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ABSTRACT: The Metropolis-coupled Markov chain method (or “Swapping Algorithm”) is an
empirically successful hybrid Monte Carlo algorithm. It alternates between standard transitions on
parallel versions of the system at different parameter values, and swapping two versions. We prove
rapid mixing for two bimodal examples, including the mean-field Ising model. © 2002 Wiley
Periodicals, Inc. Random Struct. Alg., 22: 66–97, 2003
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1. INTRODUCTION

Markov chain Monte Carlo (MCMC) methods have become a standard tool for simulating
observations from complicated distributions in a variety of fields of application, particu-
larly physics (Binder and Heermann [1], Frenkel and Smit [12]) and statistics (Gilks,
Richardson, and Spiegelhalter [15]). However, standard MCMC methods encounter
serious difficulties if there are isolated modes in the target distribution from which we
wish to sample. This is because the Markov chains get stuck in some local modes and
rarely move between those isolated modes, and hence the rate at which the Markov chains
converge to the target distribution is too slow to be practical. Isolated modes arise fairly
often in statistical problems, and they are especially common in physics models that
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exhibit phase transitions. One of the classical examples of this is the Ising model at low
temperature, which we shall describe below.

To speed up the convergence rates of MCMC methods when sampling from multimo-
dal distributions, several new approaches have been proposed. Among these, the following
three algorithms are based on similar intuition: the swapping algorithm of Geyer [13], also
called Metropolis-coupled Markov chains or parallel tempering (Orlandini [24]); the
simulated tempering algorithm (Marinari and Parisi [21], Geyer and Thompson [14],
Madras [18]); and the tempered transition method (Neal [23]).

In practical use, these new methods seem to converge much faster than do standard
methods, but there is little rigorous theory to back these empirical observations. In this
paper, we shall focus on the swapping algorithm and rigorously show that it can be used
to sample from two examples of bimodal distributions. The examples are the following:

Example I (Distribution with exponential valley on an interval). Fix a real constant C !
1, and let J be a (large) positive integer. Consider the state space of all integers in the
interval ["J, #J], with the bimodal distribution

!$x% "
C !x!

Z
$x " "J, "J # 1, . . . , J%,

where Z is the normalizing constant. Observe that as J gets large (with C fixed), !(0) is
exponentially smaller than !(J). The analysis turns out to be simpler if we can divide the
state space into two exact halves. For this reason, we shall consider the more unusual
state space ! & !Int, which is defined to be the set of all odd integers in the interval
["2M " 1, 2M # 1], with the distribution

!$x% " !Int$x!C% "
C!x!

Z
for x ! !.

(See Remark 3 at the end of Section 4 for a brief discussion of how one can handle the
state space {"J, "J # 1, . . . , J}.)

Example II (Mean field Ising model). Fix a real constant $ ! 0 and let M be a (large)
positive integer. The state space is defined to be ! & !Ising & {"1, #1}M. The mean field
Ising model (in zero field) is the probability distribution

!$x% " !Ising$x!$% "
e$$¥

j&1
M x'j(%2/2M

Z$$%
for x&$x'1(, . . . , x'M(%!!,

where Z($) is the normalizing constant. It can be shown that if $ ! 1, then the distribution
of the “total spin” ¥j&1

M x[j] is bimodal for large M, and the probability at the modes is
exponentially larger than it is at zero (e.g., Madras and Piccioni [19]). For simplicity, as
in Example I, we assume throughout this paper that M is an odd integer. (See Remark 3
at the end of Section 4 for comments on the case of M even.)
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Both examples can be expressed in the form of a Gibbs distribution in statistical
mechanics, that is,

!$x% "
e"$H$x%

Z
, (1)

where H is an explicit function (corresponding to the energy of configuration x) and $ is
a nonnegative parameter (inversely proportional to the temperature). In Example I,
H( x) & "!x! and $ & log C.

One of the most basic general-purpose Markov chain Monte Carlo methods for
sampling from a distribution ! is the Metropolis algorithm (for a recent theoretical review,
see Diaconis and Saloff-Coste [8]). The method is the following. Suppose ! is a
probability distribution supported on the finite set ". Let K be an irreducible, symmetric
Markov chain on " (called the proposal chain or base chain). In many applications K is
a random walk on a regular graph. The Metropolis chain is the new Markov chain T on
" defined as follows:

T$x, y% " #
K$x, y% if !$y% % !$x% and y & x,

K$x, y%
!$y%

!$x%
if !$y% ' !$x%,

1 ( $
z)x

T$x, z% if y " x.

(2)

That is, if the Metropolis chain is currently at state x, then it chooses a proposed state y
from the distribution K( x, y), but it only accepts y as the next state with probability
min{1, !( y)/!( x)} (if y is not accepted, then the next state is x again). The chain T is
irreducible and reversible with respect to !; in particular, ! is the equilibrium distribution
of T (see Diaconis and Saloff-Coste [8, p. 20] for a proof of this). Therefore, we can
sample from ! by simulating the chain T for a sufficiently long time.

In our examples, we take two natural Metropolis chains. For Example I, the base chain
is simple symmetric random walk on !Int:

K$i, j% " % 1
2 if !i ( j! " 2 or i " j " *$2M # 1%,

0 otherwise.

Thus the Metropolis chain for Example I looks like random walk on the interval !Int with
drift away from the center. For large M, this chain requires an exponentially long time to
have much chance of reaching the negative half from initial state 2M # 1. For Example
II, the base chain chooses a site i ! {1, . . . , M} uniformly at random and then reverses
the sign of x[i]. That is,

K$x, y% " % 1
M

if x, y ! !Ising and &x ( y&1 " 2,

0 otherwise

(where we write & z&1 & !z[1]! # . . . # !z[M]! for z ! RM). The Metropolis chain of
Example II reaches equilibrium exponentially slowly in M for any fixed $ ! 1 (the
meaning of this assertion will be made precise in Section 2).
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To discuss the intuition for the swapping and related methods, we will refer to a general
distribution of the form (1) on a set !. At the desired parameter value $ & $*, the natural
Metropolis chain reaches equilibrium very slowly. But, at smaller values of $, in particular
for $ & 0, the equilibrium distribution is uniform on ! and the corresponding Metropolis
chain reaches equilibrium rapidly (after about M2 or M iterations in our examples).
Suppose that we could let the parameter $ be a random variable, and let it perform a
random walk on a set of values from 0 to $*. We alternate $ steps with ordinary
Metropolis updates at the current value of $. If we could do all of this in a reversible way,
then the chain would spend some of its time with $ near 0, where it would change rapidly;
and it would spend some of its time with $ at $*, where it would give us samples from
!. If there are N intermediate values of $, then we would guess that it would only take
about N2 changes of $ to get from $* to 0 or vice versa. So we can hope that the overall
time to equilibrium is a polynomial function of M and N instead of an exponential. This
is the idea behind the simulated tempering method mentioned earlier, and the reasoning
has been verified rigorously in some examples (Madras and Piccioni [19]). The method of
tempered transitions has similar intuition, but we refer the interested reader to the papers
mentioned earlier for more discussion of these two algorithms.

The swapping method also uses an interpolating set of $’s,

0 " $0 ' $1 ' · · · ' $N " $*,

but it has one copy of the system for each $ value. That is, the state space consists of (N #
1)-tuples ( x0, x1, . . . , xN) ! !N#1. Roughly speaking, the swapping algorithm alter-
nates between two basic steps: the usual Metropolis update of each xi at $i, and the
“swapping” step in which the two configurations xi and xi#1 try to trade places (for some
randomly chosen i). The attempted swap is accepted with a probability dictated by the
Metropolis algorithm designed to keep the product distribution on !N#1 (i.e., all copies
independent) as the equilibrium distribution. A detailed description of the algorithm is
given in Section 2. The intuition here is that if we follow a given copy as it changes $ and
undergoes Metropolis updates, it looks very much like the simulated tempering chain.
Thus we expect the swapping chain to behave like N # 1 copies of the simulated
tempering chain, subject to an “exclusion” condition that the $’s of all the copies must be
different. We remark that the simulated tempering method requires good guesses of ratios
of the normalizing constants for different $’s, but the swapping method does not.

Our main result is that the spectral gap of the Markov chain of the swapping algorithm
for each of Examples I and II is bounded below by the reciprocal of a polynomial in the
problem size M, provided that we take N proportional to M. This means that the swapping
algorithm is a “fast” algorithm (in polynomial time) unlike the standard Metropolis Monte
Carlo chain. Markov chains that reach equilibrium in polynomial time are often said to be
“rapidly mixing.”

The two examples are really “toy models,” in that they are not inherently interesting
(or, at least, they are tractable analytically and would not normally require simulation).
However, they do capture some important qualitative features of more complex and more
realistic models, and for this reason increase our optimism that the swapping method is
efficient for wider classes of problems. Our intuition is also supported by Zheng [29, 30],
who proves that in fairly general situations the spectral gap of the simulated tempering
chain is bounded below by a multiple of the gap of the associated swapping chain.
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As a point of technical interest, it is worth emphasizing that, for the mean field Ising
model, our proof shows that the swapping method equilibrates in polynomial time for
every value of $. It is not known whether this is true for the alternative Monte Carlo
method known as the Swendsen-Wang algorithm (Swendsen and Wang [28]) when $ is
close to its critical value of 1. See Gore and Jerrum [16] and Cooper et al. [5] for results
about Swendsen-Wang chains on mean field models.

The rest of this paper is organized as follows. The main result is stated in Section 2,
together with a review of some convergence rate theory. Section 3 contains several general
lemmas. An outline of the proof of the main result is given in Section 4. Details for steps
of the proof are given in Sections 5, 6, and 7.

2. CONVERGENCE RATES AND THE MAIN RESULT

Markov chain Monte Carlo methods are based on the fact that a Markov chain with
transition matrix P and equilibrium distribution ! satisfies

Pt$x, y% 3 !$y% as t 3 + for all x and y

under suitable assumptions. In practice, this is not really enough, and we really need to
know how large t should be to have Pt( x, y) suitably close to !( y). One standard way
of quantifying the closeness to stationarity is to use the total variation distance:

&Px
t ( !& "

def 1
2 $

y

!Pt$x, y% ( !$y%!.

There are many techniques to study the convergence rates of Markov chains. For a
review, see the expository paper by Rosenthal [26]. For geometrical and other techniques,
see Diaconis and Stroock [9], Diaconis and Saloff-Coste [7, 8], and references therein. For
our present purpose, we briefly review basic definitions and results relating to comparison
techniques.

Let P( x, y) be the transition matrix of an irreducible, aperiodic Markov chain on a
finite state space ". We also view P as an operator on functions on " in the standard way,
whereby P maps the function f to the function (Pf )( x) & ¥y P( x, y) f( y). Suppose P is
reversible with respect to the stationary distribution !, i.e., P( x, y)!( x) & P( y, x)!( y)
for all x, y ! ". Define an inner product on real-valued functions on " by ( f, g)! & ¥
f( x) g( x)!( x). Then reversiblity of the chain P is equivalent to saying that the operator
P is self-adjoint on the Hilbert space #2(!), i.e., (Pf, g)! & ( f, Pg)! for all f, g ! #2(!).
This implies that P has real eigenvalues,

1 " )0 * )1 % · · · % ) !"!"1 * "1,

and an orthonormal basis of real eigenvectors fk.
One major concern is to bound the total variation distance between Pt( x, ! ) and !!.

We have
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,x$t% "
def

&Px
t ( !& +

1

2'!$x%
)*

t , (3)

where )* & max()1, !)!"!"1!). See Diaconis and Saloff-Coste [8, p. 24] for this bound.
Thus, in order to get bounds on rates of convergence, we may try to get bounds on

eigenvalues. To this end, we may apply the minimax principle. If we define the Dirichlet
form of P by

$$f, f% "
1
2 $

x,y

!f$x% ( f$y%!2P$x, y%!$x%,

for any real-valued function f on ", and write

Var$f% " E!$f 2% ( $E!f%2

"
1
2 $

x,y

!f$x% ( f$y%!2!$x%!$y%,

then the spectral gap of P (or say “of the chain”) is

Gap$P% " 1 ( )1 " inf%$$f, f%
Var$f%

: f ! #2$!%, Var$f% & 0(. (4)

For instance, consider the Metropolis chain T for Example I described in Section 1. If f
is the indicator function of the positive half line, then $( f, f ) & C/Z and Var( f ) & 1/4,
which implies that Gap(T) + 4C/Z. Since Z ! C2M#1 and C ! 1, this shows that the
gap is exponentially small (in M). That is, the chain approaches equilibrium exponentially
slowly. A similar argument for Example II is given in Madras and Piccioni [19, Section
3], also yielding exponentially small spectral gap for the Metropolis chain T for any fixed
$ ! 1.

We now give a precise description of the steps of the swapping algorithm in the context
of Examples I and II.

To use the swapping algorithm, we need to choose N # 1 distributions. For Example
I, we shall make the following choices:

hi$x% " !Int$x!C$i% "
C$i!x!

Zi
, x ! !Int, (5)

where Zi’s are normalizing constants, and the $i’s are given by

$i "
i
N

, i " 0, 1, . . . , N. (6)

For Example II, we proceed similarly, taking

hi$x% " !Ising$x!$i%, x ! !Ising, (7)
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where the $i’s are given by

$i "
i
N

$*, i " 0, 1, . . . , N. (8)

In each example, hN is the desired distribution !, and h0 is the uniform distribution on the
state space.

Let Ti be the Metropolis chain with stationary distribution hi based on the walk K
defined in Section 1. By definition, the transition matrix of the chain Ti, also denoted by
Ti, is as follows:

Ti$j, k% " #K$j, k%min%1,
hi$k%

hi$j%
( if j & k

1 ( $
l)j

Ti$j, l% if j " k
(9)

The state space - of a swapping chain with N # 1 components is given by the
Cartesian product of N # 1 copies of !:

- " !N#1. (10)

We shall write an element of - in the form x" & ( x0, x1, . . . , xN). For i ! {0, 1, . . . ,
N " 1} and x" ! -, let (i, i # 1) x" denote the element of - obtained from x" by
interchanging the ith component with the (i # 1)th component, i.e.,

$i, i # 1%x" " $x0, x1, . . . , xi"1, xi#1, xi, xi#2, . . . , xN%. (11)

In this sense, the transposition (i, i # 1) acts on the state x" .
Let , be the product measure distribution on -:

,$x"% " h0$x0%h1$x1% · · · hN$xN%. (12)

That is, under , the components of x" are independent with marginal distributions hi. The
swapping algorithm is designed to have , as its equilibrium distribution. It is made up of
two chains, a “pure swapping” chain Q and an “updating” chain P̃, which we describe in
turn.

The “pure swapping” part of the algorithm proceeds by choosing a random i !
{0, . . . , N " 1}, proposing the new state (i, i # 1) x" , and accepting this as the next state
with probability

-i,i#1$x"% " min%1,
,$$i, i # 1%x"%

,$x"% ( " min%1,
hi$xi#1%hi#1$xi%

hi$xi%hi#1$xi#1%
(. (13)

For mathematical convenience, we add a “self-loop” (i.e., do nothing) with probability
1/2. More precisely, we define a pure swapping chain Q on - whose transition proba-
bilities are the following. If y" ) x" but y" & (i, i # 1) x" for some i ! {0, . . . , N " 1},
then
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Q$x" , y"% "
1

2N
-i,i#1$x"%. (14)

If y" ) x" and y" ) (i, i # 1) x" for each i ! {0, . . . , N "1}, then Q( x" , y") & 0. Finally,

Q$x" , x"% " 1 ( $
y")x"

Q$x" , y"%. (15)

The Metropolis acceptance probability (13) ensures that Q is reversible with respect to ,.
Observe that Q( x" , x") % 1/ 2 for every x" ! - as a result of the self-loops. Hence by
Lemma 3 of Section 3 below, we see that Q is a positive operator.

Next, we try to update some component of the current state. The updating step is given
by a product chain P̃ which corresponds to choosing one of the N # 1 components of the
current state x" & ( x0, x1, . . . , xN) uniformly at random and updating that component.
(For mathematical convenience, we also make sure that the chain does nothing half of the
time.) In terms of transition matrices, P̃ is given by

P̃$x" , y"% "
1
2

.$x" , y"% #
1

2$N # 1% $
i&0

N

.$x0, y0% · · · .$xi"1, yi"1%

. Ti$xi, yi%.$xi#1, yi#1% · · · .$xN, yN%,

where x" and y" are in -, .(u, v) & 1 if u & v and 0 otherwise, and Ti is the Metropolis
chain as defined before. In terms of operators, this means that

P̃ "
1

N # 1 $
i&0

N

I ! · · · ! I
i

! ) I # Ti

2 * ! I ! · · · ! I
N"i

. (16)

As with Q, we observe that P̃ is reversible with respect to , and is a positive operator.
The swapping algorithm consists of alternating the above two steps. There are different

Markov chains that are possible by this strategy (e.g., P̃Q or QP̃ or (P̃ # Q)/ 2 or P̃7Q).
We choose to define the swapping chain to be given by QP̃Q. One advantage of this
choice is that it is reversible, unlike some of the others (such as P̃Q). It is also convenient
for the decomposition methods that are key to the proofs.

Remarks.

1. The pure swapping chain Q is reducible. Indeed, if the components of y" are not a
permutation of those of x" , then Qt( x" , y") & 0 for every t.

2. Product chains have been studied by Diaconis and Saloff-Coste [7, pp. 712–717].
One useful basic result is that the spectral gap of the product chain is equal to the
minimum over spectral gaps of its component chains divided by the number of
components (see Lemma 4 below). This tells us that if TN is not rapidly mixing, then
neither is the product chain P̃. The point of the swapping method is that QP̃Q can
be rapidly mixing even if P̃ is not.
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The main result of this paper is a lower bound for the spectral gap of the swapping
chain QP̃Q. It is expressed in terms of a model-dependent constant / ! (0, 1) defined by

/ " %C"2 in Example I,
e"$*/2 in Example II.

Intuitively, the constant / measures the amount of “overlap” between adjacent distribu-
tions hi and hi#1, as is reflected in the following lemma.

Lemma 1. Define the constant / as above. Then

-i,i#1$x"% % /M/N

for every i ! {0, . . . , N " 1} and x" ! -.

Proof. We will prove the result for Example II. The proof for Example I is similar.
Recall $i & i$*/N. For x ! !, let

G$x% "

) $
j&1

M

x'j(* 2

2M
.

Then 0 + G( x) + M/ 2. Thus we have

-i,i#1$x"% " min%1,
hi#1$xi%hi$xi#1%

hi$xi%hi#1$xi#1%
(

" min%1,
exp$$i # 1%$*G$xi%/N%exp$i$*G$xi#1%/N%

exp$i$*G$xi%/N%exp$$i # 1%$*G$xi#1%/N%(
" min01, exp$$*G$xi%/N ( $*G$xi#1%/N%1

% exp$"$*M/2N%.

The result follows. !

Now we can state our main result.

Theorem 2. The spectral gap of the swapping chain QP̃Q has the following lower
bound:

Gap$QP̃Q% % #
/2M/N

384M2$N # 1%6 in Example I

/2M/N#8

768M3$N # 1%6 in Example II.
(17)
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In particular, if M/N approaches a constant / ! (0, +), then the lower bound is
asymptotically c̃/M8 in Example I and c̃/M9 in Example II, where c̃ is a constant depending
on / and /.

3. SOME USEFUL LEMMAS

Before we get into a detailed outline of the proof of the main theorem, this section presents
several useful lemmas. The reader can survey them now, or skip over them until they are
needed. We state them in the context of finite state spaces, but this is for simplicity rather
than necessity.

The following well-known lemma was invoked in the preceding section, and is a
convenient way to show that an operator is positive.

Lemma 3. Let P be a Markov chain that is reversible with respect to ! on the finite state
space ". Also assume that P(x, x) % 1/2 for every x ! ". Then P is a positive operator.

Proof. The proof is obvious once we observe that we can write P & (I # P#)/ 2 where
P# is a reversible transition probability matrix. !

The next lemma deals with product chains, which we have already encountered in the
definition of P̃ in the preceding section. A proof appears in Diaconis and Saloff-Coste [7,
Lemma 3.2].

Lemma 4. For each i & 1, . . . , m, let Ki be a reversible Markov chain on a finite state
space %i. Consider the product Markov chain K on the product space 21

m %i, defined by

K "
1
m $

i&1

m

I ! · · · ! I
i"1

! Ki ! I ! · · · ! I
m"i

.

Then

Gap$K% "
1
m

min0Gap$Ki%, i " 1, . . . , m1.

The next lemma says that if we have comparisons between the Dirichlet forms and
between the stationary distributions of two chains on the same state space, then we can
deduce a comparison between their spectral gaps. See Diaconis and Saloff-Coste [7,
Lemma 3.3] for a proof.

Lemma 5. Let (K, !) and (K3, !3) be two Markov chains on the same finite state space
", with respective Dirichlet forms $ and $3. Assume that there exist constants A, a ! 0
such that

$3 + A$ and a! + !3.

ON THE SWAPPING ALGORITHM 75



Then

Gap$K3% +
A
a

Gap$K%.

Remark. A sufficient condition for $3 + A$ is that

!3$x%K3$x, y% + A!$x%K$x, y% for all x, y ! " such that x & y.

The next result relates the spectral gap of a transition matrix P to that of Pm, where m
is a positive integer.

Lemma 6. For any reversible finite Markov chain P,

Gap$P% %
1
m

Gap$Pm%, for all m ! ".

Proof. Let )1 be the second-largest eigenvalue of the transition matrix P, with corre-
sponding eigenvector v1, i.e., Pv1 & )1v1. Then Pmv1 & )1

mv1, so the second-largest
eigenvalue of Pm cannot be smaller than )1

m. Therefore,

Gap$Pm% + 1 ( )1
m + m$1 ( )1% " m Gap$P%.

The result follows. !

The next result concerns the comparison of spectral gaps for two operators, which are
not necessarily Markov transition kernels. Let ! be a probability measure on a state space
". Recall the definition of the inner product ( ! , ! )! and the Hilbert space #2(!) from
Section 2. Let 1# be the orthogonal complement of the constant functions in #2(!):

1# :& 0f ! #2$!% : $f, 1%! " 01.

Let A and B be self-adjoint operators on #2(!). Further, we assume that the following
conditions are satisfied:

(i) Both A and B have the largest eigenvalue 1;
(ii) A is invariant on 1# (i.e., Af ! 1# if f ! 1#);

(iii) &A& + 1;
(iv) B is positive [i.e., (Bf, f)! % 0 for all f ! #2(!)].

Lemma 7. Under the above assumptions, the following holds:

Gap$ABA% % Gap$B%. (18)

Proof. In the following, for simplicity, we omit the subscript ! in the inner product
notation. If f ! 1#, then, by assumption (ii), Af ! 1#. By definition of spectral gaps, we
have
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Gap$ABA% " inf
f!1#

$f, $I ( ABA%f%
$f, f%

" inf
f!1#

$f, f% ( $f, ABAf%
$f, f%

" inf
f!1#

%1 (
$Af, BAf%

$f, f% (
% inf

f!1#

%1 (
$Af, BAf%
$Af, Af% ( 'by $iv%(

" inf
g!1#,g&Af

%1 (
$g, Bg%

$g, g% (
% inf

g!1#

%1 (
$g, Bg%

$g, g% (
" Gap$B%. !

Remarks.

1. If A1 & 1, then A is invariant on 1#.
2. If P is the transition kernel of a Markov chain reversible with respect to !, then the

corresponding operator satisfies all assumptions for A in Lemma 7.
3. If A is a nonnegative self-adjoint operator that satisfies all assumptions in Lemma

7, then the same is true for its square root A1/ 2. In particular, this applies to the
operator Q1/ 2 since Q is nonnegative and reversible.

4. STRATEGY OF THE PROOF

The proof of the main theorem relies on the decomposition of the Markov chain into
simpler chains. The key result for this is a theorem due to Caracciolo, Pelissetto, and Sokal
[2]. For more detailed discussion and a proof of this result, see Madras and Randall [20].
For convenience here, we will assume that the state space is finite.

The idea of the decomposition is the following. When trying to show that a complicated
Markov chain is rapidly mixing, we may notice that equilibration is rapid within certain
parts of the chain. Indeed, suppose that we can partition the state space into several pieces
such that the restrictions of the chain to each of these pieces are rapidly mixing. Also
suppose that the original chain moves easily among these different pieces. That is,
consider an “aggregate” Markov chain in which each state corresponds to one of the
pieces of the original chain, and whose transitions model the movements of the original
chain between the pieces. Then if the aggregate chain is rapidly mixing, and if the
restriction to each piece is rapidly mixing, then the original chain should be rapidly
mixing. Indeed, the spectral gap (4 inverse time to equilibrium) should be bounded below
by the product of the gap of the aggregate chain times the smallest gap of the pieces. This
is the spirit of the results of Caracciolo, Pelissetto, and Sokal [2] and Madras and Randall
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[20], and it is the basic strategy of our proof. We shall now describe the decomposition
method more formally.

Let 0 be a probability distribution on a finite state space ", and let & be a transition
matrix that is reversible with respect to 0. Suppose further that the state space is
partitioned into m disjoint pieces:

" " "
i&1

m

"i, where "i # "j " A if i & j. (19)

For each i & 1, . . . , m, define &i, the restriction of & to "i, by rejecting jumps that leave
"i:

&i$x, B% " &$x, B% # 10x!B1&$x, "1"i%, for x ! "i, B $ "i. (20)

It is easy to see that &i is reversible with respect to the restriction of 0 to "i. Let bi &
0 ("i) & ¥x!"i

0 ( x). Then (b1, . . . , bm) can be viewed as a probability distribution on
{1, . . . , m}.

Let ' be another transition matrix that is reversible with respect to 0. Define an
aggregated chain '# as follows:

#'$i, j% "
1
bi

$
y!"j

$
x!"i

0$x%'$x, y% $i, j " 1, . . . , m%. (21)

Observe that #' is reversible with respect to b & (b1, . . . , bm). The chain #' describes a
kind of overall rate at which the chain jumps from one piece of the partition to another.
Indeed, if the chain reached equilibrium within each piece as soon as it jumped to that
piece, then this would be exactly what '# is describing.

The key result which quantifies the intuition described above is the following.

Theorem 8 (Caracciolo–Pelissetto–Sokal [2]). Assume that ' is a positive operator. Let
'1/2 be the positive square root of '. Then

Gap$'1/2&'1/2% % Gap$ #'% min
1+i+m

Gap$&i%. (22)

The proof of our main theorem requires us to choose & and ' appropriately, so that
'1/2&'1/2 can be related to the original chain (QP̃Q), and so that the aggregate chain #'
and the pieces &i have good spectral gaps.

Now we outline the strategy of proof of the main result. First we introduce a symmetric
partition of the state space ! into “positive” and “negative” pieces !# and !", as
follows. In Example I (! & !Int), let

!# " !#
Int " 0x ! !Int : x * 01,

and in Example II (! & !Ising), let
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!# " !#
Ising " %x ! !Ising : $

i&1

M

x'i( * 0(.

In both examples, let !" & !1!#. By symmetry, we have !(!#) & 1/2 & !(!").

Step One. This is a technical step to prepare for the application of Theorem 8. Observe
that QP̃Q is an irreducible, aperiodic and reversible finite Markov chain. We see that

Gap$QP̃Q% % 1
3 Gap$QP̃QQP̃QQP̃Q% $by Lemma 6%

" 1
3 Gap$QP̃Q1/2$Q1/2QP̃QQ1/2%Q1/2P̃Q%

% 1
3 Gap$Q1/2$QP̃Q%Q1/2% $by Lemma 7, three times%.

As we shall see in the following steps, we need these extra Q1/ 2 terms because we will
want to apply decomposition (Theorem 8) twice. First we apply it with ' & Q and & &
QP̃Q (Step 2). It will turn out that we will need to use decomposition again to get good
bounds on the gaps of the &i chains (Step 4). Step 1 ensures that we still have a QP̃Q term
after the first decomposition [see right-hand side of Eq. (24) below].

Step Two. In this step we decompose - according to the number of positive components
among x1, . . . , xN, and then apply Theorem 8. Let -̃ & {#, "}N, and consider x" & ( x0,
x1, . . . , xN) ! - & !N#1. We define the signature sgn( x") of x" to be the vector
(v1, . . . , vN) ! -̃, where

vi " % # if xi ! !#

( if xi ! !"
$1 + i + N%. (23)

In other words, the signature of x" is the vector consisting of signs of its last N components.
In particular, we don’t count the sign of its first component. It will become apparent later
why we ignore x0 (see Remark 2 at the end of this section).

If k ! {0, 1, . . . , N }, define

-̃k " 0v ! -̃ : v has exactly k # ’s1.

Then {-̃k, 0 + k + N } is a partition of -̃, i.e.,

-̃ " "
k&0

N

-̃k and -̃i # -̃j " A whenever i & j.

Analogously, define -k to be the subset of all elements in - which contain exactly k
nonnegative components, i.e.,

-k " 0x" ! - : sgn$x"% ! -̃k1.
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Then {-k, 0 + k + N } is a partition of -.
Consider the decomposition

- " "
k&0

N

-k.

Define the aggregated transition matrix Q# as prescribed by Eq. (21) (with "k correspond-
ing to -k; see Section 5 for details). Since Q is a positive operator, we can apply Theorem
8 to get the following:

Gap$Q1/2$QP̃Q%Q1/2% % Gap$Q# % ! min
0+k+N

Gap$$QP̃Q%!-k%. (24)

Observe that Q# is essentially a one-dimensional nearest-neighbor chain on {0, 1, . . . ,
N }, and as such it is relatively easy to bound its spectral gap. This is done in Section 5.
The next two steps are devoted to getting lower bounds for Gap((QP̃Q)!-k

).

Step Three. We need a lower bound for Gap((QP̃Q)!-k
). This chain is somewhat

awkward to work with, since it is the restriction to -k of the product of three kernels. It
is easier to work with a product of three kernels, each of which is itself a restriction to -k.
The purpose of Step 3 is to get a lower bound for the gap of this restricted product of
kernels in terms of the gap of a product of restricted kernels.

Let ,( x") & 2i&0
N hi( xi), and let ,k be the normalized restriction of , & 20

N hi to -k:

,k$A% "
,$A # -k%

bk
, A $ -, (25)

where bk & ,(-k). Let Pk be the restriction of the updating chain P̃ to -k:

Pk$x" , A% " P̃$x" , A # -k% # 10x"!A1P̃$x" , -1-k%, for x" ! -k, A $ -.

Let Qk be the restriction of the pure swapping chain Q to -k:

Qk$x" , A% " Q$x" , A # -k% # 10x"!A1Q$x" , -1-k%, for x" ! -k, A $ -.

Since P̃ and Q are both reversible with respect to ,, so are their restrictions Pk and Qk.
With these definitions in place, we can state the main inequality of this step:

Gap$$QP̃Q%!-k% % 1
8 Gap$QkPkQk%. (26)

The proof is straightforward, as follows. First we claim that

Q$x" , y"% % 1
2 Qk$x" , y"% and P̃$x", y"% % 1

2 Pk$x", y"%, for all x", y" ! -k. (27)
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To see this, first consider Q. The inequality (27) is obvious if x" ) y" because then Q( x" ,
y") & Qk( x" , y"), and it is obvious if x" & y" because then Q( x" , x") % 1/ 2. This proves (27)
for Q, and the argument for P̃ is identical. Next, for x" , y" ! -k, we have

$QP̃Q%!-k$x" , y"% " $QP̃Q%$x" , y"%

" $
z",w" !-

Q$x" , z"%P̃$z", w" %Q$w" , y"%

% $
z",w" !-k

Q$x" , z"%P̃$z", w" %Q$w" , y"%

%
1
8 $

z",w" !-k

Qk$x" , z"%Pk$z", w" %Qk$w" , y"%

"
1
8

$QkPkQk%$x" , y"%.

Since both (QP̃Q)!-k
and QkPkQk are reversible with respect to ,k, the above yields a

corresponding inequality for their Dirichlet forms. Then the desired inequality (26) for
their spectral gaps follows from the comparison lemma, Lemma 5.

Step Four. Next we perform a further decomposition, this time of each -k. Each state
x" in -k has exactly k positive components among x1, . . . , xN. This step decomposes -k

according to which components are positive. For 2 ! -̃k, define

-2 " 0x" ! - : sgn$x"% " 21. (28)

Let P2 be the restriction of Pk to -2 by rejecting jumps that leave -2:

P2$x" , A% " Pk$x" , A # -2% # 10x"!A1Pk$x" , -1-2%, (29)

for x" ! -2 and A $ -k. Note that P2( x" , y") & P̃( x" , y") as long as x" , y" ! -2 and x" )
y" .

For each k ! {0, . . . , N }, consider the partition

-k " "
2!-̃k

-2.

As in Step Two, we define another aggregated chain Q# k. The details are in Section 6, but
here is the intuition. The chain Q# k models the movements of positive coordinates as they
swap with negative coordinates. Thus we have k positive coordinates, each performing a
“random walk” on {1, . . . , N }. As we explain in Section 6, this chain is similar to the
well known exclusion process, whose spectral gap is well understood. This similarity will
be used to get a good bound on Gap(Q# k).

Since Qk is also positive, we can first apply Lemma 7 to obtain that

Gap$QkPkQk% % Gap'$Qk%
1/2Pk$Qk%

1/2(. (30)
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Then, applying Theorem 8 again, we can conclude that

Gap'$Qk%
1/2Pk$Qk%

1/2( % Gap$Q# k% ! min
2!-k

Gap$P2% (31)

for each k ! {0, . . . , N }.
Now the above inequalities can be combined to give us the following:

Gap$QP̃Q% % 1
3 Gap$Q1/2$QP̃Q%Q1/2% $by Step One%

% 1
3 Gap$Q# % ! min

0+k+N
Gap$$QP̃Q%!-k% $by Step Two%

% 1
24 Gap$Q# % ! min

0+k+N
Gap$QkPkQk% $by Step Three%

% 1
24 Gap$Q# % ! min

0+k+N
Gap$Q# k% ! min

2!-̃k,0+k+N

Gap$P2% $by Step Four%. (32)

The only thing left is to get a good lower bound for each quantity that appears in the right
side of the last inequality. This is accomplished in later sections. Specifically, we shall
prove

Gap$Q# % %
1

4N2 /M/N (33)

in Proposition 10 of Section 5,

Gap$Q# k% %
4/M/N

N3 (34)

in Proposition 11 of Section 6, and

Gap$P2% % #
1

16M2$N # 1%
for Example I,

e"4$*

32M3$N # 1%
for Example II.

(35)

in Proposition 12 of Section 7. Inserting these bounds into Eq. (32) proves Theorem 2.

Remarks.

1. A similar overall strategy was devised independently by Martin and Randall [22] for
a very different problem.

2. The component x0 plays a special role in our proof. The equilibrium distribution h0

is uniform, and the T0 chain is rapidly mixing. In contrast, for large i, the Ti chains
are slowly mixing. Our proof essentially pretends that all Ti transitions between !#
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and !" are suppressed for i % 1. This is a negligible change for large i, and not
a serious one for small non-zero i. By omitting x0 from the definition of sgn( x"), we
allow Q# to change state by swapping x1 with x0. The x0 coordinate is free to change
sign between swaps. It is the rapid mixing of T0 together with the swapping that
permits the number of nonnegative components of x" to change frequently in the long
run.

3. It is not difficult to extend the analysis to the more natural cases where there is no
restriction on the odd parity of integers. For example I, one can split the middle state
0 into two copies, each with half of the original weight 1/Z. For example II, “middle
states” (i.e., those states whose total spins are zero) only exist when M is even, and
there are (M/ 2

M ) such states in this case. We may fix any half of these states to be in
the positive piece !# with each state carrying a weight of 1/Z($). Then the analysis
can be done in the same manner. Another approach is simply to count the middle
states as “positive”: More precisely, in the definition of !#, replace ! by %.
Though this change entails replacing a few equalities by corresponding inequalities,
the analysis can still be carried over, and the results on estimates of spectral gaps
remain true because only inequalities are needed to get these results. It is significant
that the probability of !# under hi is exponentially close to 1/2 in this modification.
The details of this approach to Example I appeared in Zheng [29].

5. A LOWER BOUND FOR Gap(Q# )

Define the aggregated chain Q# on the state space {0, . . . , N } as follows:

Q# $k, j% "
1
bk

$
y"!-j

$
x"!-k

,$x"%Q$x" , y"%, (36)

where bk & ,(-k). Since Q is reversible with respect to ,, we see that Q# is reversible
with respect to the probability distribution (b0, . . . , bN).

By symmetry, we have

hk$!"% " hk$!#% " 1
2. (37)

Since , is a product measure, we see from (37) that ,(-2) & 2"N. The cardinality of the
set -̃k is (k

N), so we have

bk " ,$-k% " $
2!-̃k

,$-2% " )N
k * 1

2N . (38)

Note that for the pure swapping chain Q, if !i " j! ! 1, then it is impossible to change
a state in -i to a state in -j in one swap, i.e.,

Q$x" , y"% " 0 if x" ! -i, y" ! -j, and !i ( j! * 1.

Hence,
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Q# $i, j% " 0 if !i ( j! * 1.

In the following, we use the notation of Eq. (11) to write Q( x" , (0, 1) x") to denote
Q(( x0, x1, x2, . . . , xN), ( x1, x0, x2, . . . , xN)). Observe that the only way that the chain
can leave -i is by interchanging x0 and x1 when x0 ! !# and x1 ! !" or vice versa.
Recalling Lemma 1, for i ! {0, . . . , N " 1} we have

biQ# $i, i # 1% " $
y"!-i#1

$
x"!-i

,$x"%Q$x" , y"%

" $
x0!!#

$
x1!!"

$
2!-̃i

xj!!2j,2+j+N

,$x"%Q$x" , $0, 1%x"%

" $
x0!!#

$
x1!!"

$
2!-̃i

xj!!2j,2+j+N

,$x"%
1

2N
-0,1$x"%

%
1

2N $
x0!!#

$
x1!!"

h0$x0%h1$x1%/
M/N $

2!-i
xj!!2j,2+j+N

+
2

N

hj$xj%

"
1

2N $
x0!!#

$
x1!!"

h0$x0%h1$x1% )N ( 1
i * 1

2N"1 /M/N

"
1

2N#2N )N ( 1
i * /M/N. (39)

In order to study the chain Q# , we introduce another chain and use the comparison
argument. Consider the symmetric simple random walk K# on {0, 1, . . . , N }:

K# $0, 1% " K# $0, 0% " K# $N, N ( 1% " K# $N, N%

" K# $i, i ( 1% " K# $i, i # 1% " 1
2, 0 ' i ' N.

Define R to be the Metropolis chain with base chain K# for the binomial distribution
(b0, . . . , bN) as given by (38). Then R is irreducible and reversible with respect to
(b0, . . . , bN). Moreover, its spectral gap is well understood.

Lemma 9. The spectral gap of the Metropolis chain R satisfies the following inequality:

1
N

+ Gap$R% +
2
N

. (40)

For more details about this chain and a proof of this lemma, see Diaconis and Saloff-Coste
[7, pp. 698, 719].

Now we shall compare the chain Q# with the chain R. First, if 0 + i 5 N, then we have
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R$i, i # 1% " K# $i, i # 1%min%1,
bi#1

bi
(

"
1
2

min#1,
) N
i # 1*
)N

i * ,
"

1
2

min%1,
N ( i
i # 1(. (41)

By direct calculation, one can show

)N ( 1
i *

)N
i *

"
N ( i

N
%

1
2

min%1,
N ( i
i # 1(. (42)

So, for i & 0, . . . , N " 1, we use Eqs. (39), (42), and (41) to obtain

Q# $i, i # 1% %
1

2N#2N )N ( 1
i * /M/N -)N

i * 1
2N."1

%
1

4N
1
2

min%1,
N ( i
i # 1(/M/N

"
1

4N
/M/NR$i, i # 1%.

Using this inequality and reversibility, along with the fact that R(i, j) & Q# (i, j) & 0
whenever !i " j! ! 1, we conclude that

Q# $i, j% %
1

4N
/M/NR$i, j% for all i & j. (43)

Let $R and $Q# denote the Dirichlet forms for R and Q# , respectively. Since R and Q# have
the same equilibrium distribution, the bound (43) and Lemma 5 imply that

$ #Q %
1

4N
/M/N$R,

and hence

Gap$Q# % %
1

4N
/M/NGap$R%.

The above inequality and Lemma 9 enable us to get the following.
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Proposition 10. The spectral gap of the aggregated chain Q# satisfies

Gap$Q# % %
1

4N2 /M/N. (44)

Remark. Analogous bounds can be used to show that Gap(Q# ) + 1/N2 (Zheng [29]).

6. A LOWER BOUND FOR Gap(Q# k)

First we define Q# k, the aggregated chain on -̃k. Fix k ! {0, . . . , N }. For 2 ! -̃k, let
b# 2 & ,k(-2) & ,(-2)/bk. If 2, 3 ! -̃k and 2 ) 3, then let

Q# k$2, 3% "
1

b# 2
$

y"!-3

$
x"!-2

,k$x"%Qk$x" , y"%.

Also let

Q# k$2, 2% " 1 ( $
3)2

Q# k$2, 3%.

Note that if 2, 3 ! -̃k, 3 ) 2, and 3 ) (i, i # 1)2 for every i ! [1, N), then

Qk$x" , y"% " Q$x" , y"% " 0 for all x" ! -2, y" ! -3,

and hence

b# 2Q# k$2, 3% " $
y"!-3

$
x"!-2

,k$x"%Qk$x" , y"% " 0.

Since Qk is reversible with respect to ,k, it follows that

b# 2Q# k$2, 3% " b# 3Q# k$3, 2%, (45)

i.e., Q# k is reversible with respect to the probability distribution {b# 2 : 2 ! -̃k}.
In this section, we obtain a lower bound for Gap(Q# k) for each k ! {0, . . . , N }. To

do this, we will compare the chain (Q# k, b# 2) with another chain, which turns out to be a
version of the exclusion process studied by Quastel [25], Diaconis and Saloff-Coste [6],
and others.

If 2, 3 ! -̃k, 3 ) 2, and 3 & (i, i # 1)2 for some i ! [1, N), then
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b# 2Q# k$2, 3% " $
y"!-3

$
x"!-2

,k$x"%Qk$x" , y"%

" $
x"!-2

,$x"%

bk
Q$x" , $i, i # 1%x"%

"
1
bk

$
x"!-2

,$x"%
1

2N
-i,i#1$x"%

%
1

2Nbk
$

x"!-2

,$x"%/M/N $by Lemma 1%

"
/M/N

2Nbk
,$-2%

"
/M/N

2N )N
k *"1

.

In the last equality we have used the fact that

,$-2% "
1
2N and bk " )N

k* 1
2N ,

as we saw in Section 5.
We will compare the chain Q# k with another chain U on -̃k, which we now define. If

2, 3 ! -̃k, 2 ) 3, and 3 & (i, i # 1)2 for some i ! [1, N), then let U(2, 3) & 1/(2k).
For other distinct 2 and 3, let U(2, 3) & 0. Finally, let

U$2, 2% " 1 ( $
3!-̃k,3)2

U$2, 3%.

The chain U is reversible with respect to the uniform distribution on -̃k (that is, b# 2). We
can interpret the chain U as an exclusion process as follows. Think of k particles at k
distinct sites on the line segment {1, . . . , N }. Each configuration of k particles corre-
sponds to a unique 2 in -̃k if we interpret

2i " % # if there is a particle at site i,
( if site i is vacant.

At each time, one of the k particles is chosen at random, and it tries to jump one site to
the left or right with equal probability. The attempt fails if the destination site is occupied
(this is the exclusion property) or if the jump would leave the segment (i.e., a jump to the
left from site 1 fails and a jump to the right from site N fails). The jump succeeds if the
destination site is a vacant site of the segment. Then the Markov chain U exactly describes
this exclusion process. Diaconis and Saloff-Coste [6, p. 708] showed that the second
largest eigenvalue of U is at most 1 " 4/kN2, which is equivalent to
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Gap$U% %
4

kN2 . (46)

From the above, we see that if 2, 3 ! -̃k and 2 ) 3, then

Q# k$2, 3% %
k
N

/M/NU$2, 3%. (47)

From this, we obtain a corresponding inequality for the Dirichlet forms:

$#Qk %
k
N

/M/N$U. (48)

From this and Eq. (46) and the Comparison Lemma 5, we obtain

Proposition 11. For each k & 0, 1, . . . , N, the spectral gaps of the chains Q# k and U
satisfy

Gap$Q# k% %
k
N

/M/NGap$U% %
4/M/N

N3 .

7. A LOWER BOUND FOR Gap(P%)

In this section, we study the mixing rate of the chain P2, which is the restriction to -2 of
the pure updating chain P̃ defined on -. This part is very dependent upon the details of
the particular chain under study, and consequently our argument for Example I will be
quite separate from that for Example II. In both cases, however, the basic strategy is the
same: We show that each component of the product chain P2 is rapidly mixing. We shall
prove the following.

Proposition 12. P2 is (uniformly in 2) rapidly mixing on -2. More precisely,

Gap$P2% % #
1

4$2M ( 1%2$N # 1%
for Example I

exp$"4$*%

32M3$N # 1%
for Example II.

Throughout this section, we fix a 2 & (21, . . . , 2N) in -̃k. In the notation of Section
4, we have

-2 " ! 4 +
i&1

N

!2i.
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Recall from Section 2 that Ti is the Metropolis chain with respect to hi on !. For i % 1,
let Ti

2i be the restriction of Ti to !2i
. Then in terms of operators, we have

P2 "
1

N # 1 $
i&0

N

I ! · · · ! I
i

! ) I # Ti
2i

2 * ! I ! · · · ! I
N"i

. (49)

By convention, T0
20 & T0. By Lemma 4 about product chains, we see that our task is to

obtain lower bounds for the spectral gap of every Ti
2i. We need to do this separately for

our two Examples.
First we shall prove the result for Example I. From the definition of Ti and the relation

hi$k%

hi$j%
"

C !k!i/N/Zi

C !j!i/N/Zi
" C$!k!"!j!%i/N,

it follows that, for i % 1,

Ti
2i$2j ( 1, 2j # 1% " % 1

2 if 2i " # and 1 + j + M
1
2 C"2i/N if 2i " " and "M + j + "1,

Ti
2i$2j # 1, 2j ( 1% " % 1

2 if 2i " " and "M + j + "1
1
2 C"2i/N if 2i " # and 1 + j + M,

Ti
2i$2j # 1, 2j # 1% " 1

2 ( 1
2 C"2i/N if 1 + !j! ' M,

Ti
"$"1, "1% " Ti

#$1, 1% " 1
2,

Ti
"$"2M ( 1, "2M ( 1% " Ti

#$2M # 1, 2M # 1% " 1 ( 1
2 C"2i/N.

Note that Ti
2i differs from Ti only in transitions involving boundary states (i.e., state "1

for 2i & “"” and state 1 for 2i & “#”).
It is easy to check that Ti

2i is the Metropolis chain based on nearest neighbor symmetric
random walk on -2i

and with stationary distribution !i
2i given by

!i
2i$x% "

2Ci!x!/N

Zi
, x ! !2i, (50)

with

Zi " $
x&1

M

2Ci$2x#1%/N.

For each i ) 0, !i
2i has a unique local maximum at j such that !j! & 2M # 1. So by

Proposition 6.3 in Diaconis and Saloff-Coste [8], we have
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Gap$Ti
2i% " 1 ( )1$Ti

2i% %
1

2M2 . (51)

The following result is well known.

Lemma 13. Let K be the symmetric simple random walk on {0, 1, . . . , L} with K(0,
0) & K(L, L) & 1/2. Then

Gap$K% " cos
!

L # 1
%

1
2L2 . (52)

(The equality in this lemma is proven in Feller [11, p. 437] and the inequality is a simple
calculation.) As for the spectral gap of T0, this lemma with K & T0 and L & 2M " 1
implies that

Gap$T0% %
1

2$2M ( 1%2 . (53)

Now we know spectral gaps for each component of the pure updating chain Ti
2i; hence

we can conclude from Lemma 4 that the spectral gap of the product chain P2 has the
following lower bound:

Gap$P2% "
1

N # 1
min

0+i+N
Gap$'I # Ti

2i(/2%

%
1

N # 1
1
2

min% 1
2$2M ( 1%2 ,

1
2M2(

"
1

4$2M ( 1%2$N # 1%
. (54)

We now turn to the proof for Example II, the mean field Ising model. For now, fix any
odd integer M and any $ % 0. (Later, we will consider $ & $i & i$*/N.)

For x ! ! & {"1, #1}M, let

k$x% " 1
2 )M # $

j&1

M

x'j(* ,

that is, k( x) is the number of j’s such that x[ j] & #1. Then the Ising distribution can be
written as

!$x% "
e$$2k$x%"M%2/2M

Z$$%
.
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We can also write

!# " %x ! ! : k$x% *
M
2 ( .

Since M is odd, we have

$
x!!#

!$x% "
1
2

.

For x, y ! !#, observe that !( x) 5 !( y) if and only if k( x) 5 k( y).
Write T# for the restriction of the Metropolis algorithm to !#, and consider the chain

P defined by P & (I # T#)/ 2. This is the Markov chain on !# determined by

P$x, y% " #
1

2M
if &x ( y&1 " 2, k$y% " k$x% # 1

1
2M

e2$$M#1"2k$x%%/M if &x ( y&1 " 2, k$y% " k$x% ( 1

0 if &x ( y&1 * 2
1 ( $

z!!#10x1

P$x, z% if x " y,

for x, y ! !#. Observe that if k( y) & k( x) " 1, then

!$y%

!$x%
"

e$$2$k$x%"1%"M%2/2M

e$$2k$x%"M%2/2M

" e2$$M#1"2k$x%%/M (55)

% e2$$M#1"2M%/M

% e"2$. (56)

We need a good lower bound for the spectral gap of the above chain. To this end, we
consider the following decomposition of its state space:

!# " "
i&M0

M

!'i(,

where M0 & (M # 1)/ 2, and ![i] & { x ! ! : k( x) & i}. We shall apply Theorem
8 with "i & ![i], & & P2, and ' & P2. Since P is reversible, ' is positive. Then, with
the help of Lemma 6, we have
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Gap$P% % 1
4 Gap$P4% " 1

4 Gap$'1/2&'1/2%

% 1
4 Gap$ #'% ! min

M0+i+M
Gap$&i%.

We shall prove the following two claims:

Gap$ #'% %
e"2$

2M2 , (57)

Gap$&i% %
e"2$

4M
. (58)

From these, it follows that

Gap$P% %
1
4

!
e"2$

2M2 !
e"2$

4M

%
e"4$

32M3 . (59)

Proof of Eq. (57). In our terminology from the beginning of Section 4, 0 & 2!$ and

bi " $
x!!'i(

0$x% "
2 )M

i * e$$2i"M%2/2M

Z$$%
, M0 + i + M.

Notice that P( x, x) % 1
2 for every x ! !#. Therefore,

'$x, y% " P2$x, y% % 1
2 P$x, y% for every x, y ! !#.

Observe that for every x in -i there are exactly M " i y’s in -i#1 and i y’s in -i"1 such
that & x " y&1 & 2. Using this observation and the preceding inequality, we obtain

#'$i, i # 1% "
1
bi

$
x!!'i(

$
y!!'i#1(

0$x%'$x, y%

%
1
bi

$
x!!'i(

0$x%$M ( i% 4
1
2

4
1

2M

"
M ( i

4M
(60)
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and

#'$i, i ( 1% %
1
bi

$
x!!'i(

0$x%i 4
1
2

4
1

2M
e"2$

"
ie"2$

4M

%
e"2$

8
. (61)

At this point, we need the following basic result.

Lemma 14. The distribution bM0
, . . . , bM is unimodal. That is, there exists an integer

i0 ! [M0, M] such that bi + bi#1 whenever M0 + i 5 i0, and bi % bi#1 whenever i0 +
i 5 M.

Proof of Lemma 14. Notice that

bn"1

bn
"

n
M ( n # 1

e2$$M#1"2n%/M.

Let

g$t% " log t ( log$M ( t # 1% #
2$$M # 1 ( 2t%

M
for real t ! 'M0, M(.

Then

bn"1

bn
" eg$n%.

Thus, bn"1 5 bn if and only if g(n) 5 0. We must show that either g does not change
sign on [M0, M], or else g changes sign exactly once (say at t0) with g(t) 5 0 for M0 +
t 5 t0 and g(t) ! 0 for t0 5 t + M. This will follow if we prove that (a) g is convex
on [M0, M] and (b) g(M0) & 0. Part (b) is immediate. Part (a) holds since

g6$t% " "
1
t2 #

1
$M ( t # 1%2 ,

which is nonnegative for t ! [M0, M]. !

The rest of the proof of Eq. (57) is similar to the proof of Proposition 6.3 in Diaconis
and Saloff-Coste [8]. The only difference is in their calculation of Q (here we use their
notation, not ours). For the edge e & (i, i # 1) (i ! {M0, . . . , M}), define
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Q$e% " bi
#'$i, i # 1% " bi#1

#'$i # 1, i%.

By Lemma 14, there exists i0 ! {M0, . . . , M} such that

bM0 + bM0#1 + · · · + bi0"1 + bi0 and bi0 % bi0#1 % · · · % bM.

Equation (61) gives the bound

Q$e% " bi#1
#'$i # 1, i% % bi#1

1
8 e"2$.

Then the Poincaré inequality tells us that

Gap$ #'% %
1
A

,

where

A " max
i

M ( M0

bi#1
1
8 e"2$ ) $

j&M0

i

bj*) $
j&i#1

M

bj*.

If i # 1 + i0, then we bound A using

$
j&M0

i

bj + $i # 1 ( M0%bi#1 + $M ( M0%bi#1 and $
j&i#1

M

bj + 1.

If i % i0, then we use

$
j&M0

i

bj + 1 and $
j&i#1

M

bj + $M ( M0%bi#1.

Thus we obtain

A + 8e2$$M ( M0%
2 ' 2e2$M2,

which proves Eq. (57).

Proof of Eq. (58). &i is the restriction of P2 to ![i]. This is trivial if i & M, so assume
M0 + i + M " 1. Consider x, y ! ![i] such that & x " y&1 & 2. Then there exists z !
![i#1] such that & x " z&1 & 1 & & z " y&1. Hence for such x and y,
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&i$x, y% " P2$x, y% % P$x, z%P$z, y%

"
1

2M
4

1
2M

e2$$M#1"2$i#1%%/M 'by Eq. $55%(

%
e"2$

4M2 .

We shall compare the chain &i with another chain V[i] on ![i]. This new chain is known
as the exclusion process with i particles on the complete graph with M sites, interpreting
a particle to be at the jth site if x[ j] & #1. At each time, a randomly chosen particle
jumps to a randomly chosen vacant site. (This process is also called “Bernoulli Laplace
model of diffusion.”) More precisely, the transition probabilities are given by

V'i($x, y% " % 1
i$M ( i%

if x, y ! !'i( and &x ( y&1 " 2,

0 otherwise.

Therefore,

P2$x, y% % e"2$ !
i$M ( i%

4M2 ! V'i($x, y%, 5 x & y ! !'i(.

Diaconis and Saloff-Coste [6, p. 709] prove that

Gap$V'i(% "
M

i$M ( i%
.

Notice that &i and V[i] both have the same equilibrium distribution on ![i], namely, the
uniform distribution. Therefore,

Gap$&i% % e"2$ !
i$M ( i%

4M2 ! Gap$V'i(%

" e"2$ !
i$M ( i%

4M2 !
M

i$M ( i%

"
e"2$

4M
. (62)

This proves Eq. (57).
Now Eq. (59) tells us that

Gap)I # Ti
2i

2 * %
exp$"4$i%

32M3 %
exp$"4$*%

32M3 (63)

for i & 1, . . . , N. Next, observe that the chain T0 is the same as the base chain K on
!Ising defined in Section 1. But this is exactly the random walk on the hypercube {"1,
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#1}M from Example 3.2 of Diaconis and Saloff-Coste [7], where its gap is shown to be
2/M. Hence

Gap)I # T0

2 * "
1
M

. (64)

Finally, the bound of Proposition 12 follows from Lemma 4, using Eqs. (63) and (64) in
the definition of P2 in Eq. (49).
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