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Abstract

In this tutorial, we introduce the notion of a Markov chain
and explore how it can be used for sampling from a large
set of configurations. Our primary focus will be determin-
ing how quickly a Markov chain “mixes,” or converges to
its stationary distribution, as this is the key factor in the
running time. We provide an overview of several tech-
niques used to establish good bounds on the mixing time.
Examples will be chosen from applications in statistical
physics, although the methods are much more general.

1 Introduction

Markov chain Monte Carlo is ubiquitous across scientific
disciplines as a computational means for studying large,
complicated sets. The idea is to simulate a random walk
that moves among configurations in the large set. Even
though each configuration might only lead to a small set of
nearest neighbors, eventually the Markov chain underlying
the random walk will converge to a useful distribution over
the entire space of configurations.

The mathematical foundations underlying the design of
these algorithms can be found in probability theory. The
field of stochastic processes gives conditions prescribing
when a Markov chain will converge to a unique stationary
distribution and how to determine what that distribution is.
Designing a Markov chain that converges quickly to the
desired distribution provides a useful tool for sampling.

Over the last 15 years there has been a flurry of activ-
ity leading to breakthroughs in our understanding of how
to bound the convergence rate of Markov chains and ulti-
mately design efficient sampling algorithms. This tutorial
is intended to give an introduction into some of the key
ideas underlying these results; for further details we refer
the reader to the references provided, especially surveys
[18, 22, 23, 35].

Two of the most notable success stories based on this
method are estimating the volume of a convex body [10]
and estimating the permanent of a matrix [20]. The exact�
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versions of both of these problems are
�������
	���
��������

,
the complexity class of hard counting problems. In a sem-
inal paper, Valiant defined the class

���
in the context of

counting the number of perfect matchings in a graph; this
is precisely the problem of calculating the permanent of the
adjacency matrix of a bipartite graph [38]. The solutions
to the approximate version rely heavily on randomly sam-
pling, in the first case, points in the convex body, and in the
second, perfect matchings of the graph. The intimate con-
nection between random sampling and approximate count-
ing was established by Jerrum, Valiant, and Vazirani for a
wide class of problems known as self-reducible. We re-
fer the reader to [21] and [36] for details underlying this
very important connection. In this tutorial, we concen-
trate solely on the sampling aspects of Monte Carlo exper-
iments, foregoing the many beautiful applications of sam-
pling, including approximate counting.

1.1 The basics of sampling

Markov chains are useful when we have a finite set of con-
figurations � from which we would like to sample. The
idea behind designing a Markov chain is first to connect
the state space so that each configuration has a small num-
ber of nearest neighbors. Then, starting at some arbitrary
start configuration ������� , the Markov chain defines a
random walk along the edges of this graph, walking from
one configuration in � to another.

Let us consider, for example, how to design a chain for
randomly sampling independent sets of some finite graph.
One simple way to connect the state space is to allow tran-
sitions between independent sets � and ��� that have Ham-
ming distance �! ���"#���%$'&)( . The Markov chain starts
at some initial state � � , say the empty set. During each
step of the simulation, it proceeds by choosing a vertex *
uniformly from + ; if *,�-�/. , then we remove it and let� .1032 &4�
5768*�9 , whereas if *;:�,� . we can add it and set� .1032 &<�>='68*�9?" provided this leads to a valid independent
set. In the case that we cannot add * because a neighbor
is present, then we do nothing and set � .1032 &@� . . The
transition probabilities of this chain are

�  A�B"C� � $D&
EF G (�:IHJ" if �! ���"#�K�%$7&L(M"N " if �! ���"#�K�%$�OP(M"( �RQ-S�TUWV �  ���"/XW$/" if �'&Y�?� .

1



The following definition and lemmas formalize why this
is a good candidate chain.

Definition. A Markov chain is ergodic if it is

1. irreducible, i.e., � �W"��;� � , there is a
�

such that� .  ��W"�� $ O N
, and

2. aperiodic, i.e., � �W"�� � � , g.c.d. 6 ��� � .  1� "�� $ ON 9�& ( .

We can see that our chain on independent sets is irre-
ducible because we can get from any configuration to the
the empty independent set by successively removing ver-
tices. Moreover, the chain is aperiodic because of the self-
loop probabilities that occur whenever we choose a vertex
that cannot be added without violating the independence
requirement.

For chains that are not aperiodic, self-loops can be
added at every vertex at a small constant cost to the running
time of the algorithm. A chain that has self-loop probabili-
ties of (I:�� everywhere is called a lazy chain. Ergodicity is
a useful minimum requirement for defining a useful Mar-
kov chain.

Lemma 1.1 Any finite, ergodic Markov chain converges to
a unique stationary distribution � , i.e., for all � "�� �-� ,
we have that �
	
� .
��� � .  1� "�� $7&��  
� $ .

To reason about the limiting probability distribution,
known as the stationary distribution, we rely the detailed
balance condition given in the following lemma.

Lemma 1.2 Let � be an ergodic Markov chain on a finite
state state space � with transition probabilities

�  �� "�� $ .
If � � � ����� N " (�� is any function satisfying the detailed
balance condition:�  ���$ �  1�W"�� $ &��  
� $ �  �� " � $ "
and if it also satisfies

Q����! � �  1� $ & ( , then �W� is the
unique stationary distribution of � .

Any chain that satisfies detailed balance for some � � is
called time-reversible.

For the independent set chain, the transition proba-
bilities are symmetric, i.e.,

�  ���"#��� $'& �  A�?�A"#��$ for all��"#� � � � . If follows from lemma 1.2 and the ergodicity of
the chain that the stationary distribution must be uniform.

Two questions immediately present themselves. First,
how do we modify this chain in order to sample from a
more complicated distribution? Second, how long do we
have to simulate the walk before we can trust that our sam-
ples are chosen from very close to the stationary distribu-
tion? The celebrated Metropolis algorithm gives a standard

way of approaching the first of these questions, and is just
based on a careful consideration of lemma 1.2. The second
question is the subject of the remaining part of this paper
and requires much more sensitive consideration.

1.2 The Metropolis algorithm

The Metropolis-Hastings algorithm [29] is a remarkably
simple, yet tremendously robust idea that is the starting
point for anyone interested in sampling. It tells us how
to assign the transition probabilities of any Markov chain
so that so it will converge to any distribution. In 2000, it
was selected as one of the top 10 algorithms by Computing
in Science and Engineering [3].

The Metropolis Algorithm

Starting at � , repeat:

1. Pick a neighbor � of � in � uniformly with
probability (�:!�!" , where " is the maximum
degree in the graph # .

2. Move to � with probability �$	
%�&M(?"('*)
+�,'*) � ,.- .

3. With all remaining probability stay at � .

Using detailed balance, it is easy to verify that if the state
space is connected, then � must be the stationary distribu-
tion.

Returning to our example of independent sets, let us
now assume that we wish to sample from the weighted dis-
tribution �  ���$D&0/21 V 13 "
where

3 & Q V54 �! /21 V 4 1 is the normalizing constant. We
justify why this is a natural weighting in section 5. As
before, we connect pairs of independent sets if they have
Hamming distance 1. Let � and ��� be two such sets,
where * :�P� and �K��& � =;68*�9 , for some vertex * .
Since 6 �K�76 &86 �96;: ( , the stationary probabilities satisfy�  A�?�%$7& / �  ���$.<The Metropolis algorithm says that we should define the
transitions so that�  A�B"C� � $D& (�IH �=	>%� �(M" / $ "
while �  �� � "#��$7& (�IH �=	>%@?#(M" /BA 2�C <
Notice that the normalizing constant

3
drops out of the

equation! This is quite fortuitous since we typically do not
have any direct way of calculating it. Considering each
of the cases where / O ( or /ED ( , we see that

�
and
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� always satisfies detailed balance. This means that us-
ing these modified transition probabilities will allow us to
converge on the correct stationary distribution.

This leaves our main question: How long do we have to
simulate the chain in order to get a good sample?

1.3 The mixing time

The time a Markov chain takes to converge to its station-
ary distribution, known as the mixing time of the chain, is
measured in terms of the variation distance between the
distribution at time

�
and the stationary distribution. For

a comparison of rates of convergence based on different
measures of distance see [2, 23].

Definition. Letting
� .  1� "�� $ denote the

�
-step probability

of going from � to � , the total variation distance at time�
is � � . "��

�
.�� &�������!�! (� �+ �! 6

� .  ��W"�� $ � �  
� $ 6 <
This is just the � 2 norm, with the (�:!� introduced so that
the distance is always at most 1. We now have

Definition. For 	'O N
, the mixing time 
  �	 $ is


  �	M$D&��=	
% 6 � �
� � . 4 "��

�
.�� D 	 " � � �
� � 9 <

We say a Markov chain is rapidly mixing if the mixing time
is bounded above by a polynomial in H and �����
� A 2 , whereH is the size of each configuration in the state space.

It is well-known from probability theory that the eigen-
value gap of the transition matrix of the Markov chain pro-
vides a good bound on the mixing rate of a chain. We
let #�� 
  � $ & ( � 6 / 2 6 denote the spectral gap, where/ � " / 2I"�< <�< " / 1  1 A 2 are the eigenvalues of the transition ma-
trix

�
and (�& / � O 6 / 2 6 � 6 /�� 6 for all � � � . The fol-

lowing result relates the spectral gap with the mixing time
of the chain (see, e.g., [36]):

Theorem 1.3 Let ��� & �=	
% �!�! �  1��$ . For all 	 O N
we

have

(a) 
  �	M$ D 22 A 1 ����1 ������ 2'��! $ .
(b) 
  �	M$ � 1 ����1" ) 2 A 1 ����1 , ������ 2"  $ .

Notice that the lazy chain with self-loop probabilities of
1/2 everywhere has only non-negative eigenvalues; this fol-
lows from the fact that the eigenvalues 6$# / � 9 of the lazy
chain will satisfy # /%� &  ( : /%� $#:�� and 6 /%� 6 D ( for all � .

While this view of mixing is extremely useful for card
shuffling applications and walks on symmetric groups, it

tends to be less useful for the more complicated state
spaces that arise in computer science. In particular, for
most algorithmic applications the size of the state space
is exponentially large and we typically do not have a com-
pact, mathematical representation for the adjacency matrix,
so it is far too difficult to determine the eigenvalues of the
transition matrix. We are therefore left with the challeng-
ing task of finding sophisticated, indirect methods to estab-
lish the efficiency of our chains.

2 Coupling

One of the most popular methods for bounding mixing
times is coupling, both because of its elegance and its sim-
plicity. This was first introduced to computer science in the
context of sampling spanning trees [4], and has since seen
many more applications.

Definition. A coupling is a Markov chain on �'& � defin-
ing a stochastic process  �( . "*) . $ �. U � with the properties:

1. Each of the processes ( . and ) . is a faithful copy
of + (given initial states ( � &�� and ) � & � ).

2. If ( . &,)B. , then ( .10 2 &,)B.1032 .
Condition 1 ensures that each process, viewed in isola-

tion, is just simulating the original chain – yet the coupling
updates them simultaneously so that they will tend to coa-
lesce, or move closer together, according to some notion of
distance. Once the pair of configurations agree, condition 2
guarantees they agree from that time forward. The cou-
pling (or expected coalescence) time can provide a good
bound on the mixing time of + if it is a carefully chosen
coupling.

Definition. For initial states � "�� let- ��. + &��=	
% 6 � � ( . &/) . 60( � & � "�)B� & ��9?"
and define the coupling time to be

- &������ �1. +32 - �1. + .

The following result relates the mixing time and the
coupling time (see, e.g., [1]).

Theorem 2.1 
  4� $ D65 -87 �
%9� A 2;: .

We will consider a toy example of choosing a random
vertex in the H -dimensional hypercube, � & 6 N " ( 91< .
A natural Markov chain performs a simple random walk
along the edges of the hypercube by iteratively flipping a
random bit. However, we consider instead the lazy ver-
sion of the chain because the hypercube is bipartite and
will not be aperiodic unless we add self-loop probabilities.
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The lazy chain also turns out to be more conducive to a
coupling argument.� ��� �����

Starting at the vertex ( � &  N " <><
< " N $ , repeat:

1. Pick  �� " � $ �-6?(?"�<
<>< " H 9�& 6 N " ( 9(<
2. Let ( .10 2 be ( . with the � th bit changed to

�
.

Letting �! �� "�� $ be the Hamming distance, the transition
matrix of this chain is

�  4( " )�$D&
EF G (I:�� HJ" if �! �( "*)�$7&L(?"(I:�� " if X=Y,N " otherwise,

It is easy to check that this chain is ergodic and symmetric,
hence the stationary distribution is uniform.

To couple, we start with any two vertices ( � and )�� on
the hypercube and update them simultaneously by choos-
ing the same pair  �� " � $ . It is straightforward to see that the
two configurations will coalesce as soon as we have up-
dated each bit at least once. By the coupon collector’s the-
orem this takes �  1H �>% HW$ steps, in expectation. Appealing
to theorem 2.1, we have a bound on the mixing time.

Theorem 2.2 The Markov chain on � �	� �
��� has mixing
time 
  � $D&��  1H �
%  �H � A 2 $#$.<
The logarithmic dependence on � A 2 is typical for mixing
rates, and the �  �H �
% HW$ is optimal.

In general, coupling proofs are a little more complicated
because typically the distance between configurations can
also increase, whereas on the hypercube it only decreases
or remains unchanged. The strategy in this case is to con-
sider the random walk on the random variable representing
the distance. If we show that distance is decreasing in ex-
pectation, then we have a drift towards zero that allows us
to prove a chain is rapidly mixing. Typically as the dis-
tance approaches zero there are fewer moves that will de-
crease the distance, so the coupon collecting theorem sug-
gests we should expect an �  1H �>%>HW$ coupling time. In sec-
tion 2.1 we will see a more realistic example in the context
of sampling 
 -colorings that also achieves this bound. The
proof will use the more refined method of path coupling,
although it can be easily replicated using a direct coupling
argument.

2.1 Path coupling

While coupling is potentially a powerful technique, it is
often prohibitively cumbersome to measure the expected
change in distance between two arbitrary configurations.
The method of path coupling, introduced by Bubley and

Dyer, greatly simplifies this approach by showing that we
really need only consider pairs of configurations that are
close [5]. Since the configurations will agree in most
positions, measuring the expected change in distance be-
comes much more palatable. Every path coupling argu-
ment can also be made directly using coupling, but usually
this would require much more work.

The idea behind path coupling is to consider a small set��� �'& � of pairs of configurations that are “close” ac-
cording to some distance metric � . For now we can think
of the pairs of configurations with Hamming distance 1.
Suppose that we have shown that the expected change in
distance is decreasing for all of the pairs in

�
. To now rea-

son about arbitrary configurations ('" )@� � , we define a
shortest path � � &'( "�� 2�"�<
<
< "��
�
& ) of length � from( to ) , where  �� � "�� � 0 2/$�� � for all

N D ����� . If we
define

�
correctly, then �! �( "*) $D& Q � A 2� U � �! �� � "�� � 032 $ . If

this is the case, we are done: by linearity of expectation, the
expected change in distance between ( and ) is the sum
of the expected change between the pairs  �� � "�� � 032 $ , and
each of these has been shown to be at most zero. Of course,
after the update there might be a shorter path between the
new configurations ( � and )�� , but this just causes the new
distance to be even smaller.

The following version of the path coupling theorem is
convenient.

Theorem 2.3 (Dyer and Greenhill [12]) Let � be an
integer valued metric defined on � & � which takes
values in 6 N "�< <�</"�� 9 . Let

�
be a subset of � & �

such that for all  1� . "�� . $R�<� &,� there exists a path� . &��8�M"�� 2 " <�<�<8"�� � & � . between � . and � . such that �� � "�� � 0 2 $ � � for
N D ����� and

� A 2�
� U � �! �� � "�� � 0 2 $D&<�! 1��. "�� .�$�<

Let + be a Markov chain on � with transition ma-
trix

�
. Consider any random function  � � � �

such that Pr �   ���$ & � � & �  1� "�� $ for all �W"�� �P� ,
and define a coupling of the Markov chain by  �� . "�� . $=� ��B.10 2 "�� .1032/$7&  �  1�B. $/"�  
� .�$ $ .

1. If there exists !"�P( such that

2 � �! 1�B.1032I"�� .10 2/$ � D ! �  ��B. "�� .�$ "
for all  1��. "��M. $�� � , then the mixing time satisfies


  4� $ D �
%W �� � A 2 $( � ! <
2. If !<& ( (so 2 � " �! 1� . "�� . $7� D N " for all � . "�� . �� $ " let # O N satisfy Pr � �! �� .1032 "�� .10 2 $%$&Y�! 1� . "�� . $7� �
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# for all
�

such that ��.%$&��M. . The mixing time of +
then satisfies


  � $ D � 7 � "
#�� 5 �
%8� A 2 : <

We now demonstrate the technique of path coupling
on a Markov chain � ������� for sampling 
 -colorings of a
graph # . This algorithm, based on local moves, is known
as Glauber dynamics.� � ����� :

Starting at
� � , repeat

�
times:

1. With probability 1/2 do nothing.

2. Pick  1*�"	� $ � + & 6?(M" <><
< "�
�9(<
3. If * can be recolored with color � , recolor it;

otherwise do nothing.

We can easily verify that this Markov chain converges
to the uniform distribution over 
 -colorings. To couple,
we start with two arbitrary colorings (�� and )�� . Our first
attempt at a reasonable coupling suggests that we should
choose the same pair  1*�"	� $ to update each of ( . and ) .
at every step. This coupling is enough to demonstrate that� � ����� is rapidly mixing when the number of colors is
large enough, although an even better coupling is presented
in [15].

Theorem 2.4 The Markov chain on 
 -colorings � �	�����
has mixing time 
  4� $�& �  �H �>%3 1H � A 2 $#$ on any H -vertex
graph with maximum degree 
 whenever 
 ��� 
 :,( .

Proof. Let ��� and � � be two starting configurations. To
couple, we choose  �*�"
� $ � * &,6K(M" <><
< " 
�9 uniformly at
each time

�
. We then update each of � . and � . by recol-

oring vertex * color � , if possible, thus defining � .10 2 and� .1032 .
To apply path coupling, let � � � & ����� be a met-

ric defined by the minimum length path connected config-
urations at Hamming distance 1. In other words, for any� "�� � � , let �,& � � "��I2I"�<
<>< "�����&�� be the shortest path
such that � � and � � 0 2 are colorings that differ at a single
vertex, and set �! ��W"�� $ &�� . When the number of colors
used is much larger than the largest degree of # , it is a
simple exercise to verify that �! 1� "�� $ D � & �IH , for any� and � , where H & 6 + 6 .

Let
�

be the set of pairs of colorings at distance 1. To
apply theorem 2.3, we need to consider 2 � "��! ��I"
��$7� for
any  �I"���$ � � . Suppose � is the vertex that is colored
differently in � and � . We consider three cases:

� Case 1: � & * : If � & * , then any color � not
currently used for the neighbors of � in � and � will
be a move accepted by both processes, and therefore
� and � will agree in the next step. There are at least

 � 
 such colors. If, on the other hand, � agrees with
a color used by at least one of the neighbors of � , then
the move will be rejected by both processes. Together
this tells us that if � &@* , then �@� " �! 1� . "�� . $7� D��� A��� < .� Case 2:  �� " * $ ��� : If � is a neighbor of * , then
the distance between � and � will remain unchanged
unless � is the color of * in either � or � . In each of
these two cases, the move will be accepted by at most
one of the two processes; it can of course be rejected
by both, in which case � and � remain unchanged and
at distance 1. If it is accepted by one process, � or � ,
then � � " �! �I"���$ � D "� < . This bound holds for each
of the 
 choices of � .� Case 3: ��$& * and   �D" * $ :�!� : If � has distance
at least 2 from * in the graph # , then any proposed
move will be accepted by both processes in the cou-
pling, or rejected by both processes. In either case the
expected change in the distance is 0.

Putting these pieces together, we find

2 � " �! �I"
��$ � D (

�H  �  �
 � 
K$ : �"
�$7& � 
 � 



�H <
This gives us the bound


  4� $ D �>% H � A 2( � 2� < "
which lets us conclude �  1H �>%  1H � A 2 $ $ mixing.

2.2 Extensions

While coupling is a very attractive approach to bounding
mixing times when there exists a distance metric that con-
tracts during every step of the coupled chain, this is of
course a lot to expect. There have been several observa-
tions that have allowed us to get more mileage out of this
tantalizingly simple method. Some of the key concepts are
briefly described here, but we refer the interested reader to
the references provided for more detailed analysis.

Choosing the right coupling: Jerrum noticed that us-
ing a smarter coupling allows us to show � ����� in fact
mixes rapidly when 
�O �#
 [15]. The improvement stems
from a careful look at the moves that potentially increase
the distance between � and � , i.e., when the vertex we are
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updating is a neighbor of the vertex where the two color-
ings differ. The improved coupling pairs the choices  1*�"	� $
and  1*�"	� � $ that are blocked because of the difference in
colors at � , i.e., � in � and � � in � . This modification
halves the number of potentially bad moves; see [15] for
details.

Interestingly, this �"
 bound was also found by Salas
and Sokal in the context of “uniqueness of the Gibbs mea-
sure,” a fundamental concept in the study of phase tran-
sitions of physical systems [33]. These two results were
the first that suggested a fundamental relationship between
phase transitions in physics and rapid vs. slow mixing of
locally defined Markov chains.

Changing the Markov chain: Luby, Randall and Sin-
clair extended the utility of the coupling method by notic-
ing that when changing the coupling or the distance met-
ric is not enough, it might be better to simply modify the
Markov chain itself [24]. In other words, by settling for a
related Markov chain that converges to the same stationary
distribution, it may be possible that a simple coupling can
be used effectively to establish efficiency. They apply this
idea in the context of of planar lattice problems, includ-
ing colorings and matchings on simply connected regions
in the � -dimensional grid. The modified Markov chains
include additional moves that update several sites in a con-
figuration at once.

Subsequently, Randall and Tetali showed that the rapid
mixing of the modified chains used by [24] implies rapid
mixing of the original Glauber dynamics by a comparison
theorem. We define the comparison method in section 4.1.

Macromoves: The latest trend in coupling is based on
“macromoves” comprised of many steps of the coupled
chain. The main idea is that if we wait until most of the
sites in the lattice have been updated at least once, we can
most likely avoid worst-case pairs of configurations that
give pessimistic bounds on the coupling time. This was
used in [9, 11, 30] where the chains were analyzed after an
initial “burn-in” period that helped randomize the configu-
rations before each step of the coupling.

Vigoda and Hayes make a substantial improvement by
extending the macromove concept to the actual coupling
phase. Instead of looking at the effects of coupling over a
single step of the coupled chain, they couple over macro-
moves using a so-called “non-Markovian coupling.” Using
this idea, they achieve a best-possible bound of �  1H ����� HW$
mixing of the Glauber dynamics for 
 -coloring when

 �  �( :/� $�" on graphs with girth ��� and degree� � ����� H . Notice that for smaller 
 it might not even be
possible to find a 
 -coloring. This improvement can be
found in these proceedings [14].

3 Canonical paths and flows

In contrast to coupling, which localizes our analysis of a
Markov chain to its behavior on pairs of configurations, the
method of canonical paths and flows captures the global
behavior of the chain. It demonstrates that slow (exponen-
tial time) mixing is characterized by a bottleneck, i.e., an
exponentially small cut in the state space. It is not surpris-
ing that this is sufficient for slow mixing, since we can see
that it will take exponential time to move from one side of
the cut to the other; what is surprising is that it is also a nec-
essary condition. To show that a chain is rapidly mixing,
then, it is enough to show that there is no small cut. Equiv-
alently, we can also show that there is sufficiently high flow
across every cut. The rich method of canonical paths lets
us argue this for an arbitrary cut.

3.1 Min cut

The conductance, introduced by Jerrum and Sinclair, is a
reasonably good measure of the mixing rate of a chain [17].
For any set ��� � , let

��� & Q �!� � . + �� �	�  1�W"�� $�  
� $ "
where �  1� "�� $ & �  1��$ �  1� "�� $ is regarded as the “ca-
pacity” of the edge  ��W"�� $ and �  
� $'& Q ��� � �  1� $ is
the weight of the cutset. Note that by detailed balance
�  ��W"�� $7& �  �� " � $ . We now define the conductance as

� & �=	>%�
� '*) � ,�� 2 � " � � <
It is clear that if a Markov chain has low conductance, then
there is a bad cut in the state space that will cause a bot-
tleneck in the mixing time. The following theorem estab-
lishes the converse as well.

Theorem 3.1 (Jerrum and Sinclair [17]) For any Mar-
kov chain with conductance

�
and an eigenvalue gap#�� 
  � $7&L( � 6 / 2 6 , we have

� "� D #�� 
  � $ D � � <
Together with theorem 1.3 relating the spectral gap and the
mixing time, this tells us that a Markov chain is rapidly
mixing provided the conductance is not too small.

3.2 Max flow

It will be convenient to reformulate the idea of conductance
in terms of flows, which also allows us to get a slightly
sharper bound on the mixing rate. First, think of the graph
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# with vertex set � and edges along all nonzero transi-
tions, i.e., those  ��W"�� $ such that

�  ��W"�� $ O N
. Since the

conductance is just a minimum cut in # , we can naturally
reinterpret it as a maximum flow along the edges.

For each ordered pair of distinct vertices �W"����,� , we
define a canonical path � � + in the graph # from � to � .
Then, for any such collection of paths � &L6�� � + � �W"����� "#�"$& ��9 , define the congestion

�  ��3$D&������� (
�  � $ �

�����
	 � �  ���$��  �� $.< (1)

We can think of each path from � to � as carrying�  ���$ �  
� $ units of flow. The congestion � then mea-
sures the maximum ratio of the total load routed through
any edge

�
to its capacity �  � $ . Low congestion im-

plies the absence of bottlenecks in the graph and we
have just seen that this characterizes fast mixing. Let� &��=	>%�� �  ��3$ �M 
� $ , where �M �� $ is the maximum length
of a path in � .

Theorem 3.2 (Sinclair [34]) For an ergodic, reversible
Markov chain with stationary distribution � and self-loop
probabilities

�  �� "�� $ � 2" for all states � � ( , we have


 �  4� $ D � &������ �  ���$ A 2 : �����
� A 2 - <
To demonstrate how to use this technique, we revisit the

toy example of sampling a random vertex in a hypercube
using � ��� ����� defined in section 2. We now need to es-
tablish paths �J 1�W"�� $ between any pair of configurations� and � using edges of the Markov chain. The obvious
choice is to walk through the bits of � and successively
flip the bit whenever it differs in � and � . After at most H
steps we will have visited all of the bits in � and we will
reach � .

To determine the congestion �  ��3$ , we consider an arbi-
trary edge

� &@ �� "#*�$ on the hypercube. To bound �  ��3$ ,
we first have to consider

Q�� ) �1. +�, 	 � �  1��$��  �� $ . Since the
stationary distribution is uniform, all paths will be carry-
ing the same load, so we can just count the number of paths
that use  ��3" * $ .

Suppose that � and * differ only in the � th bit. How
many paths can be routed through this edge? It is easy to
see that the first � :,( bits of * must agree with the end of
the path � since we have already adjusted these as we flip
the bits. On the other hand, we have not yet adjusted the fi-
nal H � � bits of * , so these must agree with � . Summing
up, we have that � &@ �� 2 "�<
<>< " � � A 2I"�� � " * � 0 2I"#* � 032I" <><
< "#* < $and � &  1*K2�" * " "�<
<
< "#* � "�� � 032�"�<
<
< "�� < $ There are � < A 2 ways
to assign the bits � 2 " <><
< "#� � A 2 "�� � 0 2 "�<
<>< "�� < , so this is ex-
actly the number of paths that use the edge

�
. Hence�

�����
	 � �  ���$ �  
� $ & � < A 2  � A " < $D& � A ) < 0 2 , <

We can also see that on this simple chain, �  � $ &�  �� $ �  ��3" * $D& 2"�� 2" < for every edge
�

. We can conclude
that �  �� $7&<H � < 0 2 � � A ) < 0 2 $D&<H <
Finally, since every path � has length at most H , theorem
3.2 tells us


  4� $ D H "  1H �>% � : � H � A 2 $.<
Notice that for this example flows give a weaker bound

than we were able to attain using coupling. The simplicity
of the hypercube example and the relatively weak bound
should not mislead you – for many important applications
flows provide the best bounds to date. In the next sec-
tion, for example, we explain how the ideas laid out here in
the context of the hypercube can be extended to sampling
matchings in a graph.

3.3 Extensions

We give a brief overview of some more interesting appli-
cations of flows and canonical paths to further demonstrate
their significance.

Complementary paths: One of the first applications of
canonical paths and flows was to analyze a Markov chain
used to sample the set of matchings in a graph [17]. Given
a constant �;O N

, we will be interested in sampling from
the distribution �  � $D& � 1 � 13 "
where

3 & Q � 4 �! � 1 � 4 1 is the normalizing constant.
The Markov chain � ����� . ��� updates a matching � at
each step by choosing an edge

� &  ��3" * $�� � uni-
formly. Then, if

� � � , we remove it with probability�=	
%W �(?"�� A 2 $ . If
� :� � and both � and * are unmatched

in � , we add it with probability �=	>%W (M"��W$ . If exactly one
endpoint � or * is matched using an edge

� � , we remove� � and add
�

instead. Finally, if both � and * are matched,
we do nothing. It is easy to verify that this Metropolis chain
converges to the desired distribution.

This problem is much more interesting than the hyper-
cube example for several reasons. First, the distribution is
no longer uniform so we have to be careful to measure the
amount of flow along each path. Second, we must be care-
ful in this case how we define the paths to make sure that
we always have a valid matching. Nonetheless, the analy-
sis we set up for the hypercube is the main mechanism that
is used here once the proper canonical paths are chosen.

Let � and � be any two matchings in # . If we take the
symmetric difference ����� , we will find a collection of
alternating cycles and paths. We will order them in some
fixed manner. To define the path from � to � , we take the

7



first component and alternate removing edges from � and
adding edges from � until the component is “processed.”
Then we move on to the next components, in order, and
process them similarly. Like the hypercube example, at
any intermediate point along this path, the components that
we have already processed will agree with � and the com-
ponents that we have not yet processed will agree with � .
But how many paths actually pass through some particular
edge  ��3" * $ ?

Here is an ingenious insight that lets us sketch the idea
behind the more sophisticated use of the paths argument.
Let us simultaneously consider a path that starts at � and
ends at � . Notice that since ����� & � � � , this com-
plementary path is working through the exact same set of
alternating cycles and paths and in the same order. After
roughly the same number of steps it took to pass through
the edge  ��3" * $ , our complementary path will pass through
an edge

� �7&  ����A" *��%$ . However, on this edge the com-
ponents we have already processed will agree with � and
those we have not yet processed will agree with � . Intu-
itively, that means that from  �� "#*�$ and  �� ��"#*K� $ we should
be able to reconstruct � and � . Of course this assumes
that we know the cycle structure of � �E� . But � � � �
also tells us this information!

Our final concern should be making sure that we do not
route too many paths that have large weight through edges
with very small capacity. It turns out that the total num-
ber of edges in � and � � will always be very close to the
number of edges in � and � . This is enough to get a poly-
nomial bound on the congestion, and therefore the mixing
time of the chain. These ideas are formalized in [17, 36].

Balanced flows: One variant of the method of canon-
ical paths and flows is to allow the flow between � and� to be distributed along many paths to avoid congestion.
Morris and Sinclair use a carefully chosen set of paths to
analyze a chain on the set of walks on a hypercube trun-
cated by a hyperplane and sampling from the set of feasi-
ble solutions to a 0/1 knapsack problem [31]. The paths
from � to � they use are based on balanced, almost uni-
form permutations describing the order in which the bits of� are modified so as to agree with � . The simple one-path
method where we fix the bits in some predetermined order
will not work because we cannot guarantee that we stay in
the state space now that the hypercube is truncated. Bal-
anced almost uniform permutations spread the flow among
a set of paths that are forced to stay within the state space.
See [31] for definitions and details.

4 Auxiliary methods

When direct methods such as coupling and flows fail to
provide good bounds on the mixing time of a Markov
chain, indirect methods have proven quite useful. They al-
low us to analyze related chains instead and then infer the
fast mixing of the chain in which we are interested from
the fast mixing of the related chains. These theorems are
most easily stated in terms of the spectral gap, so we re-
fer back to theorem 1.3 relating the spectral gap and the
mixing time.

4.1 Comparison

The comparison method tells us ways in which we can
slightly modify one of these Markov chains without quali-
tatively changing the mixing time. This will also allow us
to add additional transition edges or to amplify some of the
transition probabilities, which can be quite useful.

Let
��

and
�

two reversible Markov chains on the same
state space � with the same stationary distribution � . The
comparison method (see [8] and [32]) allows us to relate
the mixing times of these two chains. The idea is that the
mixing time, 
 ��  �	M$ , of

��
is known (or bounded) and we

desire to obtain a bound for the mixing time, 
 �  �	M$ , of
�

.
Let �� � $ & 6K 1� "�� $ �>�  ��W"�� $�O N 9 and �� �� $ &6� 1�W"�� $ � ��  1� "�� $ O N 9 denote the sets of edges of the

two chains, viewed as directed graphs. For each � "��
with

��  1� "�� $ O N
, define a path � � + using a sequence

of states � & ���M"#� 2 "�<�< < "#� � &�� with
�  1� � " � � 0 2 $�O N

,
and let 6 � � + 6 denote the length of the path. Let �  ��B"	� $7&6� 1�W"�� $ � �� �� $ �  ���"�� $ � � � + 9 be the set of paths that
use the transition  ���"�� $ of

�
. Finally, define

� & ���1�)�� . � , ��� ) � ,
EF G (�  ���$ �  ��B"	� $ �

� )�� . � , 6 �
� + 6 �  1��$ ��  1� "�� $

	 


� <
Theorem 4.1 (Diaconis and Saloff-Coste [8]) With the
above notation, we have #�� 
  � $ � 2� #�� 
  �� $

Randall and Tetali show how to use the comparison
method to get bounds on several natural Markov chains,
including matchings on lattices and triangulations of con-
vex point sets. See [32] for the details of these examples.

4.2 Decomposition

Madras and Randall introduced the decomposition method
as a top down approach to analyzing mixing times [26].
Decomposition allows the state space to be broken down
into pieces, and relates the mixing time of the original
chain to the mixing times of the restricted Markov chains,
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which are forced to stay within each of the pieces, and a
measure of the flow between these sets [26]. This method
allows us to reduce the mixing of a complicated chain to
the problem of bounding the mixing times of several much
simpler chains. In addition, it allows us to attempt a hybrid
approach towards analyzing the smaller pieces, perhaps us-
ing coupling to bound the restricted chains and canonical
paths to bound the flow between the pieces. The version
presented here is due to Martin and Randall and is based
on a disjoint partition of the state space [27].

Suppose that the state space is partitioned into
�

dis-
joint pieces �>2�" <�< < "C� � . For each � &@(?"�<�< </" � , define� � & � 6�� � 9 as the restriction of

�
to � � which rejects

moves that leave � � . In particular, the restriction to
� � is

a Markov chain, + � , where the transition matrix
� 6 � � 9�$is defined as follows: If � $& � and �W"��<� � � then� 6 � � 9� 1� "�� $D& �  ��W"�� $ ; if � � � � then

� 6 � � 9� 1�W"#��$ &( � Q + � ��� . + TU � � 6 � � 9K 1� "�� $ . Let � � be the normalized

restriction of � to � � , i.e., � �  � $ & '*) ���  � ,� � where� � &��  A� � $ .Define
�

to be the following aggregated transition ma-
trix on the state space 6?(?"�<�< </" � 9 :

�  �� " � $7& (� �
��!�! � .+ �! ��

�  1� $ �  ��W"�� $�<
Theorem 4.2 (Martin and Randall [27]) Let

�  � and
�

be as above. Then

#�� 
  � $ � (� #�� 
  � $8�$	
%� U 2 .������ . � #�� 
  � � $.<
Decomposition has played a central role in several applica-
tions, e.g., [7, 26, 27].

5 Commonly studied models

Many of the combinatorial models that arise in the con-
text of sampling fall under a common umbrella. Here we
present a unifying framework that draws parallels between
these models as they arise in computer science and statis-
tical physics. The intimate connections with physics have
provided a bilateral dialogue that has helped shape the de-
sign of good sampling algorithms, the methods used to an-
alyze these algorithms, and even the intuition for when a
Markov chain should be fast or slow. We start by restating
several familiar models in the context of generating func-
tions.

Independent sets: Let # be any graph and let � be
the set of independent sets in # . We can think of each
independent set as a map from + to 6 N " (M9 , where   �*�$D&

( if * is in the independent set and   1* $D& N
otherwise. In

addition, we can assign weights ( � and ( 2 to control the
desirability of having a vertex in or out of an independent
set, and define a weight

�� ���$D&
	� ��� (�
 ) � , <
Notice that when ( � & ( and ( 2 is an integer, this corre-
sponds to having ( 2 particles at each vertex as candidates
for the independent set. If we choose to sample indepen-
dent sets according to this weight function, we get the fol-
lowing probability measure on � :

�  A�K$�& �  ���$Q V 4 �! �  �� � $ <
Letting / & ( 2 " we find

�  ���$D& /21 V 1Q V54 �! / 1 V54 1 < (2)

When / is large we favor dense independent sets and when/ is small we favor sparse ones.

Colorings: We represent the set of 
 -colorings of a
graph # using similar notation. Let  � + � 6?(?"�<
<>< "�
 9
and let � be the set of proper 
 -colorings of # . Let( �M" <><
< "!( � be weights associated with each of the colors.
For any

� � � , let

�  � $ &�	� ��� (�
 ) � , &
�	� U 2 (

� �� "
where � � is the number of vertices in

�
that are colored

with color � . When ( � & ( for all � , this is the uniform
distribution over proper 
 -colorings.

Matchings: Let  � � � 6 N " (M9 and let � be the set
of matchings on a graph # of any size. As before, we let( � and ( 2 be weights. Then for any � � � ,

�� � $D& 	� ��� (�
 ) � , & � 1 � 1 "
if we let ( � &@( and let � & ( 2 . When � is integral,
we see that �  � $ weights matchings as though # were a
multigraph with � parallel edges replacing each true edge.
We find �  � $D& � 1 � 1Q � 4 �! � 1 � 4 1 <

Pairwise influence models: The final model we con-
sider is a generalization of the more familiar problem in-
stances just mentioned and is based on pairwise inter-
actions. For any H -vertex graph #)&  A+ "	� $ , we let

9



Statistical Physics Computer Science

monomer-dimer coverings matchings
dimer coverings perfect matchings
hard core lattice gas model independent sets
spin bit
ground states highest probability configurations
ground states of the Potts model vertex colorings
partition function normalizing constant
connectivity degree
activity or fugacity vertex weight
interaction edge weight
ferromagnetism positive correlation
antiferromagnetism negative correlation
mean-field � <
the Bethe lattice the complete regular tree
polynomial mixing rapid mixing
rapid mixing �  1H ����� HW$ mixing

Table 1: A lexicon of terms

� &)6K(M"�<
<
< "��K9$< where  � + � 6K(M"�< <�<��K9 assigns a
value from the set 6K(M" <><
< "��K9 to each vertex in the graph.
We define a symmetric set of weights 6 ( � . � & ( � . � 9 for
each pair � " � � 6K(M"�< <�</"��K9 and weight each configuration� � � by

�  � $D& 	� . � � ) � . � , ��� (�
 ) � ,
. 
 ) � , <

Again, �  � $ & �  � $Q�� �! �  �
B$ <
By adjusting the values for ( � . � we can favor configura-
tions such that the values on the endpoints of edges tend to
agree, or disagree, and we can favor which assignments
to vertices are preferred over all. For example, letting( � . � & ( for all � $& �

and letting ( � . � & N
whenever��& �

, the probability distribution arising from the pair-
wise influence model is precisely the uniform distribution
on the set of proper � -colorings.

A unifying framework: A minor change in notation
lets us connect these problem instances to models well
studied in statistical physics. This simple observation has
allowed combinatorial and computational work on these
models to flourish.

In statistical physics, models are defined to represent
simple physical systems. Just like a spring relaxing, sys-

tems tend to favor configurations that minimize energy, and
this preference is controlled by temperature. The energy
function on the space of configurations is determined by a
so-called Hamiltonian �  � $ . Since we are trying to mini-
mize energy, we weigh configurations by

�  � $ & � A 	�
 )
� , "
where !<& (I: - is inverse temperature. Thus, for low
values of ! the differences between the energy of config-
urations are dampened, while at large ! these differences
are magnified. The likelihood of each configuration is then

�  � $D& �  � $3 "
where

3 & Q � �  �
B$ is the normalizing constant known
as the partition function. This is known as the Gibbs (or
Boltzmann) distribution. Taking derivatives of the gener-
ating function

3
(or �
% 3 ) with respect to the appropri-

ate variables allows us to calculate many of the interesting
thermodynamic properties of the system, such as the spe-
cific heat and the free energy.

For example, if we let our state space be the set of inde-
pendent sets of a graph, then we let the Hamiltonian be

�  A�K$D& � �� ��� � � � V & � 6 � 6 "
10



where
�

is the Kronecker delta that takes on value 1 if *R�� and 0 otherwise. The probability distribution is given by�  ���$ & � A 	�
 ) � , : 3 "
where

3
is the partition function. Setting / & � 	 " we see

that this is precisely the same distribution given in equa-
tion 2. Note that the minus sign in the Hamiltonian that is
immediately cancelled by the exponent of

�
is merely sug-

gestive of the fact that we are trying to favor configurations
of minimum energy. This model is known as the hard core
lattice gas model in statistical physics under the premise
that gas particles occupy area and two particles cannot be
too close to each other. This model has what is known as
a hard constraint because the probability of two particles
occupying neighboring sites is zero.

Another common model from statistical physics is the
Ising model, which is an example of a model with a soft
constraint – certain configurations are given very small
weight, but all configurations occur with positive proba-
bility. Given a graph # on H vertices, our state space is
defined by the ��< ways of assigning spins :�( or

� ( to
each of the vertices. The Hamiltonian is defined so as to
favor configurations which tend to have equal spins on the
endpoints of its edges. Hence, for � �-6 � (M9�< we have

�� � $D& � �
) � . � , ��� � � � � & 6 �' � $�6 � 6 �  � $�6

where �' � $ is the number of edges  �� "#*�$ �!� such that� � $& � � and
�  � $ is the number of edges  �� "#*�$ such

that � � & � �(< Then the Gibbs distribution is

�  � $ & � A 	�
 )
� ,3
& � 	 ) 1 � 1 , � A " 	 1 � ) � , 1Q � ��� � . 2�� � � 	 ) 1 � 1 , � A " 	 1 � ) � , 1& � A " 	 1 � )
� , 1Q � ��� � . 2�� � � A " 	 1 � ) � , 1

Notice that this is just a special case of the pairwise in-
fluence model with � & � " where we set ( �C� & ( 2C2 &� A " 	 and ( � 2 &,( 2 � & ( . See [6] for a very nice intro-
duction to the Ising model.

The pairwise influence model specializes to another in-
teresting physics model for larger � . Taking ( � . � & (
whenever � $& � and ( � . � & / whenever �7& � gives us
a more general system known as the Potts model. When/ O4( we have the ferromagnetic case where positive cor-
relations on edges are rewarded, and when / � ( we are
in the antiferromagnetic case where negative correlations
are.

Table 1 explains some of the common terms that are
used in statistical physics, occasionally taking some liber-
ties with the translations.
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