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ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER

By Persi Diaconis,1 Susan Holmes and Radford M. Neal2

Stanford University, Stanford University and INRA and University of Toronto

We analyze the convergence to stationarity of a simple nonreversible
Markov chain that serves as a model for several nonreversible Markov
chain sampling methods that are used in practice. Our theoretical and
numerical results show that nonreversibility can indeed lead to improve-
ments over the diffusive behavior of simple Markov chain sampling
schemes. The analysis uses both probabilistic techniques and an explicit
diagonalization.

1. Introduction. Markov chain sampling methods are commonly used in
statistics [33, 32], computer science [31], statistical mechanics [3] and quan-
tum field theory [34, 23]. In all these fields, distributions are encountered that
are difficult to sample from directly, but for which a Markov chain that con-
verges to the distribution can easily be constructed. For many such methods
(e.g., the Metropolis algorithm [25, 13], and the Gibbs sampler [17, 16] with
a random scan) the Markov chain constructed is reversible. Some of these
methods explore the distribution by means of a diffusive random walk. We
use the term “diffusive” for processes like the ordinary random walk on a
d-dimensional lattice which require time of order T2 to travel distance T.
Some other common methods, such as the Gibbs sampler with a systematic
scan, use a Markov chain that is not reversible, but have diffusive behavior
resembling that of a related reversible chain [30].

Some Markov chain methods attempt to avoid the inefficiencies of such
diffusive exploration. The Hybrid Monte Carlo method [15] uses an elabo-
rate Metropolis proposal that can make large changes to the state. In a vari-
ant of this method due to Horowitz [21], a similar effect is produced using a
Markov chain that is carefully designed to be nonreversible. (See [34, 23, 27]
for reviews of these methods.) The overrelaxation method [1] also employs
a nonreversible Markov chain as a way of suppressing diffusive behavior, as
discussed in [29].

In this paper, we analyze a nonreversible Markov chain that does a one-
dimensional walk, as an abstraction of these practical sampling methods, par-
ticularly that of Horowitz [21]. Gustafson [19] has also recently tried using
adaptations of Horowitz’s method. We find that the nonreversible walk does
indeed converge more rapidly than the usual simple random walk. We ana-
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lyze convergence in total variation distance and in χ2 distance in some detail,
finding that this is one of the few natural instances where total variation
and χ2 relaxation times differ. We then discuss generalizations of the method,
and their relationships to other sampling methods, and explore applications
to several statistical problems. Finally, we discuss some limitations of these
techniques.

Since this paper was submitted there have been several variations and
extensions. Chen, Lovász and Pak [5] show how to use nonreversible walks
to achieve speed-ups in a variety of other problems. Hildebrand [20] carries
the careful analysis of Section 3 further and analyzes our “V” example of
Section 6.1. Mira and Geyer [26] look at other measures of convergence for
our basic example of Theorem 1. Finally, Bassiri [2] analyzes a random walk
on dihedral groups similar to Theorem 2.

2. Reversible and nonreversible walks in one dimension. All our
examples concern distributions on some finite set, � , with positive probabili-
ties given by π�x�. We sample from π�x� by running an irreducible aperiodic
Markov chain on � with transition probabilities K�x�y�, constructed so that
π�x� is the stationary distribution. Such a chain is reversible with respect
to π if

π�x�K�x�y� = π�y�K�y�x� for all x�y ∈ � 	(2.1)

Reversibility is a sufficient, but not necessary, condition for π�x� to be a sta-
tionary distribution of the chain.

We consider first the simple case where � = �1�2�3� 	 	 	 � n�, and where the
desired distribution is uniform: π�x� ≡ 1/n. A reversible Markov chain con-
verging to this distribution can be constructed as a nearest neighbor random
walk on the n-point path with holding probabilities of 1/2 at each end; i.e.,
K�x�y� = 1/2 for y = x± 1 and x�y ∈ � , and K�1�1� = K�n�n� = 1/2 also.
The chain can be pictured thus:

This walk takes on the order of n2 steps to reach stationarity, since, using
the central limit theorem, we see that the walk will take on the order of k2

steps to travel a distance of order k.
We overcome this “diffusive” behavior by introducing two copies of each

state. In the “upstairs” copy the chain goes right 1 − 1/n of the time. In the
“downstairs” copy it goes left 1− 1/n of the time. The chain switches between
copies at rate 1/n.

We label the upstairs states �+�1�� �+�2�� 	 	 	 � �+� n�, and the downstairs
states �−�1�� �−�2�� 	 	 	 � �−� n�. To get a uniform stationary distribution, we
put holding probabilities of 1/n at the two diagonally opposed corners �+� n�
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and �−�1�. The chain can then be pictured thus:

The transition probabilities are as follows:

K��+�x���+�x+1�� =1− 1
n

for 1≤x<n� K��+�n���−�n�� =1− 1
n
�

K��+�x���−�x+1�� = 1
n

for 1≤x<n� K��+�n���+�n�� = 1
n
�

K��−�x���−�x−1�� =1− 1
n

for 1<x≤n� K��−�1���+�1�� =1− 1
n
�

K��−�x���+�x−1�� = 1
n

for 1<x≤n� K��−�1���−�1�� = 1
n
	

(2.2)

The transition matrix is doubly stochastic, and thus the stationary distri-
bution of this chain is uniform on the new state space, with all states having
probability 1/�2n�. The marginal distribution of just the second component of
state (ignoring the + or −) is therefore also uniform. This chain is thus an
alternative to the simple random walk as a way of sampling from the original
state space.

The state space of the nonreversible walk can instead be labeled with ele-
ments of the circle �2n (integers mod 2n). The walk can then be described
equivalently as a Markov chain on �2n with transition probabilities

K�x� x+ 1� = 1− 1
n
� K�x�−x� = 1

n
	(2.3)

Pictorially,

This labeling is more convenient for the proofs.
In Section 5 we show how to generalize this method to work with a

nonuniform distribution (though the efficiency gains may not always carry
over to nonuniform distributions). We also discuss generalizations to higher-
dimensional grids.
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First, however, we analyze the convergence of the chain shown above with
respect to total variation distance, in Section 3, and with respect to χ2 distance,
in Section 4. Somewhat surprisingly, these two convergence rates are different.

3. Total variation convergence of the nonreversible walk. Our first
result is that order n steps are necessary and sufficient for convergence in
total variation distance of the non-reversible walk. Let the distribution after
l steps starting from a be Kla. The total variation distance is defined as

�Kla − π�TV = max
� ⊆χ

�Kla�� � − π�� �� = 1
2

∑
x∈χ

�Kla�x� − π�x��	

Theorem 1. For any n ≥ 2, any starting state a, and all l = 1�2� 	 	 	 � the
chain (2.3) on �2n satisfies

�Kla − π�TV ≤ �1−C��l/�4n��

for some constant C > 0. (The direct proof below shows the theorem for C = 2−7,
the coupling proof for C = 2−16. In both proofs, the constant could easily be
improved.)
Conversely, for n > 2, the chain started at state 0 is not close to π after only

n steps,

�Kl0 − π�TV ≥ 7
54

for all l ≤ n	

Proof of the converse. After l ≤ n steps, the walk started at state 0
is at l with probability at least �1 − 1/n�l ≥ �1 − 1/n�n ≥ 1/2n, and hence,
for n > 2,

�Kl0 − π�TV ≥
(
1− 1

n

)n
− 1

2n
≥ 7

54
�

using �1 − 1/n�n ≥ 8/27 for n > 2 [since �1 − 1/n�n increases monotonically
with n]. The converse is not true for n = 2, for which the distribution is exactly
uniform after two transitions, from any initial state. ✷

We prove the first part of Theorem 1 in two ways: by a direct probabilistic
argument combined with submultiplicativity and by a coupling argument.

3.1. A direct probabilistic proof. Let Xm be the position of the walk (2.3)
at time m. We will show that for any starting state a and any state x, when
m = 4n,

Pa�Xm = x� ≥ C

2n
�(3.1)

where here C = 2−7.
The minorization (3.1) suffices to prove the theorem by an easy argument.

Let K�x�y� be a Markov chain on a finite state space � . Suppose π is a
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stationary distribution forK and there arem�C such thatKm�x�y� ≥ Cπ�y�,
for all x�y. Then �Klx − π�TV ≤ �1−C��l/m�, for all l.

To see this, suppose without loss that m = 1, then write

K�x�y� = Cπ�y� + �1−C�
[
K�x�y� −Cπ�y�

1−C
]
	

This presents the transition probabilities as a mixture with π as one com-
ponent. If T is the first time that a transition chooses π from this mixture,
then at time T, the process is stationary. Indeed, T is a strong stationary time
in the sense of [9]; this reference gives results that provide a bound on the
total variation. An elementary proof may also be found in [27], Section 3.3.
For general m, we apply the above to Km.

To prove (3.1), let T1�T2� 	 	 	 be the times that the walks changes sign (i.e.,
when x → −x is chosen, including when x = −x = 0 or x = −x = n). Thus
1 ≤ T1 < T2 < T3 < · · · . Let Am be the number of sign change transitions in
the sequence up to Xm (i.e., Am = i when Ti ≤m < Ti+1). Clearly,

Pa�Xm = x� ≥ Pa�Xm = x�Am = 1� +Pa�Xm = x�Am = 2�	

(We must look both when Am = 1 and when Am = 2 because of a parity
problem.) From direct considerations, starting at a, for any m,

Given Am = 1 �Xm = �m− a+ 1� − 2T1 �mod 2n��
Given Am = 2 �Xm = �m+ a� + 2�T1 −T2� �mod 2n�	

(These equations show the parity problem: after an even number of transi-
tions, the walk will have moved from its start state an odd number of steps if
Am = 1 and an even number of steps if Am = 2.)

One can also directly see that

Pa�T1 = i�Am = 1� = 1
n

(
1− 1

n

)m−1
for 1 ≤ i ≤m�

Pa�T1 = i�T2 = j�Am = 2� = 1
n2

(
1− 1

n

)m−2
for 1 ≤ i < j ≤m	

Now take m = 4n. If �m− a+ 1� − x is even,

Pa�Xm = x�Am = 1� = Pa��m− a+ 1� − 2T1 = x �mod 2n��Am = 1�

≥ 1
n

(
1− 1

n

)m−1
≥ 2−7

2n
	

The first inequality follows from the existence of at least one value of T1 in
the range 1 to m for which �m−a+1�−2T1 = x�mod 2n�. The last inequality
uses �1− 1/n�n ≥ 1/4 for n ≥ 2.
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If �m− a+ 1� − x is odd, then �m+ a� − x is even and

Pa�Xm = x�Am = 2� = Pa��m+ a� + 2�T1 −T2� = x �mod 2n��Am = 2�

≥ m 1
n2

(
1− 1

n

)m−2
≥ 2−7

2n
	

Here, the first inequality comes from counting the number of values for T1
and T2 that make �m+a�+ 2�T1 −T2� = x �mod 2n�, given that Am = 2. We
can find this from the following count, for any d with 0 ≤ d < n,∣∣��i� j�� j− i = d �mod n��∣∣ ≥ �m− d� + �m− n− d� ≥m	
Them−d term comes from solutions �1� d+1�� �2� d+2�� 	 	 	 � �m−d�m�. The
m− n− d term comes from solutions �1� n+ d+ 1�� 	 	 	 � �m− n− d�m�. Thus
the number of solutions is bounded below by m = 4n, uniformly in d. This
proves (3.1) and so completes the proof. ✷

3.2. A proof using coupling. Theorem 1 can also be proved by a coupling
argument, with C = 2−16. We imagine starting chains from all the 2n possible
initial states. Each of these chains follows the transition probabilities (2.3),
but these chains are coupled together by dependencies between their transi-
tions, which encourage the chains to “coalesce,” i.e., to all enter the same state
and remain in the same state thereafter. The total variation distance between
the distribution after l steps, from any starting state, and the stationary dis-
tribution, π, is bounded by the probability that not all the chains will have
coalesced within l steps [22].

Let Xa�k be the position of the chain started at state a after k transitions.
We define the transitions (on �2n) as follows:

Xa�k =
{
Xa�k−1 + 1� if Fk�Xa�k−1� = 0,
−Xa�k−1� if Fk�Xa�k−1� = 1.

Here Fk�x� controls whether or not a sign change transition occurs at step
k for any chain that is in state x. We define Fk�x� in terms of a stream of
indicators that move from right to left through the “upstairs” states, along with
a corresponding stream moving from left to right through the “downstairs”
states,

Fk�x� =
{
Ux+k−1� if 1 ≤ x ≤ n,
Dx+n+k−1� if −n+ 1 ≤ x ≤ 0,(3.2)

whereU1� U2� 	 	 	 andD1� D2� 	 	 	 are independent Bernoulli random variables
taking the value 1 with probability 1/n.

Clearly, the definition of Fk�x� results in the probability of a sign change
transition being 1/n. Furthermore, since the sign change indicators move in
the opposite direction to the states in the chain, the decisions whether to
change sign within any single chain are independent from one time to another.
Transitions within any single chain are therefore as in chain (2.3).
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We now show that with probability at least C = 2−16, the chains started
from all 2n possible initial states will coalesce within 4n transitions. Iterating,
the probability that the chains will not all have coalesced after l transitions
is no more than �1−C��l/4n�, from which Theorem 1 follows.

We consider the situation where D1� D2� 	 	 	 � D4n are all zero, and all of
U1� U2� 	 	 	 �U4n are also zero, except that Ui = 1 and Uj = 1 for some i and
j such that n ≤ i < j ≤ 3n and j− i is odd and greater than one. There are
n2 − n such i� j pairs. The probability of such a situation arising is therefore

�n2 − n� 1
n2

(
1− 1

n

)8n−2
> 2−16�

using �1− 1/n�n ≥ 1/4 for n ≥ 2.
When this situation does occur, the chains from all starting states will coa-

lesce, as illustrated in Figure 1. Suppose that i is even, and hence j is odd (the
argument proceeds analogously in the reverse situation). A chain started in a
state a for which a is odd will then not be affected by the indicator Ui = 1,
since (3.2) implies that Ui can affect this chain only if at some time k we have
i = �a + k − 1� + k − 1, which is not possible if i is even and a is odd. Such
a chain will be affected by the indicator Uj = 1, however. Indeed, as a result
of indicator Uj = 1, all such chains will be in state −1 after transition j, as
illustrated on the right of Figure 1.

On the other hand, chains started in a state a for which a is even will
be affected by the indicator Ui = 1, and subsequently also by the indicator
Uj = 1. In detail, all these chains will be in state −1 after transition i, as
illustrated on the left of Figure 1. The effect of Uj = 1 does not interfere with
this, as long as j− i > 1. The chain started in state −1− i (which is odd) will
also be in state −1 at time i. As seen above, this chain, and hence also all the
chains for which a is even, will be in state −1 at time j. We therefore see that
all chains coalesce by time j ≤ 4n in this situation.

If this situation does not occur, we consider the possibility of the anal-
ogous situation involving D4n+1�D4n+2� 	 	 	 �D8n and U4n+1�U4n+2� 	 	 	 �U8n.
This leads to the conclusion that the chains will coalesce at some time from
4n + 1 to 8n with probability at least C = 2−16. Iterating this argument, we
see that the probability of the chains not coalescing by iteration l is no more
than �1−C��l/4n�, from which Theorem 1 follows. ✷

4. χχχ2 convergence of the nonreversible walk. In this section, we
determine the χ2 rate of convergence of the nonreversible walk. The χ2 (or
l2) distance can be written as

χ2�l� = max
x

∑
y

�Kl�x� y� − π�y��2
π�y� = max

x

∥∥∥∥Klxπ − 1
∥∥∥∥2
2

= �Kl − π�22→2	

Here �f�2 = �1/2n�∑ �f�x��2 and �A�2→2 is the operator norm. For these
equivalences, see [12].
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Fig. 1. Illustration of the coupling proof. The diagrams parallel the one in Section 1� for n = 5.
A dot in a state indicates that one or more of the chains from different start states is in that state
at the given time; to begin, at the top left, no chains have coalesced. A heavy circle indicates that
the next transition for chains at the indicated state will be a sign change. The diagrams on the left
show such a sign change indicator propagating to the left and in the process moving all chains
to a subset of states. The diagrams on the right show a second such propagation, occurring some
time later, which has the effect of moving all chains to a single state. These two phases leading
to coalescence to a single state can also overlap, as long as the second phase starts more than one
step after the first.
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This χ2 distance bounds total variation distance through

4�Klx − π�2TV ≤ χ2�l�	
Usually the two distances give essentially the same answers for convergence;
Chapter 3 of [7] has many examples. The present example is one of the few
where they differ: As shown above, order n steps are necessary and suffice for
total variation convergence; as shown below, order n log n steps are necessary
and suffice for χ2 convergence. We explain why this should be in Section 4.2.

The walk (2.3) changes direction at rate 1/n. It is natural to ask how the
change rate effects the speed of convergence. For example, if the change rate is
1/2, it is not hard to see that order n2 steps are necessary and suffice for either
total variation or χ2 convergence. We will therefore analyze a one-parameter
family of chains on �2n that generalize (2.3), with transition probabilities

K�x� x+ 1� = 1− c

n
� K�x�−x� = c

n
	(4.1)

We often regardK as a matrix, with rows and columns corresponding to states
−n to n− 1, in order.

For any c in �0� n� these chains have uniform stationary distribution, π�x� =
1/�2n�.

4.1. Bounds on the χ2 distance. The main theorem of this section deter-
mines fairly sharp bounds on the χ2 distance after l steps. As explained after
the statement, it shows that l = �n/2c��log n + θ� steps are necessary and
sufficient for convergence if c is fixed.

Theorem 2. Consider the chain (4.1) on �2n, for fixed c ∈ �0� π�. For all
sufficiently large n, and all l,

2�n− 1�
(
1− 2c

n

)l
≤ χ2�l� ≤

(
1− 2c

n

)2l

+ 2n
(
1− 2c

n

)l{
1+A�c� +O

(
1
n

)}
with A�c� =

∞∑
h=1

4c2

π2h2 − c2 	

In Lemma 2 below we show that for the chain (4.1), χ2�l� does not depend on
the starting state. If

l = n

2c
�log n+ θ��

the lead term is asymptotic to 2e−θ. So if θ is large (e.g., θ = 10) the distance
is small while if θ is small (e.g., θ = −10), the distance is large. For l in
the crucial range, the time to stationarity is decreasing with increasing c. In
preliminary computations we determine the best value of c in �0� n�. Roughly
this is c = √

log n. Then order n
√
log n steps are necessary and suffice for χ2

convergence.
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Theorem 2 will be proved as a sequence of lemmas. The first step is an
explicit diagonalization of the underlying transition matrix.

Lemma 1. For any c, the chain K as defined in (4.1) is unitarily similar to
a block diagonal matrix with two one-dimensional blocks at each extreme and
�n−1� two-dimensional blocks. The one-dimensional blocks have entries 1 and
−�1− 2c/n�. The two-dimensional blocks are

Ph=


(
1− c
n

)
exp

( iπh
n

) c

n

c

n
exp

(
− iπh
n

)(
1− c
n

)
 for 1≤h≤n−1	(4.2)

Proof. The matrix K may be thought of as an operator on L, the
2n-dimensional vector space of functions f� �2n → �, via

Kf�j� = ∑
k

K�j� k�f�k�	

The matrix form (4.1) is with respect to the standard basis �δh� −n ≤ h < n�
of L.

Consider instead the Fourier basis �fh� − n < h ≤ n�,

f0�j� = 1�

fh�j� = exp
(2πihj

2n

)
� 1 ≤ h < n�

f−h�j� = exp
(

− 2πihj
2n

)
� 1 ≤ h < n�

fn�j� = �−1�j	

This basis, multiplied by 1/
√
2n, is a unitary change, thus preserving l2 norms.

The subspace Lh spanned by �fh� f−h� is invariant under K giving Ph
of (4.2) above as the matrix of the restriction of K to Lh. Further, Kf0 ≡
�1 − c/n� + c/n = 1 ≡ f0 and Kfn�j� = �−1�j × −�1 − 2�c/n��, proving the
lemma. ✷

Lemma 1 reduces the computations to two-by-two matrices. It is of course
equivalent to a treatment via representations of the dihedral group.

The next lemma shows that the initial starting state does not matter.
Indeed, all rows of any power of the matrix K have the same entries (in per-
muted order). We find this surprising since the walk is not symmetric enough
for us to see the result from invariance considerations. Indeed, Lemma 2 does
not hold for the walk on �2n+1.
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Lemma 2. For any c, the matrixK of (4.1) is such that for all x, all x′, and
all positive l, there is a permutation σ for which

Kl�x� y� =Kl�x′� σ�y��	

Proof. Let � be the basic circulant of size 2n� a 2n×2n matrix with ones
above the diagonal, a one in the lower left corner and zeroes elsewhere. Let �
be the basic Hankel matrix: a 2n×2nmatrix with ones down the antidiagonal.
Observe that K = a� + b�� for a = 1− c/n� b = c/n.

We claim that there are scalars xli and y
l
i such that

Kl =
2n−1∑
i=0
xli�

i +
2n−1∑
i=0
yli�� i

with xli = y�i = 0 if i and l differ mod 2.
This shows that Kl = �1 +��2 for circulants �1 and �2, and that, further,

the nonzero entries in each row of �1 and of �2 fall into disjoint subsets. Since
each of �1 and ��2 has the same entries in each of its rows, the lemma follows
from this.

The claim is proved by induction. It is clearly true when l = 1.
Furthermore,

Kl+1 = �a� + b�� �Kl = �a� + b�� �
2n−1∑
i=0

�xli� i + yli�� i�	

Using ��� = �−1� �� � = � � � 2n = Id, and the inductive hypothesis,Kl+1

can be written in the required form with

xl+10 = axl2n−1 + byl1� xl+12n−1 = axl2n−2 + byl0� xl+1i = axli−1 + byli+1
for 0 < i < 2n− 1�

yl+10 = bxl2n−1 + ayl1� yl+12n−1 = bxl2n−2 + ayl0� yl+1i = bxli−1 + ayli+1
for 0 < i < 2n− 1	 ✷

The next lemma gives the basic computational expression needed.

Lemma 3. For any c and any starting x, the chain (4.1) satisfies

χ2�l� = Trace�KlKl∗� − 1 =
(
1− 2c

n

)2l

+ ∑
1≤h<n

T�h� l��(4.3)

where T�h� l� = Trace�PlhPl
∗
h � and Ph is defined by (4.2).

Proof. From Lemma 2, the entries of any row Kl are a permutation of
the first row.
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Thus χ2�l� does not depend on the starting state. We have for any x,

χ2�l� = 2n
∑
y

(
Kl�x�y� − 1

2n

)2

= 2n
∑
y

�Kl�x� y��2 − 1 = Trace�KlKl∗ � − 1	

The result now follows from Lemma 1. ✷

The following lemma is the heart of the argument; it gives an explicit
diagonalization of the 2× 2 blocks Ph.

Lemma 4. For any c, let λ+�h� and λ−�h� be the eigenvalues of the matrices
Ph (we often omit the h in their symbols to ease the notation), then

λ±�h� =
(
1− c

n

)(
cos
πh

n
±

√
c2

n2�1− c/n�2 − sin2
(πh
n

))
	

Further for T�h� l� defined in (4.3), if h is such that the eigenvalues have a
nonzero imaginary part,

T�h� l� = 2
(
1− 2c

n

)l[
1+ 2c2 sin2�lφ�

n2��1− c/n�2 sin2�πh/n� − c2/n2�

]
with φ = Arg�λ−�h��	

If h is such that the eigenvalues are real,

T�h�l�=2
(
1− 2c

n

)l
+
[
1−

(
1− n
c

)2

sin2
(
πh

n

)]−1(
λ+

2l+λ−
2l−2

(
1− 2c

n

)l)
	

Proof. This follows from an explicit diagonalization of Ph in (4.2). We give
some details; throughout we write B for the matrix whose columns are the
eigenvectors of Ph associated to λ− and λ+:

B =
(
1 1
α β

)
�

where α and β satisfy

α = λ− − pω
q

= q

λ− − pω̄� β = λ+ − pω
q

= q

λ+ − pω̄
with ω = exp � iπh

n
�, p = 1− c/n, and q = c/n. Further, we have the identities,

B−1 = 1
β− α

(
β −1

−α 1

)
�

1
β− α = q

λ+ − λ−
	

Define

1l =
[
λ−l 0
0 λ+l

]
and R = Plh = B1lB−1

= 1
β− α

(
βλ−l − λ+lα λ+l − λ−l

�αβ��λ−l − λ+l� −αλ−l + λ+lβ

)
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Letting C = βλ−l − λ+lα and D = −αλ−l + λ+lβ, we always have �C�2 = �D�2.
For real and complex cases alike, we also have αβ = −1.

So in the general case, whether real or complex, the following formula is
valid:

T�h� l� = Trace �PlhPl∗h � = ∑
i

∑
j

rijrij = 2q2

�λ+ − λ−�2 ��C�2 + �λ−
l − λ+

l�2�

= 2
�β− α�2 ��C�2 + �λ−

l − λ+
l�2�	

We now separate the two cases, and use λ+λ− = 1 − 2c/n = p − q. If the
eigenvalues have a nonzero imaginary part, then

�C�2 = �λ+�2l�2+ �β− α�2� − �λ+
2l + λ−

2l�
from which

T�h� l� = 2�λ+�2l
(
1+ 2q2 sin2 lφ

�λ+�2 sin2 φ

)
= 2�p− q�l

(
1+ 2q2 sin2 lφ

p2 sin2�πh/n� − q2
)
	

If the eigenvalues are real, then

�C�2 = �λ+
2l + λ−

2l� − �λ+λ−�l�αβ̄+ ᾱβ�
and in this case,

T�h� l� = 2
�β− α�2 �2�λ−

l − λ+
l�2 − �λ+λ−�l�αβ̄+ ᾱβ− 2��

= 2�p− q�l + 4
�β− α�2 �λ−

l − λ+
l�2

= 2�p− q�l + q2

q2 − p2 sin2�πh/n��λ−
l − λ+

l�2	

After slight rearrangement, these give the formulas in Lemma 4. ✷

Proof of Theorem 2. From Lemma 4 we see that for c ∈ �0� π� fixed and
n sufficiently large, all the eigenvalues λ±�h� are complex, for 1 ≤ h ≤ n− 1.

Now, Lemma 4 gives

T�h� l� = 2
(
1− 2c

n

)l[
1+ 2c2 sin2�lφ�

n2��1− c/n�2 sin2�πh/n� − c2/n2�

]
with φ = Arg�λ−�h��	

Bounding 2c2 sin2�lφ� by 2c2 and using Taylor expansions for the denominator,

n2

[(
1− c

n

)2

sin2
(
πh

n

)
− c2

n2

]
=

(
1− c

n

)2

h2

[
π2 +O

((
h

n

)2)]
− c2

= h2π2 − c2 +O
((
h

n

)2)
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This expansion is used for 1 < h ≤ εn for suitably small ε. For εn ≤ h < n/2,
the denominator is bounded below by ε2n2�1+O�1/n��. Finally, sin2�πh/n� =
sin2�π�n− h�/n�. Combining bounds we have

χ2�l� ≤
(
1− 2c

n

)2l

+ 2n
(
1− 2c

n

)l{
1+A�c� +O

(
1
n

)}
with A�c� =

∞∑
h=1

4c2

π2h2 − c2

and O�1/n� depending on c.
For the lower bound, use the fact that the second term in square brackets

is positive for all h so T�h� l� ≥ �1 − 2c/n�l. This completes the proof of
Theorem 2. ✷

4.2. Why χ2 convergence takes order n log n steps. It is a bit surprising
that the χ2 convergence rate of the walk (2.3) is slower than its total vari-
ation convergence rate. This phenomenon can be traced to the deterministic
behavior of the chain in the absence of sign change transitions.

For simplicity, take c = 1 and suppose that the chain starts in state 0. The
χ2 distance from stationarity at time l will be at least as big as the single
term for the state x = l (mod 2n). The chance of being in this state will be
at least �1 − 1/n�l (this is the chance of not having done any sign change
transitions up to time l). If this is greater than the stationary probability
of 1/2n, the contribution to the χ2 distance from this state will be at least
2n��1− 1/n�l− 1/2n�2. When n is large, �1− 1/n�l ≈ e−l/n. Using this, we can
see that after l = n transitions, the χ2 distance from stationarity is of order
n. Only for l of order n log n does the distance become small.

Preliminary computations indicate that χ2 the convergence time can be
reduced to order n by introducing a holding probability of 1/2 in each state,
that is , we use a new chain whose transition probabilities, K̃, are given by

K̃�x� x� = 1
2 + 1

2K�x� x�� K̃�x�y� = 1
2K�x�y� for x �= y	

The holding probability of 1/2 fuzzes out the behavior of the chain in the
absence of a sign change transition. After l transitions, this chain when started
in state 0 will be in the vicinity of state l/2 with probability at least �1 −
�1/2n��l. However, the probability of the chain being in state l/2 exactly is
smaller than this by a factor of order

√
l. Consequently, the contribution to

the χ2 distance after n steps for state n/2 is of order 1, not of order n, and
the behavior of the original chain explained above is avoided. Thus, in terms
of χ2 distance, the holding probability of 1/2 actually “speeds up” the chain,
though convergence in terms of total variation distance is slowed down by a
factor of two.

One might instead attempt to improve the χ2 convergence rate by increasing
the probability of a sign change transition. As we have shown in preliminary
calculations, using a higher flip rate can indeed improve the χ2 convergence
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time, but only to order n
√
log n, not to order n. Indeed if c = c�n� then for

c�n� ≤ √
log n order n log n/c steps appear to be necessary and sufficient to

achieve uniformity. For c�n� ≥ √
log n, order nc steps appear to be neces-

sary and sufficient. Convergence in order n time is not attained because more
frequent reversals of direction reintroduce a diffusive aspect into the chain’s
exploration of the state space.

In Theorem 2 we determined the rate of convergence carefully enough to
find the cutoff in the χ2 distance at �n/2c��log n + θ�. Martin Hildebrand
[20] has shown us preliminary results which imply that with flip rates c/n,
and c = c�n� tending to infinity, order cn steps are necessary and suffice for
convergence in total variation distance. His argument uses the probabilistic
tools as in Section 3.1 and shows that there is no cutoff phenomenon in total
variation.

5. Generalizations and relationships to other methods. In this sec-
tion, we show some ways in which the nonreversible walk of Section 2 can
be generalized and discuss relationships to previous sampling methods that
exploit nonreversibility.

5.1. Nonuniform distributions in one dimension. We first show how to gen-
eralize the nonreversible one-dimensional walk to sample from a nonuniform
distribution. Let π�x� be a strictly positive distribution on � = �1�2� 	 	 	 � n�.
As in Section 2, we extend the state space to

�̃ = ��z� x�� z ∈ �−1�+1�� x ∈ � �	
The probabilities on the extended state space are given by π̃�z� x� = π�x�/2.

We now construct a chain M̃ that will sample from π̃ on �̃ . Each transition
of M̃ involves two steps. The second step depends on a parameter θ, which
can be any fixed value in (0,1).

Transitions for chain M̃.

1. From �z� x�, try to move to �−z� x+z� via a standard Metropolis step. This
proposal is symmetric, and so should be accepted with probability

a��z� x�� = min
[
1�
π̃�−z� x+ z�
π̃�z� x�

]
= min

[
1�
π�x+ z�
π�x�

]
	

If x+z is outside the range 1 to n, we set a��z� x�� = 0. We randomly accept
the proposal with probability a��z� x��, and set the state after step (1) to
�z′� x′� = �−z� x+ z� if the proposal is accepted, or to �z′� x′� = �z� x� if the
proposal is rejected.

2. With probability 1 − θ, the chain moves to �−z′� x′�; otherwise (with prob-
ability θ), the chain stays at �z′� x′�.

Proposition 1. The chain M̃ described above is an irreducible aperiodic

chain on �̃ with stationary distribution π̃�z� x� = π�x�/2.
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Proof. Both steps in the transitions for M̃ leave the distribution π̃ invari-
ant: the first step because it follows the usual construction of the Metropolis
algorithm, the second because π̃�z� x� = π̃�−z� x�. Since 0 < π�x� < 1 (pro-
vided n ≥ 2) the chain M̃ is connected. Indeed there is positive probability of
going from one state to another after n + 1 steps. Since the probability of M̃
remaining at state �+1� n� is θ > 0, the chain is aperiodic. This completes the
proof. ✷

Note that the combined effect of the two steps making up a transition of
M̃ is such that with probability 1 − θ, the chain will move either to state
�z� x + z�, if the proposal in step (1) is accepted, or to state �−z� x�, if this
proposal is rejected. If we choose a small value for θ, the chain will therefore
tend to continue moving in one direction until such time as a rejection occurs.

If π�x� is uniform, one can easily see that chain M̃ with θ = 1/n reduces to
the nonreversible walk of Section 2, which was analyzed in Section 3 and 4.
The more general chain described here was abstracted from Horowitz [21], as
discussed further in Section 5.4.

The same idea can be applied to general state spaces. For example, to sam-
ple from π�dx�, on �, an extended state space consisting of two copies of �
could be used. One could then define two Metropolis base chains, one with a
drift to the right, one with a drift to the left. This has been tried by Gustafson
[19], who found that it produces moderate improvements over random walk
Metropolis when used in a component-by-component updating scheme for sam-
pling from a multivariate distribution.

5.2. General finite state spaces: the fiber algorithm. Suppose that our state
space, � , can be partitioned in various ways into ordered “lines,” with each
partition corresponding to a “direction.” We can then define a walk that pro-
ceeds from state x by choosing one of these directions and then making a step
along the corresponding line that passes through x. As before, we will make
these steps in a nonreversible manner. As a simple example, consider anm×n
grid with horizontal lines of size n and vertical lines of sizem. Other examples
where this structure arises naturally are described in Sections 6.2 and 6.3.

In detail, suppose that along with � we are given a collection of partitions
P1�P2� 	 	 	 �Pd. That is, for each i = 1� 	 	 	 � d, there is a partitionPi = �Pij�Jij=1
for which

⋃
j Pij = � and Pij ∩Pij′ = � for j �= j′. Each index i corresponds

to a direction. The parts Pij are called the lines in direction i. We suppose
that each line Pij is linearly ordered. Further, suppose that � is connected in
the sense that for each x�y in � there is a path x0 = x� x1� 	 	 	 � xl = y such
that each pair xi� xi+1 are in a common line.

Finally, let π be a positive probability measure on the finite state space � ,
from which we wish to sample.

We now define a Markov chain M̃d on an extended state space, �̃ =
�−1�+1�d × � . This chain is parameterized by a set of positive probabili-
ties, �wi�di=1, for choosing each of the d directions, and by a set of flip rates
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in the various directions, �θi�di=1, satisfying 0 < θi < 1. Each transition of
the chain proceeds in three steps, as follows, supposing the chain is currently
at �z� x�.
Transitions for chain M̃d.

1. Randomly choose i from �1� 	 	 	 � d� according to the probabilities wi.
2. Given this i, find the j for which x is in Pij. Then try to move to x∗ = x+i z,

where x +i z is the successor of x in Pij if zi = +1, or the predecessor
of x in Pij if zi = −1. If this successor or predecessor does not exist,
reject the move. Otherwise, accept the move to x∗ = x +i z with proba-
bility min�1� π�x∗�/π�x� . If this move is accepted, the new state becomes
�z∗� x∗�, where z∗ is the same as z except that z∗

i = −zi. If the move is
rejected, the state is unchanged. Either way, call the state at this point
�z′� x′�.

3. With probability 1 − θi, negate the ith coordinate of z′; otherwise (with
probability θi) keep all of z′ unchanged. Keep all of x′ unchanged regardless.

Proposition 2. For a connected set of partitions into linearly ordered lines,

the chain M̃d above is aperiodic and irreducible, with stationary distribution
π̃�z� x� = π�x�2−d on �̃ .

Proof. The chain is a mixture of d chains, each of which will be shown to
have the claimed stationary distribution. Suppose �Pij�Jij=1 is one of the par-
titions of � . The last two steps above define a chain on �−1� +1� ×� driven
by this ith partition. This chain is not connected (if Ji > 1). But Proposition 1
above applied to each component, Pij, shows that π̃ is a stationary distribu-
tion, for any flip rate θi.

Stationarity of π̃ with respect to the overall chain follows, since a convex
combination of chains with a common stationary distribution has again this
same stationary distribution.

The combinatorial connectedness condition translates into irreducibility of
the chain. Finally, each line in the chain offers holding probabilities at both
ends so the chain is aperiodic. This completes the proof. ✷

Again, it is easy to generalize this construction to Euclidean and more gen-
eral spaces. For example, to sample from a probability density f�x� on �d,
take Pi to be the partition of �d into lines parallel to the ith coordinate axis,
and for each i, consider two random walks with opposite drifts as proposals
for Metropolis updates in this coordinate.

The potential difficulty with the fiber algorithm is that appropriate sets
of lines must be found, preferably ones which will be effective in eliminating
diffusive behavior. For a naturally given grid, it is easy to define lines, but
if the distribution is supported only on a connected subset of the grid, these
lines might not be effective in eliminating diffusive behavior. Lines can also
be defined in less obvious ways, as in the examples of Sections 6.2 and 6.3.
Note that simulation of the chain above does not require that the lines be
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constructed explicitly, only that it be possible to move from the current point
on a line to its successor or predecessor.

5.3. Comparison with iid Metropolis methods. It is instructive to compare
the nonreversible algorithms described above with the Metropolis algorithm
based on a uniform proposal distribution, independent of the current state,
with the usual acceptance criterion being used to produce the desired station-
ary distribution, π�x�. Call this iid Metropolis chainMu.

Suppose that the state space, � , has N points, and let π∗ = maxx π�x�.
Liu [24] shows that

�Ml
u − π�TV ≤

(
1− 1

Nπ∗

)l
	

We consider two examples for which � = �1� 	 	 	 � n�d, for some n and d, and
henceN = nd. The fiber method of Section 5.2 could be applied to these exam-
ples in an obvious way, using “lines” along which just one of the d coordinates
varies. Choosing θi of order 1/n would seem appropriate.

Example 1. Let π�x� = z exp�−�x1 + x2 + · · · + xd��. The normalizing con-
stant, z, is bounded uniformly in n for fixed d and Liu’s [24] bound shows
that order nde−d transitions are sufficient for stationarity. It is not hard to
prove a lower bound showing that they are necessary as well. Thus here the
iid Metropolis is slow. The analysis in [13] shows that the classical Metropolis
algorithm (and presumably the fiber algorithm as well) reaches stationarity
in order nd steps for this example.

Example 2. Let p�x� be a polynomial with nonnegative coefficients and
maximum degree �α∗� = α∗

1+α∗
2+· · ·+α∗

d, for example, p�x� = x1+x2+· · ·+xd
or p�x� = x1x2 · · ·xd. Let π�x� = zp�x�. For large n� z ∼ a∗

αn
�α∗�+d. Thus

π∗ ∼ c/nd, for c bounded. Now, Liu’s result shows that the chain Mu reaches
stationarity in a bounded number of steps. The analysis in [13] shows that the
classical Metropolis algorithm requires order n2 steps to reach stationarity. In
line with the results of Section 3 we conjecture that order n steps are necessary
and suffice for the directed walk.

5.4. Relationships to other nonreversible methods. The generalizations
above extend the simple nonreversible walk of Section 2 to problems that
may be of practical interest. Still, in several respects, these methods are not
as general or as sophisticated as the practical nonreversible methods that
inspired this investigation. The advantage of looking at simpler methods is of
course the possibility of more detailed analysis. We briefly discuss here some
relationships between the methods of this paper and nonreversible methods
that are presently used in quantum field theory [34, 23] and in some statistical
applications [28, 18].
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The one-dimensional walk of Section 5.1 is closely related to the “guided
Monte Carlo” method of Horowitz [21]. The context is rather different, how-
ever. Horowitz’s method applies to continuous state spaces (e.g., �d) and
assumes that the partial derivatives of the density function with respect to
the coordinates can be computed. As in the methods of this paper, this state
space is extended, by the inclusion of “momentum” variables, equal in number
to the original “position” variables, with independent Gaussian distributions.
A Hamiltonian dynamical system is defined, which when simulated moves the
state along a contour of the probability density in the extended state space. The
volume-preserving property of Hamiltonian dynamics ensures that this motion
leaves the desired distribution invariant. When combined with other suitable
updates to the momentum variables, this can lead to an ergodic Markov chain
that samples from the desired distribution. The chain is nonreversible, with
the momentum acting to keep the chain moving in one direction for a sub-
stantial period of time.

The relationship to the walks on discrete spaces discussed in this paper
comes about from the necessity of simulating the Hamiltonian dynamics using
some discretization of time into steps. When using such a discretization, the
probability density will no longer be exactly constant along the path. This error
is corrected using a Metropolis step, as in Step 1 of the transitions in Section
5.1. As in Step 2 there, the trick of negating the direction after the Metropolis
step (which itself proposes a negation) produces a nonreversible chain that
reverses direction only when a rejection occurs. (In Horowitz’s method, θ is
fixed at zero; an effect similar to a nonzero θ is produced by other means.)

The result is similar to the fiber algorithm of Section 5.2, with sets of “lines”
that are trajectories of the discretized dynamics. This elaborate construction
has two advantages over simpler schemes. First, the trajectories will in many
cases follow the high-probability regions of the state space, even when these
regions are not aligned with the coordinate axes, and may indeed be curved.
In contrast, a simple scheme based on coordinate lines will tend to behave
diffusively when there are strong dependencies that prevent large movements
in any one direction. Second, the rejection rate can be controlled by adjusting
the size of the time step used in simulating the dynamics. A high rejection
rate that would lead to frequent reversals of direction can thereby be avoided.

Horowitz’s method was derived from the “Hybrid Monte Carlo” method [15],
in which the dynamics is simulated for many time steps, with a Metropolis
acceptance criterion being applied to the final state. The Markov chain for
this method is reversible, but diffusive behavior is nevertheless avoided, if
the simulated trajectories are long enough to move to distant parts of the
distribution. The method of Section 5.1 could also be modified so that sev-
eral steps were done before applying the Metropolis criterion (though literally
stepping in this fashion makes sense only if states can be visited only by step-
ping through them in sequence). This approach is potentially advantageous
when state probabilities vary substantially over short distances, but these
variations tend to cancel over longer distances, as is typically the case for the
discretization error in a simulation of Hamiltonian dynamics.
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Overrelaxation [1, 29] is another way of constructing a nonreversibleMarkov
chain, which can avoid diffusive behavior in many situations. As with the non-
reversible walks discussed in this paper, the overrelaxation method uses tran-
sitions composed of steps that are individually reversible, but which produce a
nonreversible chain when applied in sequence.

6. Examples of sampling using nonreversible chains. This section
shows how the methods of Sections 5.1 and 5.2 can be applied in three exam-
ples: a nonuniform distribution in one dimension, contingency tables with
specified marginal distributions and distributions of permutations.

6.1. A V-shaped distribution in one dimension. We have tried applying the
algorithm of Section 5.1 to several V-shaped distributions on the state space
�1�2�3� 	 	 	 � n�, with probabilities of the form

π�x� = 1
Z

(
2
∣∣∣∣x− n

2

∣∣∣∣ +C)�
where Z is the appropriate normalizing constant. The value of the constant
C determines how small the probability is at the bottom of the V is (i.e., at
state n/2).

Since distributions of this form have two “peaks,” separated by
low-probability states, one might expect the usual Metropolis algorithm with
nearest neighbor proposals to have difficulty crossing from peak to peak.
This is certainly true for exponential peaks, but things are somewhat bet-
ter for polynomial peaks. For the linear peaks, as in the distribution above,
available theory [13] shows that order n2 log n steps are necessary and suffi-
cient for the usual Metropolis chain to reach stationarity. Preliminary work of
Hildebrand [20] suggests that order n2 are necessary and suffice for conver-
gence of the directed algorithm. Here, we show some numerical results that
are consistent with such asymptotic behavior.

We tried using the following three methods to sample from V-shaped
distributions.

1. The random walk Metropolis method, with nearest-neighbor proposal dis-
tribution (i.e., from state x, we propose either x − 1 or x + 1, each with
probability 1/2).

2. The directed sampling method of Section 5.1, with switching probability of
θ = 1/n.

3. An “ideal” sampling method, for which the bottleneck at the bottom of the
V is the only impediment to sampling. Each transition for this method con-
sists of two steps. The first step applies only if the state is in the range 1
to n/2 (inclusive); it changes the state to one chosen from the stationary
distribution conditional on the state being in this range. The second step is
then applied if the (possibly changed) state is in the range n/2 to n (inclu-
sive); it too changes the state to one chosen from the stationary distribution
conditional on the state being in this range.
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Fig. 2. Convergence of Metropolis (top), directed (middle), and ideal (bottom) sampling methods
on various V-shaped distributions (specified by n and C). The horizontal axis gives the number
of transitions of a chain started in state 1 [for the directed method, state �+�1�]. The vertical
axis gives the log of the total variation distance from the stationary distribution. (For the directed
method, this is for the marginal distribution on the orginal state space; the total variation distance
for the extended state space is very nearly the same.)

All three methods were started from state 1 [for the directed method, the
extended state (+�1)].

The convergence in total variation over 4000 transitions for each of these
methods is shown in Figure 2, for V-shaped distributions with various values
of n and C. These plots were produced by successive multiplication of a vector
of probabilities by the transition matrix for the method, not by simulation.

For all distributions, the ideal method was best, followed by the directed
method, with the Metropolis method being worst. Figure 3 gives numerical
convergence rates for each method and distribution. These were measured
from the slope of the lines in Figure 2 at iteration 4000, except for the Metropo-
lis method with n = 200, for which the chain was continued up to iteration
10000 in order to obtain an accurate answer. The figure also gives the mini-
mum probability for each distribution �π�n/2�, the probability at the bottom
of the V].

The convergence rate for the ideal method is always four times the proba-
bility of the state at the bottom of the V. The rate for the directed method is



NONREVERSIBLE MARKOV CHAIN SAMPLER 747

Fig. 3. Convergence rates of the three methods, for various V-shaped distributions. The rate is the
value of r for which total variation distance goes down with t in proportion to e−rt� asymptotically.
The last column is the minimum probability in the distribution (at the bottom of the V).

always slightly less than twice the minimum probability (and hence slightly
less than half that of the ideal method). The Metropolis method is always
slower than the directed method, by factors ranging from 4.35 to 8.77 for the
runs shown in the figures. The difference is greater for larger values of n and
of C. For C = 0	1 and n = 100, we found that the directed method was faster
than Metropolis by a factor of only 2.34, and for C = 0	01 and n = 100, it was
faster by a factor of only 2.02.

The results in the limit as C→ 0 (with n fixed) can be explained by assum-
ing that all the methods will in this case reach stationarity within a peak in
much less time than is typically needed to move from one peak to the other
(passing through the lowest-probability state). In this situation, what matters
is the probability of moving between peaks; the convergence rate will just be
twice this probability. The ideal method will move between peaks whenever
it is in state n/2 after either the first or second step of its transition. The
probability of such a move is therefore 2π�n/2�. The directed method makes
such a move whenever it is in state �+� n/2� or �−� n/2�, which occurs with
probability π�n/2�. The Metropolis method makes a move between peaks only
half of the time when it is in state n/2, since it may jump back the way it
came; its probability of moving between peaks is thus π�n/2�/2.

We therefore see that when there are extreme barriers to movement
between peaks �C→ 0�, the directed method has only a factor of two advan-
tage over the random walk Metropolis method. However, when the barriers
are more moderate (larger values of C), the advantage of the directed method
over Metropolis is larger, and grows with n. The data shown in Figure 3, along
with additional data for n = 26, are consistent with an order n2 convergence
rate for the directed method, and with the expected n2 log n convergence rate
for the Metropolis method.

6.2. Contingency tables. Consider the problem of generating a random
I×J table with fixed row and column sums and nonnegative integer entries.
This problem was posed by Diaconis and Efron [8] who give statistical moti-
vation. Diaconis and Gangolli [10] give a host of other applications. Even for
small I and J, the size of the state space can be huge. Consider the 4×4 table
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below:

Black Brunette Red Blonde
Brown 68 20 15 5
Blue 119 84 54 29
Hazel 26 17 14 14
Green 7 94 10 16

There are approximately 1015 tables with these same margins.
Diaconis and Sturmfels [14] suggested the following algorithm for generat-

ing random tables.

1. Randomly choose a pair of different rows and a pair of different columns.
2. Choose one of the following two changes to the 2-by-2 square thus defined,

with equal probabilities:(+ −
− +

)
or

(− +
+ −

)
	

3. Make the chosen change, unless it would result in a table value becoming
negative.

This defines a Markov chain that is a symmetric, connected, and aperiodic,
with uniform stationary distribution on the set of all tables with the given
row and column sums.

The walk described above has a diffusive behavior taking an order
(Diameter)2 steps to reach stationarity. This is proved by Chung, Graham,
and Yau [6] for tables with large row and column sums and by Diaconis and
Saloff-Coste [12] for small values of I and J.

One can try to avoid this diffusive behavior by applying the method of
Section 5.2 in an obvious way, taking the lines to be determined by a pair of
rows and columns and moving along these lines in a directed fashion. We have
done this, and found that the directed method does indeed work much faster
than the reversible random walk.

A host of other statistical problems can also be solved by an extension of
the random walk algorithm given above. We give a general description here;
see [14] for statistical motivation.

Let � = �x ∈ 	n� Ax = y�, where A is a specified m × n matrix with
nonnegative entries, and y is an m-vector with nonnegative entries. In appli-
cations, � will be finite and nonempty.

The problem is to sample from the uniform distribution on � . The random
walk approach of [14] is defined in terms of a set of Markov basis vectors,
v1� v2� 	 	 	 � vk ∈ �n, which satisfy:

(1) Avi = 0.
(2) For any x and x′ in � , there is a positive integer, l, indices i1� i2� 	 	 	 � il,

and signs z1� z2� 	 	 	 � zl in �±1� such that

x′ = x+
l∑
j=1
zjvij and x+

a∑
j=1
zjvij ≥ 0 for 1 ≤ a ≤ l	
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Condition (1) ensures that when x ∈ � � A�x± vi� = y, and hence x± vi ∈ � .
Condition (2) says there is a path between each x and x′ in� , found by adding
or subtracting vi while staying in � .

The Markov chain for sampling from � operates as follows: when in state
x, choose one of the vi at random, and choose z uniformly from �±1�, then
move to x + zvi provided this is in � , and otherwise stay at x. This chain
reduces to the chain described above for tables with an appropriate choice of
A. It appears to have diffusive behavior in general.

The above set of problems can be solved more rapidly using the fiber algo-
rithm of Section 5.2. Observe that the lines �x + jvi�j∈� ∩ � partition � as
x varies. Varying i gives a collection of “directed” partitions, P1�P2� 	 	 	 �Pk,
which satisfy the conditions of Proposition 2.

6.3. Permutations. Let � = Sn be the set of permutations on n letters,
and let d�σ�η� be a metric on Sn. To fix ideas, consider

d�σ�η� = ∑ �σ�i� − η�i�� (Spearman’s footrule)	

A nonuniform probability distribution on 
n (Mallow’s model), can be con-
structed as follows:

π�σ� = θd�σ�σ0�/Z�

where Z is the appropriate normalizing constant. In the model above, 0 < θ ≤
1 is fixed, as is the location parameter σ0. Again, just to fix ideas, consider σ0 =
id, so that the distribution π�σ� is largest at σ = id and falls off exponentially.

The problem is to draw samples from π, for instance, when n = 52.
One approach is to use the Metropolis algorithm with base chain random

transpositions. This seems to work well even in the uniform case �θ = 1�.
Some analyses and references to background literature appear in [7].

To apply the directed method of Section 5.2 we must find a collection of
ordered partitions. One natural construction uses the group structure of Sn.
LetH be a subgroup of Sn and PH the partition of Sn into cosets ofH. Taking
all conjugates, Hσ = σ−1Hσ gives a neat family of partitions. We consider
three special cases.

1. H = Sn. There is only one block in the partition. This must be ordered.
One method is to use lexicographical order. A second method uses a Gray
code based on transpositions [4, 11]. This linearizes the problem so that
the method of Section 5.1 can be used. This is not a foolish approach; if the
walk is started off at the identity it should be reasonably efficient.

2. H = �id��1�2��. Now the block ofPH containing the permutation σ consists
of �σ� �1�2�σ�. Running over all the conjugates gives blocks of the form
�id��x�y��. We see that with these choices the directed method reduces to
the random transpositions algorithm described previously.

3. H is the cyclic group generated by a single permutation η. Now the block of
the partition containing σ is �σ�ησ�η2σ� 	 	 	 � nk−1σ� where k is the order
of η. For a practical version of the algorithm, choose a small collection of
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permutations η1� η2� 	 	 	 � ηK that generate Sn and use these to generate
partitions P1�P2� 	 	 	 �Pk. This walk is connected.

We remark in closing that diffusive behavior does not occur when generating
uniformly distributed random permutations by successive transpositions of
randomly chosen pairs [7], nor when such random transpositions are used as
a Metropolis proposal for sampling from a distribution over permutations of
exponential form [13].

7. Scope and limitations of nonreversible sampling. We have shown
in this paper that nonreversibility can be a desirable property of Markov chain
sampling method. This conclusion accords with observations of the behavior
of some practical nonreversible sampling methods [28, 19] and some previous
theory (e.g., [23]).

The methods we discuss have some limitations, however. As illustrated in
Section 6.1, any local algorithm, including the nonreversible walk, can effec-
tively get stuck when sampling from a multimodal distribution with extreme
barriers to movement between peaks. Even with less extreme barriers, we saw
that the nonreversible walk provided only a modest (log n) improvement over
a reversible walk for the V-shaped distribution. This is expected; no algorithm
can overcome multimodality without some input of information that would
allow the peaks to be located.

A more serious limitation is that the most general algorithm, of Section 5.2,
must use suitable “lines” that proceed in various “directions” in the underlying
state space. These may be difficult to find. If such directions are found, it may
also be possible to use them to construct other algorithms that are even better
than the nonreversible walk. One possibility is an iid Metropolis algorithm,
as discussed in Section 5.3. For the contingency table example of Section 6.2,
where a direction was specified by a pair of rows and a pair of columns, an
alternative, implemented in [14], is to consider the four cells in these row and
columns as a 2×2 table and choose uniformly among all the 2×2 tables with
the same margins. This is easy to do, since such a 2 × 2 table is specified by
one entry, which varies between easily computed bounds. A similar comment
holds for the more general problems described in [14].

Another limitation is that the (diameter)2 convergence time associated with
reversible random walks applies to uniform or relatively flat stationary dis-
tributions. When the distribution is highly nonuniform, a nonreversible walk
might have little or no advantage. For example, available theory [13] shows
that when a random walk Metropolis algorithm is used to sample from a dis-
tribution on a low-dimensional grid having exponential peaks, the walk basi-
cally heads directly for the nearest peak. Thus if the stationary distribution
is unimodal order diameter steps suffice for stationarity.

This is not necessarily the whole story, however. Even if a random walk
Metropolis method heads toward the mode when started from a state far
out in the tails of the distribution, it may nevertheless suffer from diffusive
behavior when exploring the high-probability portion of the state space. This
can be seen in the simple case of a multivariate Gaussian distribution with
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high positive correlations, where nondiffusive methods such as Hybrid Monte
Carlo [15], Horowitz’s method [21] and overrelaxation [1] can sample much
more efficiently than Gibbs sampling and simple Metropolis methods [29].
A simple nonreversible walk using “lines” in the coordinate directions will not
necessarily be adequate for such a situation, however.

Because of these limitations, directed walks may be most useful when the
states making up a line have approximately equal probabilities, and when it is
not easy to directly sample from a line, perhaps because the states within the
line can be located only in a sequential fashion. This is essentially the situation
with Horowitz’s dynamical method [21]. The challenge is to find other such
methods, especially for discrete state spaces where dynamical methods cannot
be applied.
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