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Optimum Monte-Carlo sampling using Markov chains

By P. H. PESKUN
York University, Toronto

SUMMARY

The sampling method proposed by Metropolis et al. (1953) requires the simulation of a
Markov chain with a specified 7 as its stationary distribution. Hastings (1970) outlined a
general procedure for constructing and simulating such a Markov chain. The matrix P of
transition probabilities is constructed using a defined symmetric function s; and an
arbitrary transition matrix Q. Here, for a given Q, the relative merits of the two simple
choices for s;; suggested by Hastings (1970) are discussed. The optimum choice for s;; is
shown to be one of these. For the other choice, those Q are given which are known to make
the sampling method based on P asymptotically less precise than independent sampling.

Some key words: Monte-Carlo estimation; Markov chain method of sampling; Variance reduction;
Simulation.
1. INTRODUCTION

Suppose we wish to estimate the expectation
S
I= Eﬂ(f) = Zof(’l’) Ty
T=

where 7t = (7, 7y, ..., 7g) is a positive probability distribution, i.e. 77; > 0 for all ¢, and f(-)
is a nonconstant function defined on the states 0, 1, ..., 8 of an irreducible Markov chain
determined by the transition matrix P = {p,;}. Throughout this paper, 7 and f(-) are to be
considered fixed.

If P is chosen so that v is its unique stationary distribution, i.e. @ = nP, then after
simulating the Markov chain for times ¢ = 1,..., N, an estimate of the expectation I is
given by N
I= 3 pX@yN,

where X (f) denotes the state occupied by the chain at time ¢.

Hastings (1970, p. 99) outlines a general procedure for constructing such a transition
matrix P = {p;;}. First of all, P is required to satisfy, for all pairs of states ¢ and j, the
reversibility condition

T Pis = T Pjs (1)
Secondly, it is assumed that p,; has the form
with Py = G5y (0 FJ), (2)
Pu=1— 2 Dy
Jj+t

where Q = {g,,} is the transition matrix of an arbitrary irreducible Markov chain on the
states 0, 1, ..., 8. Also, a; is given by

Q= — (3)
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where s;; is a symmetric function of 4 and j chosen so that 0 < a;; < 1 for all 4 and j, and
by = (M Qi) (m;450)-

The Markov chain determined by a transition matrix P of the above form is simulated by
carrying out the following steps for each time ¢:

(i) assume that X(¢) = ¢ and select a state j using the distribution given by the ith row
of Q;

(ii) take X(f+1) = j with probability «;; and X(t+ 1) = ¢ with probability 1—oe;;.

From (2) and (3) we see that the symmetric function s; and the arbitrary transition
matrix Q determine the transition matrix P. The purpose of this paper is to determine the
optimum choice of s;;, for a given choice of Q, so that the estimate I is as precise as possible.
The relative merits of the two simple choices s and s for s;, suggested by Hastings
(1970, p. 100), are discussed. For a given choice of Q, the sampling method based on P is
shown to be asymptotically as precise as possible for s; = s@P. For s;; = s{F), those Q are
given which are known to make the sampling method based on P asymptotically less
precise than independent sampling.

2. THE SYMMETRIC FUNCTION S
2-1. The asymptotic variance and bias of the estimate I
The following definition is due to Kemeny & Snell (1969, p. 75).

DErFINTTION 2-1-1. The matriz A =ETx, where § = (1,1, ...,1), and the inverse matrix
Z={I—-(P—A)}? will be called the ‘limiting matriz’ and the ‘fundamental matriz’,
respectively, for the finite vrreducible Markov chain determined by the transition matriz P whose
stationary distribution is .

Let f be the 1x (S+1) row vector f= {f(0),f(1),....f(8)} and let B = {b;;} be the
(S+1) x (S+1) diagonal matrix with diagonal vector =; that is, b,; =7, (¢ = 0, 1, ..., 8).

Even though the variance and bias of the estimate I = [f{X (1)} +... +f{X(N)}]/N cannot
be expressed as functions of the sample size N which lend themselves to easy analysis,
asymptotic expressions for these two quantities can be obtained which will be useful not
only analytically but also practically since, in actual simulations, the sample size N will
usually be large.

The following asymptotic expression for the variance of the estimate I = Zf{X(t)}/N
which Kemeny & Snell (1969, p. 84) have derived is independent of the distribution y of the
initial state X (0):

o, P) = Alfim N var [ g f{X(t)}/N]
—>00 t=1
= f{BZ + (BZ)" —B— BA}{T
= f(2BZ—-B - BA) 1T, (4)

In what follows, we shall assess the precision of the estimate I by v(f, =, P), it being assumed
that the sample size NV is sufficiently large so that the error in the approximation

var (I) = v(f, w, P)/N

is small. We shall refer to v(f, =, P) as the asymptotic variance of the estimate I.
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With respect to the bias of the estimate I, it can be shown that, as N —oo, lim N{E(I) — I}
exists and is dependent on the distribution y of the initial state X (0). Since var () is O(N-1)
and the bias squared is O(N~2), we feel that, for an appropriate distribution y of the initial
state X(0), the bias has a negligible effect on the accuracy of the estimate I and is not an
appreciable disadvantage of the Markov chain method of sampling; in fact, if X (0) is sampled
from  itself, then I is unbiased. We shall thus confine our discussions to the precision, rather
than the accuracy, of the estimate I.

In the following theorem, which gives a sufficient condition for asymptotic variance
reduction and which will be useful in determining the optimum symmetric function s;;, we
define P, < P, if each of the off-diagonal elements of P, is greater than or equal to the
corresponding off-diagonal elements of P,.

THEOREM 2-1-1. Suppose each of the irreducible transition matrices Py and P, satisfies the
reversibility condition (1) for the same probability distribution . If P, < Py, then for the

estimate I = tzzv: F{X@®)}N,
=1

v(f, , Pp) < o, =, P,y).
Proof. For the (k, l)th off-diagonal element p;; of P, we have from (4),

CmP) _st(B )i (k4.
P P

Since P satisfies the reversibility condition (1), it follows that the matrix BP is symmetric.
Similarly, the matrix BA is symmetric. The symmetry of the matrices

BZ1=B-BP+BA, ZB!=(BZ1)!
implies the symmetry of the matrix BZ = B(ZB-!) B. If we substitute
oZ L1

2722 7,
P P
and use the symmetry of BZ and B, we then have
o{v(f, =, P)} ( aZ—l)
oo U o ZETYT | BD— ) (Z£T)  (k * ).
P (Z£7) o (Z28%) (k+1)

Since BZ1= B—BP +BA, P being a transition matrix satisfying the reversibility
condition (1), then all the elements of the matrix B(9Z~!/0p,;) = — B(dP/op;,) (k & 1) are
equal to zero except for the (,1), (I, k), (k,7) and (k, k)th elements, which are equal to my, —m,
—m, and 7, respectively. It follows that the matrix B(0Z~/dpy,) (k =+ 1) is positive semi-
definite with one nonzero eigenvalue equal to 27r,. Thus we have

o{o(f, m, P)} - _ mnr (gLt T
o 2(Z£7) (B 3pkz)(Zf ) <0 (k=+1).

This result implies that the asymptotic variance »(f, 7, P) is a decreasing function in the
off-diagonal elements of P and thus it follows that P, < P, implies v(f, , P;) < o(f, =, P,).

For a large sample size N, Theorem 2-1-1 suggests that the variance of the estimate I can
be reduced by appropriately transferring weight from the diagonal elements of P to the
off-diagonal elements. Intuitively, this makes sense. If the diagonal elements of P are small,
then the probability of remaining in any given state will be small. This suggests an improve-
ment in the sampling of all possible states which, in turn, suggests an improvement in the
precision of the estimate 1.
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2-2. The optimum symmetric function s;;
Hastings (1970, p. 100) suggests two simple choices for the symmetric function s;; which,
for all ¢ and j, are given by
(i) 30— {1+ti7' (t; > 1),

148, (5 < 1),
(i) o = 1.

For a symmetric Q, s;; = s} gives the sampling method devised by Metropolis ef al. (1953)
and s;; = s gives Barker’s (1965) sampling method.

DEFINITION 2-2-1. Let PO = {pIM and P® = {p&)} denote the irreducibletransitionmatrices
constructed according to (2) and (3) using the same transition matriz Q = {q,;} and the sym-
metric functions s§ and B, respectively.

From (3) we have

8 < 1+min (8, 15), (5)
since a;; < 1implies s;; < 1+1;;and a; < 1implies s;; = s;; < 141;;. We note that equality is
attained in (5) for the symmetric function s;; = s{}0); that is,

s3I0 = 1 +min (8, ;). (6)

TrEOREM 2-2-1. For a given transition matrix Q = {q,;}, the optimum symmetric function
845 18 8GP.

Proof. For a given transition matrix Q = {g;;}, we have seen how to construct a transition
matrix P = {p;;}, where p;; = q;;0;; (¢ + j) and et;; = s;5/(1+£,;). From (5) and (6) it follows
that the maximum value for a;; occurs for s;; = s@P. Thus, it is clear that P < P® for any
irreducible transition matrix P where both P® and P are constructed according to (2) and
(3) using the same given transition matrix Q. By Theorem 2-1-1 it follows that the optimum

symmetric function s;; is s since o(f, =, P®) < o(f, =, P).

2-3. A comparison of the sampling methods based on P and P®

From Theorem 2-2-1 and the definitions of the symmetric functions s{ and s§%), it can be
shown that, for a given transition matrix Q,

o(f, 7, POD) < o(f, w, PP) < o(f, m, A) + 20(f, 0, POD),

where »(f, 7, A) is the asymptotic variance for independent sampling, i.e. the theoretical
independent sampling variance for sample size NV equal to 1. For the special case where the
given transition matrix Q itself satisfies the reversibility condition, i.e. 7;¢;; = m;¢;; for all ¢
and j, it can then be shown that

v(f, 7, P®) = o(f, 7, A) + 20(f, 7t, P3D), (7)

We note that independent sampling is just a special case of the sampling method based on
P®) gince P®) = A for Q = A. This suggests the possibility of the sampling method based
on P@)_for an appropriate choice of Q, being asymptotically more precise than independent
sampling. If such is the case and if, in addition, Q itself satisfies the reversibility condition,
then from (7) we see that asymptotically no matter how much more precise the sampling
method based on P js than independent sampling, the sampling method based on P® can
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at best be only as precise as independent sampling. We shall now show that this is also true
for the case where Q is symmetric, i.e. for Barker’s (1965) sampling method.
In general, the sampling method based on P, where P satisfies the reversibility condition

(1), will be asymptotically as precise or more precise than independent sampling if and
only if
fBZf{T < fB17, (8)

where Z is the fundamental matrix determined by P. Rewriting (4) in the following form,
where BA = nT,
fBZLT = }{v(f, &, P) + fBET + (wfT)T (nf7)},

we see that the symmetric matrix BZ is positive definite since the first and third terms of
the above equality are nonnegative and the diagonal matrix B is positive definite. We refer
the reader to Gantmacher (1960, p. 310) for the theory of pencils of quadratic forms which
we will use in order to compare the quadratic forms fBZ£7 and fBf”.

If we number the characteristic values of the regular pencil of forms fBf” — AfBZf” in
nondecreasing order, then for A, < A; < ... < Ag it follows that for all functions f(-),

Ao < IBET/IBZAT < Ag.

Thus, we see that (8) is satisfied if and only if A, > 1.
The characteristic equation of the regular pencil of forms fBf” — AfBZ{” is |B — ABZ| = 0,
which can be written as
|ul—(P—A)| =0,
where g = 1—A. It thus follows that the matrix P — A has §+ 1 real characteristic roots,
since a regular pencil of forms always has real roots. Since P and A are transition matrices,

we have
(P— A)E” = PEY— AE” — E” 7 = 0B,

Hence, 1 = 0is a characteristic root of the matrix P — A. Also, since # < 0implies A > 1, we
then have proved the following;theorem.

THEOREM 2-3-1. For any function f(-), the Markov chain sampling method based on P will
be asymptotically as precise or more precise than independent sampling with respect to the

positive distribution w, i.e.
o(f, =, P) < v(f, w, A),

if and only if the nonzero characteristic roots of the matrixz (P — A) are negative.

Since the sum of the diagonal elements of the matrix P® is equal to the sum of all its
elements minus the sum of its off-diagonal elements, i.e.

S+1-32{p+27},
>3

and since the sum of the diagonal elements of the matrix A is 1, then the sum of the
characteristic roots of the matrix P® — A is

8= T +p7)
i>]
For a given Q = {qﬁ}, it can be shown that for ¢ + j

min (g;, 455) < PE +pf < max (245> 250)
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with both inequalities becoming equalities if Q is symmetric. Hence, it follows that if Q is
symmetric then
S— T (PP +pF}=8- 3 g4 > 3(S-1), (9
>3 i>7
since the sum of the lower off-diagonal elements of Q can be at most (S +1).

Except for the two-state system, i.e. S = 1, we see from (9) that the sum of the charac-
teristic roots of the matrix P® — A ig positive. This implies that there must be at least one
positive characteristic root among its nonzero characteristic roots. For § > 1, we have thus
shown that Barker’s (1965) sampling method is asymptotically less precise than independent
sampling. For § = 1, it can be shown that Barker’s (1965) sampling method is asymptoti-
cally, at best, as precise as independent sampling if Q is chosen so that gy, = ¢, = 1.
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support of a grant from the National Research Council of Canada. I would like to thank my
thesis supervisor, Professor W. K. Hastings, for his continuous guidance and many useful
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