

Jones and Hobert (2001) analytically established drift and mi-
norization conditions for the reformulated version of the one-
way variance components model. Their bounds on total variation
distance are not tight, in part because only the case m = k0 = 1
could be considered due to difficulty of the analytic computations
required. In addition, they have not yet obtained analytic results
for any HNLMs more complicated than the one-way variance-
components model. For their V function, Jones and Hobert used

VJ H = φ

K∑
i=1

(θi − µ)2 +
K∑

i=1

(θi − Ȳ i )
2

where φ is chosen such that φK
2a1+J K−2 + max( 1

2a2+K−2 ,
K+1

2a1+J K−2 ) < 1. Let SSE denote
∑K

i=1

∑J
j=1(Yi j − Ȳ i )2. Then

VJH = V ∗∗ − SSE
J with 1

σ̂ 2
0

= 0 (a locally uniform prior on µ),
1
σ̂ 2

θ

= φ, and 1
σ̂ 2

y
= 1

J . That is, VJH differs from V ∗∗ only by an
additive constant, which is absorbed into Jones and Hobert’s
expression for � in (1). This provides analytic evidence that a
function in the form (9) will enable verification of the drift con-
dition. It also suggests bounds (defined in terms of constants
from the prior and the data) on the ratio σ̂ 2

θ

σ̂ 2
y

in order for a drift
condition to be verified.

4.2. Verifying the drift condition for reformulated models

C&R proposed a two-step simulation process to find lower
bounds on λ and � in (1). First, for each point x0 ∈ X such
that V (x0) = 0, they run N0 m-iteration chains with x0 as initial
value and thus estimate E(V (X (m)) | X (0) = x0) as the mean of

V (X (m)) over the N0 draws. The largest of these estimated ex-
pected values, over all values of x0, provides a lower bound �̂.
If V (x) has been chosen greater than or equal to 1, they carry
out this process with V − 1 and add 1 to the resulting �̂. N0

is specified large enough that the standard error of this mean is
less than or equal to a chosen tolerance, and m is chosen by trial
and error to produce a small final bound. In our experience with
the types of models described in this paper, values of m between
3 and 12 usually are optimal.

Next, a value of λ corresponding to �̂ must be estimated.
C&R generate N1 (determined by the complexity of the state
space) different sets of initial values x∗

0 ∈ X . As many sets
as are required to represent all finite boundaries of the state
space are specified deterministically. Additional sets of initial
values are generated randomly from interior regions of the state
space and/or to approach infinite boundaries. For each such
initial value x∗

0 , C&R run N2 m-iteration chains from which
they estimate e(x) = E(V (X (m)) | X (0) = x∗

0 ). An estimate λ̂

corresponding to the given �̂ is obtained as the maximum of
λ̂ j = (e(x) − �̂)/V (x) over all choices of x∗

0 . The number of
replicate chains N2 is chosen to produce acceptably small stan-
dard errors of all λ̂ j s. If λ̂ ≥ 1, they repeat the procedure with a
larger value of �̂ or of m.

For the variance-components model, initial values are needed
only for θ and µ because values of σ 2

y and σ 2
θ from the previous

iterations are not used in any full conditionals. When the V
function is constructed as above, the single set of initial values x0

such that V (x0) = 1 is found automatically when minimizing V .
Regarding initial values x∗

0 for the second step, inspection of
(5)–(7) indicates that initial values affect the output of the first
iteration of this sampler only through the sums of squares in (5)
and (6). Thus sets of initial values that produce the minima of
these sums of squares, as well as representative values from their
full range of possible values, must be selected. Clearly, the lower
bound on

∑
i

∑
j (Yi j − θi )2 is

∑
i

∑
j (Yi j − Ȳ i )2. All terms in∑K

i=1(θi − µ)2 are identically 0 if each θi = µ, i = 1, . . . , K .
Thus, sets of initial values x∗

0 may be generated as follows. The
first set of initial values x∗

01 is generated by setting each θi =
Ȳ i , i = 1, . . . , K and µ = ¯̄Y (the overall mean of the observed
values). A second set x∗

02 is generated by setting not only µ but
also all θi , i = 1, . . . , K , equal to ¯̄Y . Additional sets of initial
values may be generated randomly from a sequence of normal
distributions centered at x∗

01 and with larger and larger variances.

4.3. Verifying the minorization condition

When the MCMC sampler’s transition probabilities are densities,
C&R suggest the following procedure to estimate ε in (2) and
(3). They divide those coordinates of the state space over which
Lemma 7 requires a minorization into a large number of little
“bins,” which must be small enough that the densities of the
transition probabilities are nearly constant over each bin. They
choose a value of d comfortably larger than 2�̂

1−λ̂
− 1 and define

Vd ≡ {x ∈ X ; V (x) ≤ d}. They then determine the “extremes
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of Vd”—that is, the sets of initial values x∗∗
0 in Vd from which

transition probabilities have minimum overlap among all choices
of x ∈ Vd . From each initial value x∗∗

0 they run N3 different
chains of length mk0 and record what proportion of the final
iterations land in each little bin. They approximate the integral
in (3) by summing, over all little bins, the minimum over different
choices of x∗∗

0 , of the fraction of samples landing in that bin.

4.3.1. Selecting the number of replications and the bin size

C&R provided little guidance on how to choose N3 and the
bin size. We propose the following semi-automatic procedure,
which has produced reasonable results in our work. Here dim
denotes the number of dimensions over which the minorization
condition must be verified.

1. Choose an initial value of N3 such that N3
5 is comfortably

larger than 10dim and run N3 replicate samplers from each
set of initial values x∗∗

0 .
2. For each coordinate, find the minimum and maximum value

obtained from all samplers from all starting values. Create
the first set of bins by partitioning this range for each coordi-
nate into 10 equal-length intervals. Estimate ε three times as
described above, using the following three different fractions
of the samples run: N3

5 , 2 × N3
5 , and 3 × N3

5 .
3. Halve the bin size by repartitioning each coordinate into

21/dim × 10 (rounded to an integer) equal-length intervals.
Re-estimate ε using 2 × N3

5 , 3 × N3
5 , and 4 × N3

5 replicate
samples from each x∗∗

0 .
4. Halve the bin size again and re-estimate ε using 3 × N3

5 ,

4 × N3
5 , and N3 replicate samples.

The binning method for estimating ε is based on histogram den-
sity estimation, and criteria for evaluating the results of the pro-
cess come from that field. Stability of the estimate of ε as the
sample size increases for a fixed bin size suggests that that bin
size is small enough. Thus at the least, the three estimates ob-
tained in step 4 should be approximately equal. Stability as the
bin size decreases for a fixed sample size suggests that the sam-
ple size is large enough, so the two estimates obtained with
4 × N3

5 replicates should be approximately equal. Finally, in or-
der for a histogram estimator to be consistent, the number of
observations per bin must get larger as the the bin size gets
smaller. Thus, the first estimates from each of steps 2 and 3, and
the last two estimates from step 4, should all be approximately
equal. If these criteria are not met, the process is repeated after
increasing either N3 or the initial number of bins or both. A
lower bound for ε is required. Thus, once the criteria are met,

Method Square-root transformed observed values

1 0.5830952 0.3464102 1.109054 0.836660 1.322876 0.3464102
2 0.9539392 1.7146428 1.462874 1.536229 1.691153 2.1330729
3 2.5119713 2.8930952 3.122499 2.467793 3.133688 2.6907248
4 4.1412558 3.4380227 3.309078 4.147288 3.788139 4.1012193

ε̂ should be chosen less than or equal to the smallest estimate
considered.

4.3.2. Verifying the minorization condition for reformulated
hierarchical normal models

The reformulation of HNLMs simplifies bounding burn-in time
by reducing the number of parameters over which the mi-
norization condition must be verified. According to Lemma 7
in Rosenthal (1995), in the reformulated variance-components
model, this condition must be verified only for σ 2

y and σ 2
θ .

In the standard Gibbs sampler for this model, in which µ

is generated separately from θ, it must be verified for µ as
well.

4.4. Finding the extremes of Vd

“The extremes of Vd” are upper and lower bounds, subject
to the constraint V ≤ d, on any quantities that appear in
the full conditionals for those parameters for which the mi-
norization condition must be verified. If not all extremes of
Vd are found, the method may fail to detect slow convergence.
Conversely, if the extremes are estimated too conservatively,
the estimated bounds on burn-in time will be unnecessarily
large.

Fortunately, computing the extremes of Vd exactly is straight-
forward for reformulated HNLMs. For the variance-components
model, the two quantities that must be bounded in (5) and (6) are∑

i (θi − µ)2 and
∑

i

∑
j (Yi j − θi )2, and a little algebra shows

that:

0 ≤
∑

i

(θi − µ)2 ≤ σ̂ 2
θ

(
vd −

∑
i

∑
j (Yi j − Ȳ i )2

σ̂ 2
y

)
∑

i

∑
j

(Yi j − Ȳ i )
2 ≤

∑
i

∑
j

(Yi j − θi )
2 ≤ σ̂ 2

y vd

5. Numerical example of a variance
components model

5.1. Peak discharge data

For illustration we used the dataset from Table 4-4 of
Montgomery (1991) consisting of J = 6 measurements of peak
discharge (in cubic feet per second) taken by each of K = 4
different methods at the same watershed. As recommended by
Montgomery, we applied the square root transformation to sta-
bilize variance, obtaining:
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5.2. Results for a proper, unimodal posterior

We first specified the following priors:

µ ∼ N (0, ∞)

σ 2
y ∼ IG(0, 0)

σ 2
θ ∼ IG(3, 4)

The priors on µ and σ 2
y are improper, but the proper prior on σ 2

θ

guarantees a proper posterior (see Hobert and Casella 1996). In
addition, this prior specification in combination with the likeli-
hood for these data can be shown to produce a unimodal posterior
(see Liu and Hodges 2002).

The V function was constructed as outlined in Section 4.1. The
third term (µ−µ0)2

σ 2
0

was omitted because it would always evaluate
to 0 due to the specification of σ 2

0 = ∞ in the prior on µ. As
the required constants, we used REML estimates σ̂ 2

y = 0.134
and σ̂ 2

θ = 1.793 obtained from proc mixed in SAS version 6.12
(SAS Institute, Cary NC), We used Maple (Waterloo Maple,
Inc.) to minimize the resulting V ∗∗ over θ and µ, obtaining
v = 23.06368862, and defined V ≥ 1 as in (10).

We used the simulation methods of Section 4.2 to obtain the
constants needed to verify the drift condition (1). The one set
of values x0 of θ and µ for which V attains its minimum, 1,
was obtained from the minimization of V ∗∗ in Maple. Running
N0 = 10000 chains of length m = 3 estimated � as 1.2034 with
a standard error of .0015, so we conservatively set �̂ = 1.21.
Computer run time for this step was 3 seconds. (All reported run
times are for programs coded in C and run on a Hewlett-Packard
C180 Unix workstation.)

In preparation for estimating λ, we computed the initial val-
ues denoted x∗

01 and x∗
02 in Section 4.2. We randomly generated

50 additional sets of initial values from normal distributions
with means x∗

01 and standard deviations ranging from .25 to 9.0.
These initial values produced a wide range of values for the sums
of squares in (5) and (6). Furthermore, estimates of λ became
smaller with larger standard deviations, so trying still larger
standard deviations would not have changed our final estimate.
From each set of initial values, we ran N2 = 5000 3-iteration
samplers (run time 2 minutes and 27 seconds). With this choice
of N2, the standard errors of all resulting estimates of λ were
≤0.015. We conservatively chose λ̂ = .04, the largest value of
any estimate of λ plus twice its standard error.

Based on λ̂ and �̂ from the drift condition, we specified
d = 2.5 and calculated the extremes of Vd as described in
Section 4.2. To estimate ε in the minorization condition (2),
we ran N3 = 10000 3-iteration samplers (m = 3 and k0 = 1)
from each of the 4 combinations of extreme values (run time
13 seconds). We constructed two-dimensional bins of differ-
ent sizes by partitioning each dimension into first 10, then
14, then 20 intervals, producing totals of 100, 196, and 400
bins respectively (i.e. approximately doubling the number of
bins each time). Resulting estimates of ε are as follows.

Number of Bins

Number of replicates 100 196 400

2000 �.89

4000 .90 �.87

6000 .91 �.89 �.88

8000 .90 �.89

10000 �.90

Applying the criteria from Section 4.3.1, we very conservatively
set ε̂ = 0.85, decidedly smaller than the smallest estimate from
the circled cells.

To compute the final bound on total variation distance to sta-
tionarity in (4), by trial and error we chose the tuning constants
r = .231 and M = 5.8. If the initial values of the sampler are
those that minimize V, then∥∥L

(
X (k)

) − π
∥∥

var
≤ (0.15)[0.077k] + (0.3077)(0.7333)[ k

3 ]

If k = 39, this bound is .0089. Thus, if the first 39 iterations are
discarded, subsequent draws are from a distribution that differs
from the true target distribution in total variation distance by
well under 0.01.

We compared these results with similar bounds obtained from
Johnson’s (1998) method. As a restart point x∗, we used REML
estimates of σ 2

y and σ 2
θ , the MLE of µ, and empirical Bayes

estimates of the θs, all obtained from proc mixed in SAS version
6.12 (SAS Institute, Cary, NC). We ran a two-chain coupler with
restart interval 12 in which the primary chain was initialized
with µ = ¯̄y and θi = Ȳ i , i = 1, . . . , K . In a 4812-iteration
run, the chains coupled during each of the 400 restart intervals.
The resulting SCQ plot and plot of the log of estimated ρm

versus m are shown in row 1 of Fig. 1. Johnson’s weighted least
squares approach suggests that the distribution of a subsample
of size 100 taken at skip intervals of 7 from the primary chain
would differ in total variation distance from the distribution of a
random sample of size 100 from the true posterior distribution
by less than 0.0037. Thus our method, though producing a very
small lower bound on burn-in time, is slightly more conservative
than Johnson’s for this problem. Jones and Hobert’s analytic
approach is much more conservative, suggesting that 800 burn-
in iterations are required to get a bound on total variation distance
less than 0.01.

5.3. Results when the posterior does not exist

As discussed by Hobert and Casella (1996), if the prior on σ 2
θ is

improper, i.e.
σ 2

θ ∼ IG(0, 0)
then the posterior distribution is also improper. That is, no sta-
tionary distribution exists to which the MCMC sampler can con-
verge. Neither Johnson’s method nor the most commonly-used
single-chain convergence diagnostics are guaranteed to detect
this problem.
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Fig. 1. Application of Johnson’s method to discharge-rate data

We ran a two-chain coupler with the same initial values, cou-
pling point, restart interval, and number of iterations as described
in the preceding section but with this improper posterior. Again,
the chains coupled within every restart interval. As shown in
row 2 of Fig. 1, the SCQ plot deviates only slightly from the
diagonal line, and the plot of the estimated ρm versus m is
nearly linear. Johnson’s weighted least squares computation sug-
gested a burn-in time and skip interval of 10. Similarly, all the
single-chain convergence diagnostics implemented in the soft-
ware package BOA (Smith 2000) suggested very rapid conver-
gence. The largest magnitude Z-score obtained with Geweke’s
diagnostic was 0.794. The sample path for every parameter
passed Heidelberger and Welch’s stationarity test without any
initial iterations being discarded. Raftery and Lewis’s diagnos-
tic indicated that more than enough iterations had been run to
estimate the 0.025 quantile of all parameters except θ4 to within
±0.005 with probability 0.95.

In contrast, the proposed simulation method flagged the im-
proper posterior in the second step of attempting to verify the

drift condition. We again used REML estimates for σ̂ 2
y and σ̂ 2

θ

in the V function. In the first step, we estimated �̂ = 1.27,
not very different from the 1.21 obtained with a proper pos-
terior. However, when, in trying to obtain a bound for λ, we
attempted to run a sampler from the initial values denoted x∗

02
in Section 4.2 in which θi = µ, i = 1, . . . , K , the sampler
stopped with an error message at its first attempt to generate
σ 2

θ . This occurred because the full conditional (6) was improper
(the scale parameter b2 +

∑K
i=1(θ (k−1)

i −µ(k−1))2

2 = 0). If any full con-
ditional is improper, it follows that the joint posterior distribu-
tion is improper. Jones and Hobert’s method similarly flagged
the improper full conditional with a divide-by-zero error in a
computation.

5.4. Results when the posterior
has two well-separated modes

Liu and Hodges (2002) developed an analytic method for deter-
mining whether the posterior distribution in a Bayesian balanced



384 Cowles

one-way variance-components model is unimodal or bimodal.
The result depends on the number of groups (K), the number of
observations per group (J), the prior hyperparameters a1, b1, a2,
and b2, and the data values

∑
i

∑
j (Yi j − Ȳ i )2 (“SSW ”) and

K
∑

i (Ȳ i − ¯̄Y )2 (“SSB”).
For our dataset, K = 4, J = 6, SSB = 32.684, SSW = 2.688,

and if the prior on σ 2
θ is changed to

σ 2
θ ∼ IG(4.0, 0.01)

then Liu and Hodges’s method reveals a bimodal posterior distri-
bution. For each model parameter, Fig. 2 shows traces of the out-
put from two samplers, one initialized near each mode. Clearly
the samplers do not jump readily from one mode to the other (in
2000 iterations, one chain switches modes once and the other
chain never).

To illustrate that Johnson’s diagnostic could fail to detect con-
vergence failure if a sampler was stuck in one of the two modes,
we ran a two-chain coupler with the restart point selected by set-
ting µ and all the θs equal to ¯̄y. The primary chain was initialized
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Fig. 2. Trace plots from parallel chains, bimodal posterior

with µ and all the θs set equal to 0. We ran 2412 iterations with a
restart interval of 12, obtaining 201 couplings. The plots shown
in row 3 of Fig. 1 again do not show serious problems with con-
vergence. The weighted least squares computation suggested
that a burn-in time and skip interval of 12 would be required
to produce a sample whose distribution differed from the distri-
bution of a random sample of size 100 from the true posterior
by a total variation distance less than 0.0040. The largest mag-
nitude Z-score obtained with Geweke’s diagnostic was −1.466,
and each parameter passed Heidelberger and Welch’s stationarity
test without any initial iterations being discarded. Raftery and
Lewis’s diagnostic indicated that more than enough iterations
had been run to estimate the 0.025 quantile of all parameters
except σ 2

θ to within ±0.0075 with probability 0.95, and that a
total of 4524 iterations would be sufficient for σ 2

θ . Thus none
of these four diagnostic methods detected the fact that a major
mode had been missed altogether by the samplers.

To implement the simulation method, we set σ̂ 2
y = 1.6321

and σ̂ 2
θ = 0.0037, the means of the sampler output from the
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primary chain in the Johnson coupler. The first step, preliminary
estimation of �, produced �̂ = 1.22, very similarly to the other
models. However, at the second step, we had to increase the
estimate of � to �̂ = 25 in order to obtain an estimate of λ

that was less than 1.0 with a reasonable number of iterations
m. We finally settled on �̂ = 25, λ̂ = 0.98, and m = 10.
Based on these values we chose d = 3000 which as required
is comfortably larger than 2�̂

1−λ̂
− 1. The estimate of ε from the

binning procedure was 0.0065. With tuning constants r = 0.001
and M = 0.001, we obtained∥∥L

(
X (k)

) − π
∥∥

var
≤ (.9935)[0.0001k] + (0.4090)(0.9994)[ k

10 ]

If k = 5,000,000, this bound is equal to .038. Although this
bound could be tightened with improved choices of m, r , and
M , clearly the simulation method has flagged slow convergence
due to bimodality.

6. More complex models

6.1. A spatial model

Spatial models with intrinsic priors based on Markov random
fields are a more complicated class of models to which the
simulation-based method of convergence assessment is easy to
apply. As an example, we consider an agricultural field experi-
ment for which data and frequentist and Bayesian analyses ap-
peared previously (Besag and Kempton 1986, Besag and Higdon
1993). The trial was an unreplicated 2×33 factorial design. The
54 treatment combinations were planted in three columns of 18
plots each. Although the primary purpose of the trial was to
identify differences among effects of the levels of the four fac-
tors, an appropriate statistical model must also control for local
variation in soil fertility. Like the previously-cited authors, we
assumed that each plot i, i = 1, . . . , 54 had its own unobserv-
able fertility level Fi and that columns of plots were sufficiently
separated that fertility levels in different columns may be con-
sidered independent. Within columns, spatial correlation was
modeled by the assumption that plot fertility levels formed a
Gaussian random walk, i.e. that pairwise differences were in-
dependent normals. Then stages one and two of the Bayesian
model may be expressed as

Yi |β, F, σ 2
y ∼ N

(
zi

Tβ + Fi , σ
2
y

)
, i = 1, . . . , 54

Fi | Fi−1, σ
2
f ∼ N

(
Fi−1, σ

2
f

)
, i = 2, . . . , 18; i = 20, . . . 36;

i = 38, . . . 54

where Yi is the yield of the i th plot, zi is a vector of indicator
variables for the factor levels in the i th plot (main effects only),
β is a vector of coefficients for the factors, and σ 2

y and σ 2
f are

variances. The overall mean yield, as well as the block effects for
the three columns of plots, are absorbed into the fertilities Fi .

As recommended by Besag and Higdon (1993, 1999), we
standardized the yields Yi to have sample variance 1.0, giving a
range of values from 2.29 to 7.83. The same authors point out that
proper priors on the variances σ 2

y and σ 2
f are necessary in order

to obtain a proper joint posterior. We specified fairly informative
inverse gamma priors on both variance components by setting
a1 = 1.0, b1 = 1.0, a2 = 1.0, b2 = 1.0. These priors can be
considered to provide information equivalent to two previously-
observed yield values with average squared deviation of 1.0 from
their true means, and two previously-observed first differences
in fertilities with average squared values of 1.0. With vague but
proper independent normal priors on β, our priors were:

β j ∼ N (0, 10000), j = 1, . . . , 7

σ 2
y ∼ IG(a1 = 1, b1 = 1)

σ 2
f ∼ IG(a2 = 1, b2 = 1)

The means portion of the above model may be expressed as a
linear model as follows.




Y54×1

051×1

07×1


 =




Z54×7 I54×54

051×7 �51×54

I7×7 07×54







β1

...

β7

F1

...

F54




+



ε

δ

−ψ




where

� =




D 0 0

0 D 0

0 0 D




with each block

D17×18 =




−1 1 0 · · · 0 0

0 −1 1 0 0
...

. . .
...

0 0 0 · · · −1 1




Like the variance-components model, this model may be ex-
pressed as Y = X� + E. The covariance matrix � of the errors
is diagonal with the first 54 diagonal entries equal to σ 2

y , the next
51 equal to σ 2

f , and the last 7 equal to 10,000, the prior variance
of the βs.

The full conditionals for a Gibbs sampler to fit this model are:

σ 2(k)
y

∣∣β(k−1),

F(k−1) ∼ IG

(
a1 + 54

2
, b1 +

∑54
i=1

(
Yi − zi

Tβ(k−1) − F (k−1)
i

)2

2

)

(11)

σ
2(k)
f

∣∣F(k−1)

∼ IG

(
a2 + 51

2
, b1 +

∑3
l=1

∑18
j=2

(
F (k)

18(l−1)+ j − F (k)
18(l−1)+ j−1

)2

2

)

(12)
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�(k) = [
β(k), F(k)

] ∣∣ σ 2(k)
y ,

σ
2(k)
f ∼ N

([
XT�(k)−1X

]−1
XT�(k)−1Y,

[
XT�(k)−1X

]−1)
(13)

The simulation method of convergence assessment is easy for
this model because both variance components are scalars and
there are only two parameters over which the minorization must
be established. In particular,

V ∗∗ =
∑

i

(
Yi − zi

Tβ − Fi

)2

σ̂ 2
y

+
∑3

k=1

∑18
j=2

(
F18(k−1)+ j − F18(k−1)+ j−1

)2

σ̂ 2
f

+
∑7

j=1 β2
j

10,000

and for the extremes of Vd

0 ≤
∑

i

(
Yi − zi

Tβ − Fi

)2 ≤ σ̂ 2
y vd (14)

0 ≤
3∑

k=1

18∑
j=2

(
F18(k−1)+ j − F18(k−1)+ j−1

)2 ≤ σ̂ 2
f vd (15)

Constants σ̂ 2
y = 1

6.42 , σ̂ 2
f = 1

4.16 were obtained from a 15,000-
iteration run of BUGS, from which the initial 5,000 iterations
were discarded. Minimization over β and F in Maple produced
v = 27.4827, so

V =
(∑

i

(
Yi − zi

Tβ + Fi

)2

σ̂ 2
y

+
∑3

k=1

∑18
j=2

(
F18(k−1)+ j − F18(k−1)+ j−1

)2

σ̂ 2
f

+
∑7

j=1 β2
j

10,000

)/
27.4827

Using the methods in Section 4.2, we verified (1) with λ̂ = 0.051,
and �̂ = 3.42 with m = 8, N0 = 1000 and N2 = 500. Initial
values for the chains used in estimating � were chosen to give
the sums of squares in (11) and (12) values that ranged from 0
to 100,000. Run times for the two required steps were 2 and 1/2
minutes and 25 minutes respectively.

Choosing d = 10 and using the extremes of Vd given above,
we obtained ε̂ = .75 in the minorization condition, with k0 = 1.
Because the number of dimensions over which the minorization
condition must be verified is only two, N3 = 16,000 replicate
chains from each of four sets of initial values were sufficient.
Although there were 61 means parameters in this model, the run
time for this step was only two hours.

Finally, we used Rosenthal’s theorem with tuning constants
r = .138 and M = .675 to conclude that, if the initial values of
the sampler are those that minimize V, then∥∥L

(
X (k)

) − π
∥∥

var
≤ (0.25)[0.01725k] + (0.4411)(0.8539)[ k

4 ]

If k = 232 then this bound is 0.0084, less than our chosen
criterion of 0.01.

6.2. A random-coefficients model

In the growth-curve or random-coefficients model, the three
stages of the standard hierarchical formulation are given as
follows:

Yi j | αi0, αi1, σ
2
y ∼ N

(
αi0 + αi1xi j , σ

2
y

)
, i = 1, . . . , n[

αi0

αi1

] ∣∣∣∣∣
[

µ0

µ1

]
, �α ∼ N

([
µ0

µ1

]
, �α =

[
τ 2

0 τ01

τ01 τ 2
1

])

[
µ0

µ1

] ∣∣∣∣∣
[

M0

M1

]
, �0 ∼ N

([
M0

M1

]
, �0 =

[
σ 2

0 0

0 σ 2
1

])

which may be written as




Yn×1

02n×1

M2×1


 =




Xn×2n 0n×2

−I2n×2n Z2

02×2n I2×2




(
α

µ

)
+



ψ

δ

ξ




The covariance matrix of the error terms is block diagonal rather
than diagonal. The first block is diagonal with all diagonal
entries equal to σ 2

y . The next block is block diagonal with each
block equal to �α . The final block is equal to �0.

The Bayesian growth-curve model is completed with priors
on σ 2

y and �α .

σ 2
y ∼ IG(a1, b1)[

τ 2
0 τ01

τ01 τ 2
1

]
∼ IW ((ρR)−1, ρ)

where a1, b1 and ρ are known constants, R is a known matrix,
and IG and IW denote the inverse gamma and inverse Wishart
p.d.f.s respectively.

The full conditional distributions used at iteration k of the
blocked sampler are:

σ 2(k)
y

∣∣ α0
(k−1), α1

(k−1) ∼ IG

(
a1 + JK

2
,

b1 +
∑K

i=1

∑J
j=1

(
Yi j − α

(k−1)
i0 − α

(k−1)
i0 xi j

)2)
2

)
(16)

[
τ

2(k)
0 τ

(k)
01

τ
(k)
01 τ

2(k)
1

] ∣∣∣∣∣ α(k−1), µ(k−1) ∼ IW

×
((

ρR +
K∑

i=1

(
αk−1

i − µk−1
)(

αk−1
i − µk−1

)T ))−1
, ρ + K

)

(17)
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�(k) = [
α0

(k), α1
(k), µ

(k)
0 , µ

(k)
1

] ∣∣ σ 2(k)
y , τ

2(k)
0 , τ

(k)
01 , τ

2(k)
1

∼ N ([XT�−1X]−1XT�−1Y, [XT�−1X]−1) (18)

The V function is specified as:

V ∗∗ =
∑

i

∑
j (Yi j − αi0 − αi1xi j )2

σ̂ 2
y

+
∑

i (αi0 − µ0)2

τ̂ 2
0 (1 − γ̂ 2)

− 2γ̂
∑

i (αi0 − µ0)(αi1 − µ1)

τ̂0τ̂1(1 − γ̂ 2)
+

∑
i (αi1 − µ1)2

τ̂ 2
1 (1 − γ̂ 2)

+ (µ0 − η0)2

σ 2
0

+ (µ1 − η1)2

σ 2
1

(19)

where γ̂ 2 = τ̂ 2
01

τ̂ 2
0 τ̂ 2

1
, and V = V ∗∗/v, where v is obtained by min-

imizing V ∗∗ over α and µ.
For illustration we used the dataset from a CIBA-GEIGY

study consisting of weights in grams of K = 30 baby rats mea-
sured at one-week intervals for J = 5 weeks, with the prior spec-
ifications from the analysis of Gelfand et al. (1990). This model
has 66 unknown parameters.

Running N0 = 1000 chains of length m = 12 (run time
1 minute 23 seconds) produced an estimate �̂ = 1.443.

In preparation for estimating λ, we used “proc reg” (SAS ver-
sion 6.12, SAS Institute, Cary, NC) to compute an individual
slope and intercept for each rat and “proc mixed” to estimate the
population intercept and slope. For the first set of initial values
x∗

01 we set each αi0 and αi1 equal to the individual intercept and
slope for the corresponding rat and µ0 and µ1 equal to the esti-
mated group intercept and slope. The second set of initial values
x∗

02 had not only µ0 and µ1 but also αi0 and αi1 for all i set
equal to the estimated group intercept and slope. We randomly
generated 20 additional sets of initial values from normal dis-
tributions with means x∗

01 and standard deviations ranging from
.025 to 80. From each set of initial values, we ran N2 = 500
12-iteration samplers (run time 23-1/2 minutes). The resulting
estimate was λ̂ = .12.

Finding the “extremes of Vd” for the random-coefficients
model is complicated by the fact that the covariance matrix of
the error terms is block diagonal rather than diagonal. Details
are supplied in the Appendix. Furthermore, the minorization
condition in (2) must be verified for all four variance/covariance
parameters—σ 2

y , τ 2
0 , τ 2

1 , and τ01. Based on λ̂ and �̂ from the
drift condition, we specified d = 4. To get a sufficiently stable
estimate of ε required N3 = 80,000 replicates. Running 80,000
12-iteration samplers (m = 12 and k0 = 1) from each of the 6
combinations of extreme values was the only computationally-
burdensome step in the process; it was run overnight and took 11
hours. We constructed four-dimensional bins of different sizes
by partitioning each dimension into first 10, then 12, then 14
intervals, producing totals of 10000, 20736, and 38416 bins re-
spectively. Applying the criteria from Section 4.3.1, we conser-
vatively set ε̂ = 0.69.

To compute the final bound on total variation distance to sta-
tionarity in (4) after some trial and error we chose the tuning

constants r = .313 and M = 2.5. Assuming that the initial
values of the sampler are those that minimize V, we obtained∥∥L

(
X (k)

) − π
∥∥

var
≤ (0.31)[0.0261k] + (0.3252)(0.7493)[ k

12 ]

If k = 192, this bound equals .0061, again less than our chosen
criterion of 0.01. This bound is only slightly more conservative
than that of Johnson (1998), who recommended a burn-in time
and skip interval of 150 for this dataset.

7. Discussion

The simulation approach presented here is feasible for approxi-
mating theoretical bounds on burn-in times for MCMC samplers
for HNLMs. It requires far less analytic computation than non-
simulation-based theoretical methods and can be applied when
m and/or k0 > 1, circumstances under which analytic compu-
tations are likely to be impossible. The method produces realis-
tic bounds on required burn-in—tens or hundreds of iterations
when sampler convergence is rapid. Furthermore, as illustrated
in Section 5, it is far more trustworthy than convergence diag-
nostics, particularly when the target distribution of the sampler
is multimodal or when there are regions of the parameter space
in which the sampler may get stuck.

Several quantities—m, N3, bin sizes, and the tuning constants
r and M—are chosen by trial and error. It is reassuring that poor
choices of m, r , and/or M will lead to unnecessarily conserva-
tive bounds, which, while wasteful of computing time, do not
increase the risk of incorrect inference. By contrast, it is critical
that the bin sizes be chosen small enough and the number of
replicate samples N3 large enough as failure to do so would lead
to over-estimation of ε and thus to anti-conservative bounds.

In fairness, it must be stated that, with careful thought to pro-
ducing dispersed initial values, both Johnson’s (1998) method
and Gelman and Rubin’s (1992) multi-chain convergence diag-
nostic also would have detected convergence failure in the sim-
ple examples with improper or bimodal posteriors. However,
an advantage of the simulation method as applied to reformu-
lated HNLMs is the ease of defining the most extreme sets of
initial values in terms of the resulting sums of squares in full
conditionals for covariance parameters.

The convergence results obtained using the simulation method
for HNLMs apply only to samplers using the blocked algorithm
described in Section 3. As demonstrated in Sargent, Hodges and
Carlin (2000), samplers that generate means parameters from
different levels of the hierarchical model in separate blocks gen-
erally converge far more slowly.

As illustrated in the random-coefficients example, the limit-
ing factor in practical application of this method is the number
of dimensions over which the minorization condition must be
verified. For reformulated hierarchical normal models, this is
the number of variance/covariance parameters. The number of
sets of initial values that constitute the extremes of Vd increases
with this dimension. Even worse, the number of bins increases
exponentially with the number of dimensions, requiring a larger
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number of replicate chains from each starting value. With the
computing speed of desktop workstations or PCs today, run times
for verifying the minorization condition would be prohibitive for
models with more than five or six covariance parameters. Thus
this simulation method is particularly applicable to hierarchi-
cal normal spatial and spatio-temporal models involving many
means parameters but few covariance parameters.

Appendix

Inspection of (16)–(18) reveals that the four quanti-
ties that must be bounded for the growth-curve ex-
ample are

∑
i

∑
j (Yi j − αi0 − αi1xi j )2,

∑
i (αi0 − µ0)2,∑

i (αi0 − µ0)(αi1 − µ1) and
∑

i (αi1 − µ1)2. The lower bound
on the first is the sum of the error sums of squares from individ-
ual subject-specific linear regressions, henceforth denoted ESS.
Note that the second through fourth terms on the right side of
(22) constitute a quadratic form. Therefore

0 ≤
∑

i (αi0 − µ0)2

τ̂ 2
0 (1 − γ̂ 2)

− 2γ̂
∑

i (αi0 − µ0)(αi1 − µ1)

τ̂0τ̂1(1 − γ̂ 2)

+
∑

i (αi1 − µ1)2

τ̂ 2
1 (1 − γ̂ 2)

If it is assumed that the lower bounds on (µ0 − η0)2 and
(µ1 − η1)2 are also zero, then the upper bound on

∑
i

∑
j (Yi j −

αi0 − αi1xi j )2 is σ̂ 2
y vd, where v is defined in (22).

The components of the quadratic form in (22) must be con-
sidered together. The lower bound for both

∑
i (αi0 − µ0)2 and∑

i (αi1 − µ1)2 is 0. Suppose that
∑

i (αi0 − µ0)2 = 0. Then
αi0 −µ0 = 0 for each i ; therefore

∑
i (αi0 −µ0)(αi1 −µ1) must

also equal 0, and
∑

i (αi1 − µ1)2 ≤ [vd − E SS
σ̂ 2

y
][τ̂ 2

1 (1 − γ̂ 2)].
Similarly, if

∑
i (αi1−µ1)2 = 0, then

∑
i (αi0−µ0)(αi1−µ1) = 0

and
∑

i (αi0 − µ0)2 ≤ [vd − E SS
σ̂ 2

y
][τ̂ 2

0 (1 − γ̂ 2)].

Finally, the largest-magnitude possible negative and positive
values for

∑
i (αi0 − µ0)(αi1 − µ1), subject to V ∗∗ ≤ vd, are

required. By the Schwarz inequality,∣∣∣∣ ∑
i

(αi0 − µ0)(αi1 − µ1)

∣∣∣∣ ≤
√∑

i

(αi0 − µ0)2
∑

i

(αi1 − µ1)2

A straightforward application of Lagrange multipliers to max-
imize

∑
i (αi0 − µ0)2

∑
i (αi1 − µ1)2 subject to the constraint,∑

i (αi0 − µ0)2

τ̂ 2
0 (1 − γ̂ 2)

− 2γ̂
√∑

i (αi0 − µ0)2
∑

i (αi1 − µ1)2

τ̂0 τ̂1(1−γ̂ 2) +
∑

i (αi1−µ1)2

τ̂ 2
1 (1−γ̂ 2)

= vd −
E SS
σ̂ 2

y
, yields a positive upper bound

∑
i

(αi0 − µ0)(αi1 − µ1) ≤
τ̂0τ̂1

(
vd − ESS

σ̂ 2
y

)
(1 − γ̂ 2)

2(1 − γ̂ )

which can be attained only if

∑
i

(αi0 − µ0)2 =
τ̂ 2

0

(
vd − E SS

σ̂ 2
y

)
(1 − γ̂ 2)

2(1 − γ̂ )

and

∑
i

(αi1 − µ1)2 =
τ̂ 2

1

(
vd − E SS

σ̂ 2
y

)
(1 − γ̂ 2)

2(1 − γ̂ )

The same procedure, but with a plus sign before the second term
in the constraint, produces a negative lower bound

∑
i

(αi0 − µ0)(αi1 − µ1) ≥ −
τ̂0τ̂1

(
vd − ESS

σ̂ 2
y

)
(1 − γ̂ 2)

2(1 + γ̂ )

which can be attained only if

∑
i

(αi0 − µ0)2 =
τ̂ 2

0

(
vd − ESS

σ̂ 2
y

)
(1 − γ̂ 2)

2(1 + γ̂ )

and

∑
i

(αi1 − µ1)2 =
τ̂ 2

1

(
vd − ESS

σ̂ 2
y

)
(1 − γ̂ 2)

2(1 + γ̂ )

Consequently, six combinations of quantities constitute the
“extremes of Vd” for the growth-curve model.
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