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Summary. Motivated by the autologistic model for the analysis of spatial binary data on the
two-dimensional lattice, we develop efficient computational methods for calculating the nor-
malizing constant for models for discrete data defined on the cylinder and lattice. Because the
normalizing constant is generally unknown analytically, statisticians have developed various ad
hoc methods to overcome this difficulty. Our aim is to provide computationally and statistical-
ly efficient methods for calculating the normalizing constant so that efficient likelihood-based
statistical methods are then available for inference. We extend the so-called transition method
to find a feasible computational method of obtaining the normalizing constant for the cylinder
boundary condition.To extend the result to the free-boundary condition on the lattice we use an
efficient path sampling Markov chain Monte Carlo scheme. The methods are generally applica-
ble to association patterns other than spatial, such as clustered binary data, and to variables
taking three or more values described by, for example, Potts models.

Keywords: Autologistic distribution; Gibbs distribution; Ising model; Markov chain Monte Carlo
sampling; Path sampling; Potts model; Transition method

1. Introduction

The autologistic model of Besag (1972, 1974) is a popular choice for data analysis when a spatial
component is involved, e.g. Preisler (1993), Augustin et al. (1996) and Wu and Huffer (1997).
However, it is an awkward model because the normalizing constant is generally unknown ana-
lytically. To overcome this problem, approximatemethods such as estimating equations, pseudo-
likelihood or coding (Besag, 1986) are used. Our aim in this paper is to provide computationally
and statistically efficient methods for calculating the normalizing constant, and hence efficient
statistical methods for inference. The methods that we introduce can also be applied to related
exponential family distributions, such as so-called quadratic exponential binary distributions
(e.g. Zhao and Prentice (1990) andMolenberghs andRyan (1999)), to association patterns other
than spatial, such as clustered binary data, and to discrete or categorical variables taking three
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or more values. For a non-spatial application of an exponential family model to deoxyribo-
nucleic acid fingerprint data, Geyer and Thompson (1992) and discussants, Green (1992) and
Smith (1992), give details of Markov chain Monte Carlo (MCMC) methods used for inference.
In statistical mechanics and statistical physics, where the normalizing constant is known as

the partition or energy function, effort has been directed towards numerical schemes for its eval-
uation. Current statistical physics research concerns various non-regular shapes and boundary
conditions for the related Ising model, e.g. Jensen et al. (1997). The torus boundary condition
is extensively studied as it provides a stationary set-up for a finite lattice which is not available
for the free-boundary condition (Besag, 1974). Here we consider the autologistic distribution
on a regular lattice with two different boundary conditions, namely free and cylinder. For the
cylinder boundary condition, the last column and first column are assumed neighbours. For the
free-boundary condition, the case that is often considered in statistical applications, no such
constraints are placed on boundary rows and columns.
We extend the transition method of Baxter (1982) for the Ising model to general discrete

K -valued distributions, to find a feasible computational analytic matrix method of obtaining
the normalizing constant for the cylinder condition. The matrix analytic method for an m× n

(with m the smaller dimension) lattice has computational complexity O.K3m/ compared with
direct computation which is O.Kmn/. When n is large our method is O.K2m/.
We use the Monte Carlo computational scheme known as path sampling (e.g. Gelman and

Meng (1998)) and analytic results for the cylinder to derive a highly efficient Monte Carlo
scheme to obtain estimates of the normalizing constant for the lattice with the free-boundary
condition. As a consequence, likelihood and Bayesian inference for the autologistic model and
related exponential family distributions are feasible, avoiding the need for ad hocmethods. Our
approach is distinct from the maximum likelihood method of Gu and Zhu (2001), where the
computational challenge is to approximate derivatives of the log-normalizing constant by using
MCMC methods. Our results should be useful in spatial data analysis, image processing and
statistical modelling generally where autologistic or related models apply.
In Section 2 we review the autologistic distribution and path sampling. In Section 3 we give a

proof for the normalizing constant matrix analytic result for the cylinder. In Section 4 we give
efficiency results for theGaussian conditional autoregressive model and show that the predicted
orders of magnitude improvement in efficiency are realized. In Section 5 we demonstrate the
efficiency of ourmethod for the autologistic model and the efficiencies are found to exceed those
for the Gaussian conditional autoregressive model. Section 6 gives an illustration of how the
results could be used in statistical analysis and the paper concludes with a general discussion.

2. The autologistic model and path sampling

2.1. The autologistic model
Let x = {xij}; i= 1; : : :;m; j= 1; : : : ; n, be observations of a binary spatial process at mn sites
on a regular lattice of sizem× n taking values−1 or 1, rather than the usual 0 or 1. This allows
for amore parsimonious parameterization and avoids problems of non-invariance when 0 and 1
are interchanged.We assumewithout loss of generality thatm is less than or equal to n.Wewrite
the unnormalized autologistic distribution on the cylinder in exponential family form (Geyer
and Thompson, 1992) as

q.x|Θ/ = exp{ΘT V.x/}
= exp{θ0 V0.x/+ θf Vf .x/+ θc Vc.x/}: .1/
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Here parameter Θ = .θ0; θf ; θc/ and sufficient statistic V.x/ = .V0.x/; Vf .x/; Vc.x//, with

V0.x/ =
m∑
i=1

n∑
j=1

xij;

Vf .x/ =
m−1∑
i=1

n∑
j=1

xijxi+1;j +
m∑
i=1

n−1∑
j=1

xijxi;j+1;

Vc.x/ =
m∑
i=1
xi1xin:

V0.x/ is the overall sumof variables. The first termofVf .x/ is the sumof nearest neighbour prod-
ucts within columns, whereas the second term is the analogous sum within rows. The subscript
‘f ’ denotes ‘free-boundary’ lattice points. Finally, Vc.x/ denotes the sum of neighbour products
between the first and last columns. Here the subscript ‘c’ denotes ‘cylindrical’ lattice points. We
could further generalize the model to allow for varying spatial association by multiplying each
sum in Vf .x/ by a different parameter. Putting θc = 0 gives the standard so-called isotropic auto-
logistic model that is used by statisticians, the free-boundary model. Putting θc = θf gives the
cylinder condition, where the first and last columns of the lattice are neighbours. Extensions to
a K -valued discrete variable x are also possible with V0.x/ becoming a K -vector of counts of
values of xij equal to theK possible values, and the xijxi′j′ terms in Vf .x/ and Vc.x/ replaced by
the indicator function I.xij; xi′j′/ giving 1 if xij = xi′j′ and 0 otherwise. The normalizing constant
is given by

z.Θ/ =
∫

x
q.x|Θ/ µ.dx/;

where µ is a measure, e.g. a counting measure. For the discrete autologistic model the integral
becomes a sum over all possible outcomes of x, which involves 2mn terms. When θ0 = 0 and
θc = 0, equation (1) corresponds to the free-boundary Ising model.

2.2. Path sampling
Our goal is to compute the normalizing constant for the free-boundary case, i.e. the value
z.θ0; θf = θa; θc = 0/ for a fixed value of θ0. For ease of notation we shall normally omit refer-
ence to θ0 and refer to this by z.θa;0/.
The literature on finding normalizing constants for probability functions is substantial; see

Evans and Swartz (2000), section 7.4.5, or especially Gelman and Meng (1998). Our approach
is to note that

log
{
z.θa;0/
z.0;0/

}
=

∫ θa

0
Ex|.θf ;0/Vf .x/ dθf ; .2/

see, for example, Ripley (1988), page 64, or Ogata (1989). The problem of evaluating this ratio,
and hence z.θa;0/, amounts to evaluating an integral between the points (0, 0) and .θa; 0/ in
the .θf ; θc/ parameter space. z(0, 0) is known, as this is the normalizing constant for the in-
dependent case. Any continuous path (a Feynman path) θ.t/ in the .θf ; θc/ plane can also be
used to calculate integral (2) in the θf -dimension. We first choose a path θ.t/ = .θf .t/; θc.t//,
for t ∈ [0;1] with θ.0/ = .0;0/ and θ.1/ = .θa;0/. In this instance, equation (2) may be written
as ∫ 1

0
Ex|θ.t/

{
dθf .t/
dt

Vf .x/+
dθc.t/
dt

Vc.x/
}
dt:
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Path sampling approximates this integral by drawing samples of .x;Θ/ along the path θ.t/ and
is explained in detail in Gelman and Meng (1998).
Crucially, however, having introduced θc, we may write

log{z.θa;0/} = log
{
z.θa;0/
z.θa; θa/

}
+ log {z.θa; θa/};

where z.θa; θa/ is the normalizing constant for the cylinder condition and can be calculated by
using the computational analytic method to be described in Section 3. Selecting a path where
dθf .t/=dt = 0, we may write

log
{
z.θa;0/
z.θa; θa/

}
=

∫ 0

θa

Ex|.θa;θc/Vc.x/ dθc: .3/

The major proposition of this paper is that use of the indirect path integral (3), combined
with the matrix analytical result for the cylinder (Section 3), will yield computationally and
statistically more efficient estimates of log z.θa;0/ than the direct path integral (2). An indica-
tion of the efficiency of the indirect path can be obtained by considering the number of terms
in the statistics which are averaged in the path sampling. The direct path involves the statis-
tic Vf .x/, a sum of .n− 1/.m− 1/ terms. The indirect path involves Vc.x/, and thus a sum of
m terms. Generally, therefore the variance of Vc.x/ will be somewhat less than the variance
of Vf .x/ along their respective paths. If the terms xij and xkl behave like independent terms
then var{Vf .x/} =O.nm/ and var{Vc.x/} =O.m/ whereas, if the terms behave like positively
correlated terms, var{Vf .x/} =O.n2m2/ and var{Vc.x/} =O.m2/. It is only possible to use
enumeration to investigate the situation for trivially small lattices. For larger lattices, we use two
approaches. In Section 4, the equivalent Gaussian autoregressive model is used to investigate
variances of equivalent statistics. In Section 5, multiple MCMC runs are used to estimate the
variances.

3. Matrix methods for efficient normalizing constant calculation on the cylinder

We consider a general categorical K -valued distribution on anm× n lattice, withm � n, which
can be factorized as a product of functions of adjacent columns, where the first and last col-
umns are considered adjacent. We prove that the normalizing constant of such a distribution
can be found by using computational matrix analytic methods. The autologistic model, defined
by equation (1), as well as Potts models for categorical xij, where the sufficient statistics involve
similarities between near neighbours on the array, are specific examples, as areK -valued associ-
ation models in general. The method involves computing eigenvalues of a Km ×Km matrix, so
it is feasible ifKm� 1024. This is satisfied, for example, byK= 2 andm= 10;K= 3 andm= 6,
and K= 4 and m= 5. The method of proof is motivated by Baxter (1982), chapter 7, where an
exact result for the partition function for the two-parameter Ising model is obtained, involving
analytic expressions for eigenvalues.

3.1. The theorem
Let x = {xij; i= 1; : : :;m; j= 1; : : :; n} be a K -valued array with xij taking K discrete values
denoted by B = {b1; b2; : : : ; bK}. Define an m-vector by xj = .x1j; : : :; xmj/, j= 1; : : :; n. Let
the set of all possible values of xj be denoted by the set A= {a1; : : :; aN} with N =Km. Define
x0 to be identically equal to xn, imposing the cylinder boundary condition.
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Theorem 1. Suppose that the unnormalized distribution q.x|Θ/ satisfies a factorization
q.x|Θ/ =

n∏
j=1

h.xj;xj−1/;

for a given positive real function h.·; ·/ defined on the set A×A. Then the normalizing con-
stant for q.x|Θ/ is given by tr.Qn/whereQ is anN×N matrix with its kth row .Qk1; : : :;QkN/
defined by

{h.x1 = a1;x0 = ak/; h.x1 = a2;x0 = ak/; : : :; h.x1 = aN;x0 = ak/}
for k = 1; : : :;N.

Proof. The normalizing constant for q is given by the sum over mn K -valued variables∑
x11∈B

: : :
∑

xmn∈B
q.x|Θ/:

We now partition the lattice into columns x1; : : :;xn and, using the factorization of q, this sum
then equals ∑

x1∈A;:::; xn∈A

n∏
j=1

h.xj;xj−1/ .4/

with x0 = xn. Write this in terms of the matrix Q and we obtain

N∑
j1=1;j2=1;:::;jn=1

Qj0j1Qj1j2: : :Qjn−1jn : .5/

The cylinder condition x0 = xn implies that j0 = jn, giving the required result that the normal-
izing constant is tr.Qn/. This completes the proof.

Remark 1. Computational simplification occurs because the matrix Q has strictly positive
elements and therefore Q is irreducible. The Perron–Frobenius matrix theorem applies so Q
can be diagonalized,Q=H−1DH ; see, for example, Cox and Miller (1965), section 3.10. Then
tr.Qn/ = tr.Dn/. Thus all that is required is that the eigenvalues of Q be found.

Remark 2. The theorem applies to the distribution given by equation (1) but only if θf = θc
and equal to θ1, say, in expression (4). We take h.·; ·/ to be given by

h.x1;x0/ = exp
(
θ0

m∑
i=1

xi1 + θ1
m−1∑
i=1

xi1xi+1;1
)
exp

(
θ1

m∑
i=1

xi0xi1

)
:

The first factor on the right-hand side above only involves x1 whereas the second involves both
x1 and x0 or respectively within-column and between-column functions.

Remark 3. A general form for h.·; ·/ is given by the factorization
h.x1;x0/ = h1.x1/ h2.x1;x0/

with h1 giving within-column relationships and h2 giving between-column relationships. The
result can be applied more generally than just to spatial models where only near neighbours
enter the relationships. For example, the array could represent clustered binary data xj observed
over time j = 1; : : :; n with

h1.x1/ = exp
(
θ0

m∑
i=1
xi1 + θ1

m−1∑
i=1

m∑
i′=i+1

xi1xi′1
)
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and

h2.x1;x0/ = exp
(
θ2

m∑
i=1
xi0xi1

)
:

Here, h1 gives relationships within a cluster and h2 a relationship between a variable at two
subsequent times. For example, Molenberghs and Ryan (1999) considered exponential family
models for multivariate binary data.

Remark 4. To find the normalizing constant on the cylinder for the autologistic model, we
need to find the elements of the diagonalmatrixDor, equivalently, the eigenvalues of the 2m×2m
transitionmatrixQ. For computational details see Press et al. (1992), sections 11.5 and 11.6, for
reduction to Hessenberg form and then use of the QR algorithm. If a small set of the L largest
eigenvalues, λ1;λ2; : : :;λL (ordered in absolute value) suffices to determine tr.Dn/ accurately
by ΣLj λnj then these computations can be achieved in about LO.2

2m/ number of operations.
This would generally be the case for larger values of n where, for n tending to∞, the value of L
tends to 1.

4. Efficiencies of path sampling estimates for Gaussian autoregressions

The main proposition of this paper is that evaluating equation (3) by Monte Carlo sampling
and using the cylinder result of Section 3 leads to far more efficient estimates of log{z.θa; 0/}
than evaluating equation (2) by Monte Carlo methods. However, to investigate how well we
can estimate each expectation (other than by replicating MCMC chains) necessitates replacing
the expectation by a variance, following Gelman and Meng (1998), section 4, equation (39).
For the binary autologistic model, there is no analytic expression for the variance, necessitat-
ing multiple simulations. However, this is not so with the Gaussian conditional autoregressive
model, e.g. Besag (1974) or Cressie (1993). In this case we can find explicit expressions for the
variances of the sufficient statistics V.x/ by using standard multivariate Gaussian theory, and
hence expressions for the variances of the path integrals (Gelman and Meng, 1998). Here we
summarize the results, noting that the variance of the path sampling integrals are given by

∫ 0

θa

varx|.θa;θc/Vc.x/ dθc

and ∫ θa

0
varx|.θf ;0/Vf .x/ dθf ;

and refer the reader to Pettitt and Friel (2002) for details.
The relative efficiency of the cylinder scheme compared with the free-boundary scheme can

be defined as the ratio of the two average variances and is given in Table 1. The relative efficiency
appears to depend only on the number of columns, with the relative efficiency being approxi-
mately equal to the number of columns for both choices of row size. The average variance for
the cylinder path integral is independent of the number of columns, consistent with Vc.x/ being
a sum over the first and last columns. The average variance for the free-boundary path integral
increases linearly with the number of columns, n, for a given number of rows, consistent with
Vf .x/ being a sum over the entire lattice. Since we expect a similar relationship between the path
variances to hold for the autologistic model, we propose that substantially more efficient esti-
mates of the autologistic normalizing constant can be made by using the cylinder path integral,
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Table 1. Variances of path integrals for the Gaussian conditional autoregres-
sive model with lattices of various sizes defined in terms of rows � columns

Lattice size
∫
var{Vc(x)}

∫
var{Vf(x)}

∫
var{Vf(x)}=

∫
var{Vc(x)}

5× 5 239.7 950.6 3.97
5× 10 239.3 2149 8.98
5× 20 239.3 4546 19.0
5× 40 239.3 9340 39.0
10× 10 481.9 4326 8.98
10× 20 481.9 9154 19.0
10× 40 481.9 18810 39.0

instead of the free-boundary path integral. In the next section we confirm this by usingMCMC
sampling.

5. Markov chain Monte Carlo approach

Following closely the discussion in Gelman and Meng (1998), section 5.1, we first consider the
integral ∫ 0

θa

Ex|.θa;θc/Vc.x/ dθc .6/

and note that the approach to estimate equation (2) is trivially similar. Choosing a grid of equally
spaced θc-values along the path of integration (parallel to the θc-axis), we construct for each
such θc-value a Markov chain with stationary distribution p.x|θa; θc/, using the Metropolis
algorithm to update each site in the lattice successively. Then we estimate Ex|.θa;θc/Vc.x/ by an
ergodic average of values Vc.x/ from this distribution. The integral (6) is then estimated via the
trapezoidal rule

∫ θa

0
Ex|.θa;θc/Vc.x/ dθc ≈ 1

2

N−1∑
i=1
.θi+1 − θi/{Ex|.θa;θi+1/Vc.x/+ Ex|.θa;θi/Vc.x/}: .7/

Initially, the Markov chain is burnt in for model parameters corresponding to the beginning of
the path, with 1550 sweeps through the lattice. Then 500 samples are drawn, each after another
full sweep through the lattice. The chain parameters are then adjusted for the next location
along the path. Since this point is close by in parameter space, a burn-in of 550 sweeps through
the lattice is sufficient, followed by 500 sample draws. This process is repeated until expectations
have been computed for all points on the path.
A more efficient approach might be to draw samples .x; θc/ from the joint distribution

p.x; θc|θf = θa/ = q{x|.θa; θc/}
z.θa; θc/

p.θc|θf = θa/:

If we assume that p.θc|θf = θa/ ∝ z.θa; θc/, then the joint distribution is seen to be proportional
to q{x|.θa; θc/}. Thus we may write full conditionals for x and θc as

p{x|.θa; θc/} ∝ q{x|.θa; θc/};
p.θc|x; θf = θa/ ∝ q{x|.θa; θc/};
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without knowing z.θa; θc/. Thus to obtain samples .x; θc/ we can alternately sample x and
θc using, for example, a Gibbs-within-Metropolis type of algorithm. The obtained samples
.x1; θ1/; .x2; θ2/; : : :; .xN; θN/, ordered increasingly by the θcs, could be used to estimate in-
tegral (6) numerically. The obvious advantage of this approach is that a single chain is used
to calculate integral (6), as opposed to multiple chains, one for each value of the grid of Θ-
values, and that the problem of burn-in, statistical precision and programming are consol-
idated within a single chain. However, for the free-boundary case, our experience is that
such an MCMC sampler does not mix well. This agrees with the observations of Gelman and
Meng (1998), who warned that z.θf / may vary over several orders of magnitude in the regions
of θf of interest. Thus sampling from .x; θf /, where p.θf /∝ z.θf /, would lead to very few draws
of Θ in regions of low marginal density. This in turn would lead to a poor estimation of z.θf /
in such regions.

5.1. Results
Using a different seed for the random-number generator each time, the path integrals, with
N = 11, were evaluated 100 times for lattices of size 6× 10; 6× 20; 6× 40 and 6× 80, with auto-
logistic parameters θ0 = θf = 0:1.The average value and standarddeviationof the path integrals
were then computed, the standard deviation taken as an estimate of the standard error of the
path integral evaluated as outlined. The results are shown in Table 2 and replicate the earlier
results given in Table 1, that the efficiency for fixed m is proportional to n, as n varies.
The computation time for each path integral is comparable, determined by the time taken

to draw samples from the Markov chain. However, the standard errors and hence statistical
efficiencies of the two integrals are substantially different. To compare the computation time
required by each method fairly, we must do so at the same standard error. The standard error
can be arbitrarily improved, by averaging independent repetitions of the estimation process,
i.e., if the standard error is S after one estimation of the path integral, it will be S=

√
N after

N repetitions. Choosing an arbitrary small standard error of η, let Sf represent the standard
error of the E.Vf / integral and Nf represent the number of repetitions to achieve the standard
error desired. Then Nf = S2f =η2, and analogously for the E.Vc/ integral, Nc = S2c =η2. Letting Tf
and Tc represent the time taken to evaluate the path integrals, the times taken to achieve the
standard error desired would be

TfNf = TfS
2
f =η

2

Table 2. Estimates of path integrals by using MCMC sampling†

Lattice size
∫

E Vc(x)dθc
∫

E Vf(x)dθf Efficiency

Mean Standard error Mean Standard error

6× 10 −0.042 0.0052 0.66 0.028 29
6× 20 −0.041 0.0060 1.35 0.048 64
6× 40 −0.040 0.0053 2.78 0.059 123
6× 80 −0.041 0.0048 5.58 0.082 288

†Means and standard deviations of the estimates are calculated from 100 indepen-
dent runs of the MCMC chain. Efficiency is the square of the ratio of the standard
errors.



Calculation of the Normalizing Constant of the Autologistic and Related Models 243

Table 3. Computation times for the cylinder analytic result,
and for estimating the path sampling integrals, averaged over
100 MCMC runs with autologistic parameters θ0 D θf D 0:1†

Lattice size Average computation time (ms) ζ

Tcyl Tc Tf

6× 10 57.3 1549.1 1545.3 26
6× 20 57.6 3110.0 3104.8 61
6× 40 57.6 6245.5 6241.7 119
6× 80 57.3 12530.5 12486.6 282

†Also shown is the estimated computation time for path sampling
from the independent case as a multiple of the time for path sam-
pling from the cylinder result (ζ) where a standard error of η =
0:01 is specified for both cases. Computations were performed on
a Compaq–Digital Alphaserver 2100 computer with 512 Mbytes
memory and four processors each running at 275 MHz.

and

TcNc = TcS
2
c =η

2

for theE.Vf / andE.Vc/path integrals respectively. The relative time taken for ideal computation
is then

1
ζ

= TcS
2
c =η

2 + Tcyl

TfS
2
f =η

2
≈ S2c

S2f
+ η2Tcyl

S2f Tc
.8/

where Tcyl is the time taken to compute the cylinder analytic result and Tc and Tf are assumed
to be equal for the approximation. Values for ζ based on average computation times are shown
in Table 3.
At the same level of standard error, the cylinder analytic method followed by path sampling

via equation (3) is 1–2 orders of magnitude faster than the standard method of path sampling
via equation (2). The relative reduction in computation time increases with the number of col-
umns. This effect is because the standard error of the path integral increases with the number
of columns for the integral of E.Vf /, whereas the standard error for the integral of E.Vc/ is
independent of the number of the columns.
Our empirical results suggest that because the normalizing constant ratio z.θ; θ/=z.θ; 0/ is

about 1 for the cylinder integral we could replace path sampling by acceptance ratio or bridge
sampling; see Gelman and Meng (1998), section 3.2. Effectively, we can replace a continuous
density for θc by a discrete density on 0 and θ.

6. Illustration of results

In Pettitt and Low Choy (1999) an experiment to investigate the effectiveness of six different
chemical attractants for dingoes in the wild of western Queensland is described. Data were
analysed which arose from observing signs of dingo presence or absence at 135 sites positioned
at intervals of 500 m along a transect. Data were collected for seven consecutive days, giving
rise to a 7× 135 structure of data. For each day-by-site combination, binary response obser-



244 A. N. Pettitt, N. Friel and R. Reeves

vations (signs of dingo presence) were available for two locations separated by 50 m. For each
location, one of six chemical attractants was applied. The purpose of the experiment was to
determine the best attractant. A feature of the experiment was that only about 15% of the sites
were visited by dingoes so a model is introduced which considers dingo presence at a site as a
possibly unobserved process. The observationmodel then conditions on the presence or absence
of dingoes at a site. Given dingo presence, the observations, sign or no sign, at the two locations
are considered independently distributed Bernoulli random variables. Given dingo absence, the
observations are certain to be no sign of presence.
Low Choy (2001) considered various fully Bayesian analyses of the data. In one analysis the

dingo presence–absence process is given by a three-parameter autologistic distribution with the
free-boundary condition. The fully Bayesian analysis is effected by carrying out path sampling
estimation of normalizing constants for the autologistic model. The autologistic parameters
were discretized so that there were 27 points in the discrete parameter space. The computations
involved running anMCMCchain at each point in the parameter space to estimate the sufficient
statistics for the autologistic model on the 7× 135 array: a substantial computational burden.
With the results of this paper, the free-boundary normalizing constant can be approximated

by the cylinder result and its accuracy estimated or the approximation corrected by the path
sampling method. The results of earlier sections suggest that the cylinder result by itself will
be a very good approximation, as the difference between the free-boundary result and the cyl-
inder result involves only one column statistic out of 135. However, it should be noted that
this error is relative on the log-normalizing constant scale. What is important for the accuracy
of likelihood calculations for inference is the change (over Θ-values) of the absolute error on
the log-normalizing scale or, equivalently, the change (over Θ-values) of the relative error on
the likelihood scale. Consequently the path sampling integral should be taken into account to
estimate the error or to obtain a correction.
In Low Choy (2001) the posterior distribution is found to have its mode at θ0 = −0:95 and

θf = 0:25. We investigated values of the cylinder normalizing constant and the cylinder path
sample estimate for parameter values with reasonable posterior support in the region of the
mode. Results are given in Table 4, where it is seen that the values of the cylinder path sample
estimate (third column) are considerably smaller than the values of the cylinder log-normalizing
constant. However, when considering the likelihood, the path sampling correction multiplies
the probability estimated by the cylinder normalizing constant, i.e.

p.x|Θ/ = q.x|Θ/
z.θf ; θf /

z.θf ; θf /

z.θf ; 0/
:

Table 4. Normalizing constant for the autologistic model
for values of .θ0, θf/ for a 7 � 135 array†

(θ0, θf) log{z(θf , θf)} log{z(θf , 0)=z(θf , θf)}

.−1:2; 0:25/ 1587.04 0.20

.−0:95; 0:25/ 1356.37 0.18

.−0:7; 0:25/ 1141.94 0.16

.−0:95; 0:0/ 1034.52 0.00

.−0:95; 0:5/ 1778.85 0.82

†The second column is found by using the matrix result,
whereas the third column is found by using path sampling.
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In the case of .θ0; θf / = .−0:95;0:5/ this multiple is 1=exp.0:82/ = 0:44, whereas for .θ0; θf / =
.0; 0/ the multiple is 1=exp.0/= 1, showing that the correction varies by a factor of 2 over the
region of interest. Therefore, even though the path sampling correction appears relatively very
small, it can have a significant effect on the posterior and, similarly, maximum likelihood
parameter estimation, and so is necessary for accurate inference.

7. Discussion

In a typical statistical analysis we would only be interested in evaluating the normalizing con-
stant where the likelihood or the posterior density was large. Thus, instead of drawing Θ from
the marginal density which is uniform, we would want to draw it from the posterior density for
the observed data. This could be achieved by using off-line estimation of z.Θ/ or a process that
computed both the posterior and the normalizing constant at the same time.
As mentioned previously the cylinder normalizing constant can be feasibly calculated for

lattices where the smallest row or column is not greater than 10. However, it is straightforward
to extend these results to larger lattices, by splitting the large lattice into smaller sublattices
along the smallest row or column. Then path sampling, used here to go from the cylinder to
the free-boundary lattice, may be used to go from the smaller lattices to the larger lattice. This
would require the introduction of sufficient statistics connecting the rows or columns where the
large lattice has been split. This is explained in detail in Friel and Pettitt (2002). Similar ideas
apply if the boundary condition is given by fixing the values of boundary positions and therefore
conditioning on them.
It would be interesting to compare maximum likelihood estimation based on the approaches

outlined in the above paragraphwith theMCMCmaximum likelihoodmethod given byGu and
Zhu (2001), where the computational challenge is to estimate the first and second derivatives of
the log-normalizing constant efficiently to obtain an optimization scheme. The cylinder result
and the path sampling extensions provide a method which is highly efficient both in statistical
terms and in computational terms.
Finally, there is a problem of poor mixing when using MCMC sampling to draw from an

autologistic distributionwith parameter θf near a critical valuewhich defines the so-called phase
change, a transition to a region of parameter space where large contiguous sections of the lattice
become single valued. In these regions, the cylinder analytic method behaves correctly, whereas
MCMC methods will have problems with mixing and will be very inefficient.
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