
Randomized Algorithms
RAJEEV MOTWANI

Department of Computer Science, Stanford University, Stanford, California

PRABHAKAR RAGHAVAN

IBM Almaden Research Center, San Jose, California

Randomized algorithms, once viewed as
a tool in computational number theory,
have by now found widespread applica-
tion. Growth has been fueled by the two
major benefits of randomization: sim-
plicity and speed. For many applica-
tions a randomized algorithm is the
fastest algorithm available, or the sim-
plest, or both.
A randomized algorithm is an algo-

rithm that uses random numbers to in-
fluence the choices it makes in the
course of its computation. Thus its be-
havior (typically quantified as running
time or quality of output) varies from
one execution to another even with a
fixed input. In the analysis of a random-
ized algorithm we establish bounds on
the expected value of a performance
measure (e.g., the running time of the
algorithm) that are valid for every in-
put; the distribution of the performance
measure is on the random choices made
by the algorithm based on the random
bits provided to it.

Caveat: The analysis of randomized
algorithms should be distinguished
from the probabilistic or average-case
analysis of an algorithm, in which it is
assumed that the input is chosen from a
probability distribution. In the latter
case, the analysis would typically imply
only that the algorithm is good for most
inputs but not for all.

HISTORY AND SOURCES

The roots of randomized algorithms can
be traced back to Monte Carlo methods
used in numerical analysis, statistical
physics, and simulation. In complexity
theory, the notion of a probabilistic Tur-
ing machine was proposed by de Leeuw
et al. [1955] and was further explored in
the pioneering work of Rabin [1963] and
Gill [1977]. The earliest examples of
concrete randomized algorithms ap-
peared in the work of Berlekamp [1970],
Rabin [1976], and Solovay and Strassen
[1977]. Rabin [1976] explicitly proposed
randomization as an algorithmic tool
using as examples problems in compu-
tational geometry and in number the-
ory. At about the same time, Solovay
and Strassen [1977] presented a ran-
domized primality-testing algorithm;
these were predated by the randomized
polynomial-factoring algorithm pre-
sented by Berlekamp [1970].
Since then, an impressive array of

techniques for devising and analyzing
randomized algorithms have been devel-
oped. The reader may refer to Karp
[1991], Maffioli et al. [1985], and Welsh
[1983] for recent surveys of the research
into randomized algorithms. The proba-
bilistic (or “average-case”) analysis of
algorithms (sometimes also called “dis-
tributional complexity”) is surveyed by
Johnson [1984a], and this is contrasted
with randomized algorithms in his fol-
lowing bulletin [1984b].

The work of R. Motwani was supported by an Alfred P. Sloan Research Fellowship, an IBM Faculty
Partnership Award, and NSF Young Investigator Award CCR-9357849, with matching funds from IBM,
Schlumberger Foundation, Shell Foundation, and Xerox Corporation.
Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



The recent book by the authors [Mot-
wani and Raghavan 1995] gives a com-
prehensive introduction to randomized
algorithms.

PARADIGMS FOR RANDOMIZED
ALGORITHMS

In spite of the multitude of areas in
which randomized algorithms find ap-
plication, a handful of general princi-
ples underlie almost all of them. Using
the summary in Karp [1991], we
present these principles in the follow-
ing.

Foiling an Adversary. In the classical
worst-case analysis of deterministic al-
gorithms, a lower bound is established
on the running time of algorithms by
postulating an “adversary” that con-
structs an input on which the algorithm
fares poorly. The input thus constructed
may be different for each deterministic
algorithm. With a game-theoretic inter-
pretation of the relationship between an
algorithm and an adversary, we can
view a randomized algorithm as a prob-
ability distribution on a set of determin-
istic algorithms. (This observation un-
derlies Yao’s [1977] adaptation of von
Neumann’s Mini-Max Theorem in game
theory into a technique for establishing
limits on the performance improve-
ments possible via the use of a random-
ized algorithm.) Although the adversary
may be able to construct an input that
foils one (or a small fraction) of the
deterministic algorithms in the set, it
may be impossible to devise a single
input that is likely to defeat a randomly
chosen algorithm. For example, consider
a uniform binary AND-OR tree with n
leaves. Any deterministic algorithm
that evaluates such a tree can be forced
to read the Boolean values at every one
of the n leaves. However, there is a
simple randomized algorithm [Snir
1985] for which the expected number of
leaves read on any input is O(n0.794).

Random Sampling. A pervasive theme
in randomized algorithms is the idea
that a small random sample from a

population is representative of the pop-
ulation as a whole. Because computa-
tions involving small samples are inex-
pensive, their properties can be used to
guide the computations of an algorithm
attempting to determine some feature of
the entire population. For instance, a
simple randomized algorithm [Floyd
and Rivest 1975] based on sampling
finds the kth largest of n elements in
1.5n 1 o(n) comparison steps, with
high probability. In contrast, it is
known that any deterministic algorithm
must make at least 2n comparisons in
the worst case.

Abundance of Witnesses. Often a
computational problem can be reduced
to finding a witness or a certificate that
would efficiently verify an hypothesis.
(For example, to show that a number is
not prime, it suffices to exhibit any non-
trivial factor of that number.) For many
problems, the witness lies in a search
space that is too large to be searched
exhaustively. However, if the search
space were to contain a relatively large
number of witnesses, a randomly chosen
element is likely to be a witness. Fur-
ther, independent repetitions of the
sampling reduce the probability that a
witness is not found on any of the repe-
titions. The most striking examples of
this phenomenon occur in number the-
ory. Indeed, the problem of testing a
given integer for primality has no
known deterministic polynomial-time
algorithm. There are, however, several
randomized polynomial-time algorithms
[Solovay and Strassen 1978; Rabin
1980] that will, on any input, correctly
perform this test with high probability.

Fingerprinting and Hashing. A fin-
gerprint is the image of an element from
a (large) universe under a mapping into
another (smaller) universe. Finger-
prints obtained via random mappings
have many useful properties. For exam-
ple, in pattern-matching applications
[Karp and Rabin 1987] it can be shown
that two strings are likely to be identi-
cal if their fingerprints are identical;

34 • Rajeev Motwani and Prabhakar Raghavan

ACM Computing Surveys, Vol. 28, No. 1, March 1996



comparing the short fingerprints is con-
siderably faster than comparing the
strings themselves. Another example is
hashing [Carter and Wegman 1979],
where the elements of a set S (drawn
from a universe U) are stored in a table
of size linear in uSu (even though uUu ..
uSu) with the guarantee that the ex-
pected number of elements in S mapped
to a given location in the table is O(1).
This leads to efficient schemes for decid-
ing membership in S. Random finger-
prints have found a variety of applica-
tions in generating pseudorandom
numbers and complexity theory (for in-
stance, the verification of algebraic
identities [Freivalds 1977]).

Random Reordering. A large class of
problems has the property that a rela-
tively naive algorithm A can be shown
to perform extremely well provided the
input data is presented in a random
order. Although A may have poor worst-
case performance, randomly reordering
the input data ensures that the input is
unlikely to be in one of the orderings
that is pathological for A. The earliest
instance of this phenomenon can be
found in the behavior of the Quicksort
algorithm [Hoare 1962]. The random re-
ordering approach has been particularly
successful in tackling problems in data
structures and computational geometry.
For instance, there are simple algo-
rithms for computing the convex hull of
n points in the plane that process the
input one point at a time. Such algo-
rithms are doomed to take V(n2) steps if
the input points are presented in an
order determined by an adversary; how-
ever, if they are processed in random
order, the running time drops to O(n log
n). The book by Mulmuley [1993] gives
an excellent overview of randomized
geometric algorithms.

Load Balancing. When we must
choose between different resources
(such as links in a communication net-
work or when assigning tasks to paral-
lel processors), randomization can be
used to “spread” the load evenly among

the resources. This paradigm has found
many interesting applications in paral-
lel and distributed computing where re-
source utilization decisions have to be
made locally, without global knowledge.
Consider packet routing in an n-node
butterfly network. It is known that
V(=n) steps are required by any deter-
ministic oblivious algorithm (a class of
simple routing algorithms in which the
route followed by a packet is indepen-
dent of the routes of other packets). In
contrast, based on ideas of Valiant
[1982], it has been shown [Aleliunas
1982; Upfal 1984] that there is a ran-
domized algorithm that terminates in
O(log n) steps with high probability.

Rapidly Mixing Markov Chains. In
counting problems, the goal is to deter-
mine the number of combinatorial ob-
jects with a specified property. When
the space of objects is large, an appeal-
ing solution is the use of the Monte
Carlo approach of determining the num-
ber of desired objects in a random sam-
ple of the entire space. In a number of
cases, it can be shown that picking a
uniform random sample is as difficult as
the counting problem itself. A particu-
larly successful technique for dealing
with such problems is to generate near-
uniform random samples by defining a
Markov chain on the elements of the
population, and showing that a short
random walk using this Markov chain is
likely to sample the population uni-
formly. This method is at the core of a
number of algorithms used in statistical
physics [Sinclair 1992]. Examples in-
clude algorithms for estimating the
number of perfect matchings in a graph
[Jerrum and Sinclair 1989].

Isolation and Symmetry Breaking. In
computing on asynchronous distributed
processors, it is often necessary for a
collection of processors to break a dead-
lock or a symmetry and make a common
choice. Randomization is a powerful tool
in such deadlock-avoidance. For exam-
ple, see the protocol for choice coordina-
tion due to Rabin [1982]. Similarly, in

Randomized Algorithms • 35

ACM Computing Surveys, Vol. 28, No. 1, March 1996



parallel computation, often a problem
has many feasible solutions and so it
becomes important to ensure that the
different processors are working to-
wards finding the same solution. This
involves isolating a specific solution out
of the space of all feasible solutions
without actually knowing any single el-
ement of the solution space. One clever
randomized strategy for isolation
chooses a random ordering on the feasi-
ble solutions and then requires the pro-
cessors to focus on finding the solution
of the lowest rank. This idea has proved
to be critical in devising efficient paral-
lel algorithms for finding a perfect
matching in a graph [Mulmuley et al.
1987].

Probabilistic Methods and Existence
Proofs. The probabilistic method at-
tempts to establish the existence of a
specific type of combinatorial object by
arguing that a random object from a
suitably defined universe has the de-
sired property with nonzero probability.
Usually this method gives no clue on
actually finding such an object. This
method is sometimes used to guarantee
the existence of an algorithm for solving
a problem; we thus know that the algo-
rithm exists, but have no idea what it
looks like or how to construct it. The
book by Alon and Spencer [1992] gives
an excellent overview of this subject.

REFERENCES

ALELIUNAS, R. 1982. Randomized parallel com-
munication. In ACM-SIGOPS Symposium on
Principles of Distributed Systems, 60–72.

ALON, N. AND SPENCER, J. 1992. The Probabilis-
tic Method. Wiley, New York.

BERLEKAMP, E. R. 1970. Factoring polynomials
over large finite fields. Math. Comput. 24,
713–735.

CARTER, J. L. AND WEGMAN, M. N. 1979.
Universal classes of hash functions. J. Com-
put. Syst. Sci. 18, 2, 143–154.

DE LEEUW, K., MOORE, E. F., SHANNON, C. E., AND
SHAPIRO, N. 1955. Computability by proba-
bilistic machines. In Automata Studies, C. E.
Shannon and J. McCarthy, Eds., Princeton
University Press, Princeton, NJ, 183–212.

FLOYD, R. W. AND RIVEST, R. L. 1975. Expected

time bounds for selection. Commun. ACM 18,
165–172.

FREIVALDS, R. 1977. Probabilistic machines can
use less running time. In Information Process-
ing 77, Proceedings of IFIP Congress 77, B.
Gilchrist, Ed., (Aug.), North-Holland, Amster-
dam, 839–842.

GILL, J. 1977. Computational complexity of
probabilistic Turing machines. SIAM J. Com-
put. 6, 4 (Dec.), 675–695.

HOARE, C. A. R. 1962. Quicksort. Comput. J. 5,
10–15.

JERRUM, M. R. AND SINCLAIR, A. 1989.
Approximating the permanent. SIAM J. Com-
put. 18, 6 (Dec.), 1149–1178.

JOHNSON, D. S. 1984a. The NP-completeness
column: An ongoing guide. J. Algorithms 5,
284–299.

JOHNSON, D. S. 1984b. The NP-completeness
column: An ongoing guide. J. Algorithms 5,
433–447.

KARP, R. M. 1991. An introduction to random-
ized algorithms. Discrete Appl. Math. 34, 165–
201.

KARP, R. M. AND RABIN, M. O. 1987. Efficient
randomized pattern-matching algorithms.
IBM J. Res. Dev. 31 (March), 249–260.

MAFFIOLI, F., SPERANZA, M. G., AND VERCELLIS,
C. 1985. Randomized algorithms. In Com-
binatorial Optimization: Annotated Bibliogra-
phies, M. O’hEigertaigh, J.K. Lenstra, and
A.H.G. Rinooy Kan, Eds., Wiley, New York,
89–105.

MOTWANI, R. AND RAGHAVAN, P. 1995.
Randomized Algorithms. Cambridge Univer-
sity Press, New York. World-Wide Web infor-
mation at http://www.cup.org/Reviews&blurbs/
RanAlg/RanAlg.html.

MULMULEY, K. 1993. Computational Geometry:
An Introduction Through Randomized Algo-
rithms. Prentice Hall, New York.

MULMULEY, K., VAZIRANI, U. V., AND VAZIRANI, V.
V. 1987. Matching is as easy as matrix in-
version. Combinatorica 7, 105–113.

RABIN, M. O. 1982. The choice coordination
problem. Acta Inf. 17, 121–134.

RABIN, M. O. 1980. Probabilistic algorithm for
testing primality. J. Number Theory 12, 128–
138.

RABIN, M. O. 1976. Probabilistic algorithms. In
Algorithms and Complexity, Recent Results
and New Directions, J.F. Traub, Ed., Aca-
demic Press, New York, 21–39.

RABIN, M. O. 1963. Probabilistic automata. Inf.
Control 6, 230–245.

SINCLAIR, A. 1992. Algorithms for Random Gen-
eration and Counting: A Markov Chain Ap-
proach. Progress in Theoretical Computer Sci-
ence. Birkhauser, Boston.

36 • Rajeev Motwani and Prabhakar Raghavan

ACM Computing Surveys, Vol. 28, No. 1, March 1996



SNIR, M. 1985. Lower bounds on probabilistic
linear decision trees. Theor. Comput. Sci. 38,
69–82.

SOLOVAY, R. AND STRASSEN, V. 1977. A fast
Monte-Carlo test for primality. SIAM J. Com-
put. 6, 1 (March), 84–85. See also SIAM J.
Comput. 7, 1 (Feb.), 1978, 118.

UPFAL, E. 1984. Efficient schemes for parallel
communication. J. ACM 31, 507–517.

VALIANT, L. G. 1982. A scheme for fast parallel
communication. SIAM J. Comput. 11, 350–
361.

WELSH, D. J. A. 1983. Randomised algorithms.
Discrete Appl. Math. 5, 133–145.

YAO, A. C-C. 1977. Probabilistic computations:
Towards a unified measure of complexity. In
Proceedings of the 17th Annual Symposium on
Foundations of Computer Science, 222–227.

Randomized Algorithms • 37

ACM Computing Surveys, Vol. 28, No. 1, March 1996


