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SUMMARY 
Bartlett (1966) and Whittle (1963), respectively, have proposed alternative, 
non-equivalent definitions of nearest-neighbour systems. The former, 
conditional probability definition, whilst the more intuitively attractive, 
presents several basic problems, not least in the identification of available 
models. In this paper, conditional probability nearest-neighbour systems 
for interacting random variables on a two-dimensional rectangular lattice 
are examined. It is shown that, in the case of 0,1 variables and a homo- 
geneous system, the only possibility is a logistic-type model but in which 
the explanatory variables at a point are the surrounding array variables 
themselves. A spatial-temporal approach leading to the same model is also 
suggested. The final section deals with linear nearest-neighbour systems, 
especially for continuous variables. The results of the paper may easily be 
extended to three or more dimensions. 

Keywords: NEAREST-NEIGHBOUR SYSTEMS; AUTO-LOGISTIC MODEL; MULTIDIMEN-
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1. INTRODUCTION 
WE shall, principally, be considering a two-dimensional rectangular lattice, each 
node (or site), (i,j), of which has a random variable, Xi?j, associated with it. There 
appear in the literature two main definitions of nearest-neighbour models which might 
be applied to describe the interaction between the variables X4,$in this situation. Whittle 
(1963) suggested defining nearest-neighbour models in terms of the joint probability 
distribution of the variables and required that this should be of the product form 

where is a value of the random variable Xi,j. On the other hand, Bartlett (1966, 
1967, 1968) discussed an approach through conditional probabilities, in which he 
supposed that 

p{xi,j] all other values}= P{xi,jI xi-l,j~ Xi+l,j, Xi,j-l, ~ ~ , j + ~ } ,  (2) 
that is, dependent only upon the nearest neighbours. Whilst this approach has 
considerably greater intuitive appeal, it unfortunately presents a number of difficulties. 
Notably, there is no direct method of evaluating the joint probability distribution 
on the lattice and, further, the functional form of the conditional probability on the 
right-hand side of (2) is subject to severe consistency conditions. The latter point 
was first noted by Levy (1948) concerning normally distributed random variables 
and subsequently, and more generally, by Brook (1964) who also demonstrated that 
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any valid model satisfying (2) must also satisfy (1). This situation is similar (and 
equivalent in one dimension) to that of considering a first-order Markov chain 
against one of second order: the former is degenerate with respect to the latter but 
is, of course, of considerable interest in its own right. The object of the present 
paper is to give some further insight into the nature of conditional probability nearest- 
neighbour models. 

2. CONDITIONAL NEAREST-NEIGHBOURPROBABILITY SCHEMES 
We consider a conditional probability model for variables situated at each site 

of a two-dimensional rectangular lattice with given boundary values. We shall be 
particularly concerned with binary variables; for example, in an ecological context, 
this might correspond to an array of plants, each of which is either infected (1) or 
healthy (0), or to the presence (1) or absence (0) of a plant at a site. The perimeter 
sites of the array may be used to provide the boundary values, although in many 
practical situations it would seem reasonable to append a boundary of zeros to the 
array, corresponding, for example, to absence of plants there. In any event, denote 
the set of boundary sites of the array by B, these surrounding the set of internal sites 
denoted by I. Then a conditional probability nearest-neighbour model is defined by 

P{xiajIall other values) =p(xt,j I ~{+1,j, xi,j+J (3)~ i - ~ , j ,  X~~j-1, 

for all (i, j )  EI, where xi,,. denotes the value of the random variable Xiti at the (i,j )  
site. We assume here that the model is spatially homogeneous, that is, the function 
p is independent of the internal position (i,j )  on the array. For simplicity of notation, 
we shall suppose that the perimeter of the array is rectangular, numbering the rows 
i = O(1) m +1 and the columns j = O(1) n+ 1 but the conclusions will hold for any 
shape of closed boundary. 

The explicit evaluation of the joint probability distribution of the inner array 
variables, conditional upon given boundary values, is not entirely straightforward. 
Let x denote a realization of the entire array, including boundary values, and let 
x, be the part of this realization in any specified region A of the array. Then we may 
write the joint probability distribution as 

where I*denotes the set of internal sites, excluding the (m,n)th. However, if we try 
to repeat this procedure, using x,,,~, say, as "pivot", we get 

where I** denotes the set of internal sites, excluding the (m, n)th and the (m- 1, n)th. 
However, 

is not reducible to the form p(. I . . .) since xm,, is absent from the set of conditioning 
variables. We may overcome this difficulty as follows. With each site, (i,j), of the 
lattice, we also associate a non-random variable, yij. If (i ,j ) ~I, we allow ourselves 
to choose any feasible value for Y ~ , ~ ,  whilst, if ( i , j ) ~  B, we define y i ,  = xi,*. We may 
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now rewrite equation (4) as 

We shall assume that the values feasible at any internal site are unaffected by the 
values of the surrounding nearest neighbours, so that p(. 1 ...)>O, provided each of 
its arguments is feasible. Then equation (5) gives the probability of the realization 
in terms of the probability of a realization which is identical save for (possibly) the 
(m, n)th and (m- 1, n)th elements. We repeat the procedure along each of the columns 
of the inner array in turn, until each internal site value has been used as pivot. Hence, 

where the product is taken over all ( i , j )~Z,  yI denotes the set of arbitrarily chosen 
values associated with the inner array sites and yi,, = xi,j for ( i , j ) ~  B. Equation (6) 
gives the joint probability distribution of a set of inner array variables in terms of the 
probability of an arbitrary (fixed) array y,. 

On the other hand, instead of commencing the procedure with the (m, n) element, 
we might have used the (1,l) element and continued in the reverse directions, giving 
rise to an alternative factorization analogous to (6). Equating the two results, we 
have 

The arbitrariness of the choice of yI in, for example, equation (6) implies severe 
restrictions on the functional form of p(. I ...) and these restrictions we investigate 
below. 

We assume for convenience, and without loss of generality, that zero is a feasible 
site value and, for any set of feasible site values, we let 

f(x I t, U, v, W) 3log {p(xl t, u, v, w)/p(O I t, u, 0,w)). 

Then for any given (r, #)€I, we put yi,$ = in (7) unless (i , j) = (r, s) or (r+ 1, s). 
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Letting y,, 	=y,,,, = 0, this gives 

f(xI t, U ,  v, w) +f(uI0, u', v', wl)= f(xI t, 0, v, W )  +f(uI X ,  u', v', w'). 

It  follows that 

f (x  I t ,U ,  v, w)= g(t 1 0, x, 0,O) +g(uI x, 0, 0,O) +f(x  10, 0, V ,  w), 

where 

Using the analogous procedure for any given pair of internal points (r, s) and (r, s + 1 )  
gives 

and hence 

~ ( X I O , U , O , O ) E ~ ( ~ ~ X , O , O , O )and g(xI0,0,O,w)~g(w10,O,x,O) 

so that 

g(xl t, u, v, w)= g(xI t, O,0,0) +g(ul x, O,O, 0) +g(xI 0,09 v,O) +g(wI 090, x, 0). 

If we write 

f(x 1 0,0,0,0)Ex+(x), g(x I t, 0, 0,O) =xt&(x, t )  and g(x 1 O,O, v,0)= xv#2(x9 v) 

then 

and 

P(X I t ,u,0, w)=exp { f ( xI t , u, v, w)) 1.C. exp{ f ( zI t, u, v, w)). 
(9) 

If we assume, as suggested earlier, that a boundary of zeros surrounds the inner array 
(i.e. XB = 0), it follows from equation (6),by also putting y,,. = 0 for all ( i , j ) ~ Z ,that 

where the summation extends over all possible inner array configurations 21. Hence, 
it is easily shown that the constraints (8 )  and (9)are not only necessary for a valid 
conditional probability nearest-neighbour model, but are also sufficient; that is, 
4, i,bl and $, are arbitrary functions. Equation (10) may be seen as an explicit 
factorization of the form shown to exist by Brook (1964)and extends to continuous 
distributions provided we interpret p ( .  I ...) as a conditional density. The results may 
easily be adapted to three or more dimensions. 

3. BINARYDATA:THE AUTO-LOGISTICMODEL 
In the case of binary data, we may rewrite (8)  as 
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since xa= x. Thus, 

where a, and p, are arbitrary real numbers. The similarity of the model specified 
by equation (1 1) to a classical logistic model (see, for example, Cox, 1970, Chapter 1) 
suggests that we may reasonably describe the present model as auto-logistic, 
emphasizing that here the explanatory variables are the surrounding array variables 
themselves. 

The joint probability distribution of the inner array variables is given by equation 
(10) provided that x, = 0. That is, 

where the summation extends over all (i,j)E Iand C(a, PI, p2) is a normalizing function, 
dependent also upon the dimensions of the array. For more general boundary 
conditions, the joint distribution will differ slightly from equation (12), due to end 
effects. However, the results (1 1) and (12) do not depend upon the perimeter of the 
array being rectangular and hold for any closed boundary. We may note, incidentally, 
that the statistics C xS,,, C X~, ,X~-~ , ,and I;xS,,xi,,-, are jointly sufficient for a, P, and 
p2, and that, if they have joint moment generating function M(B,$,, c$~), that is, 

M(e,$l, $a)= E [ ~ x P  C{(e+ $1 xi-l,j+ $2 %,i-l) Xi,3)19 
then 

M(e, $,, $J = C(a + 6, PI + $1, P 2  + $31c(a, 8,Pz), 

demonstrating the importance of the normalizing function C. 
The distribution (12) corresponds to the classical Gibbs equilibrium distribution 

arising in the general form of the Ising model of ferromagnetism for a two-dimensional 
rectangular lattice (see, for example, Newel1 and Montroll, 1953). In that context, 
a+ ,8, + P2# 0 allows for an external magnetic field, whilst ,8,# ,8,allows for asymmetry 
in the potential interaction energy. C(a, PI, P2) is called the partition function. The 
result that any Ising model is a conditional probability nearest-neighbour model is, 
of course, easily shown directly. However, the point of interest, here, is that we have 
shown that the converse is also true and that, therefore, the two definitions are 
equivalent. This result may easily be extended to three or more dimensions. Whittle 
(1963) noted, in support of his own approach to nearest-neighbour models, that the 
natural specification of a system in statistical mechanics is in terms of a joint distri- 
bution formula rather than as a conditional probability model. However, we now 
find that it is exactly the class of conditional probability nearest-neighbour models 
which have been at the centre of interest in the study of physical lattice systems in the 
past. This may suggest that it is natural, in our context, to consider the conditional 
probability models to be the more basic starting point, rather as one would consider 
a first-order Markov chain to be a more basic starting point than one would a second- 
order chain (the analogy is, in fact, extremely close). 

4. A SPATIAL-TEMPORAL TO THE AUTO-LOGISTICAPPROACH MODEL 
In most practical situations, the available (binary) data will consist of a single 

observed array; however, this array may usually be interpreted as an observation on 
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a process developing through time. In this context, Bartlett (1971) has suggested a 
class of spatial-temporal models which have the advantage, over purely spatial ones, 
that time plays its classical role of providing a direction for causal relation. It  is 
relevant to enquire whether a nearest-neighbour spatial distribution may reasonably 
arise from the spatial-temporal models. 

Let x,,~,,denote the value (0 or 1) of the random variable at the (i, j) site of 
the array at time u and consider the Markov (in time) model 

P{Xr,s,t+A,= xl Xr,s,t = x and all other values up to time t +At, excluding x,,~,~+,~} 

for x = 0 or 1 and all r, s and t. That is, (13) gives the probability that the (r, s) element 
remains unchanged at 0 or unchanged at 1 in the time interval (t, t+At] given all 
other values at or before time t+At. We may, for example, consider (13) as a simple 
model for the spread of recurrent infection in an array of plants; for 0 , l  variables 
a logistic model is the natural choice and (13) provides an obvious extension to 
include the time element. Although the explanatory variables are again array variables, 
the inclusion of the time element has given rise to a classical logistic model. Different 
sets of parameters, (a,, Pol, Po,) and (a,, PI,, PI,), relate, respectively, to the conditional 
probabilities of a healthy (0) plant becoming infected (1) and vice versa, giving a 
considerable degree of flexibility. If the right-hand side of (13) is re-written as 

it may be considered as a special case of Bartlett's spatial-temporal class of models 
and hence it may be shown that the stationary distribution is auto-logistic with (cf. 
equation (1 I)), 

The existence of a stationary distribution is ensured, in general, since the matrix of 
spatial-temporal conditional transition rates has non-zero elements. 

There are, of course, many practical situations where the above argument is not 
relevant. In particular, we may be interested in the distribution on an array when 
no stationarity assumption can be made. For example, if infected plants do not recover 
then no stationary distribution exists whilst, even in a case where a stationary 
distribution does exist, we may be concerned with the distribution on a single array 
in the transient stage. In many such cases where a bilateral spatial model is required, 
it is still suggested that as the first approximation, the auto-logistic model is intuitively 
reasonable, though no formal spatial-temporal justification is given. 

5. LINEARNEAREST-NEIGHBOURSYSTEMS 
As regards problems of inference, the class of nearest-neighbour models specified 

by equation (10) is, in general, extremely awkward to handle, even if we make an 
assumption of stationarity. For example, in the case of binary systems, analytical 
results concerning the auto-correlation structure of the model (1 1) have progressed 
little since the work of Onsager (1944) dealing with the entirely symmetric case when 
P(l) = P(0) and P1 = P2. On the other hand, if we have a stationary system satisfying 
the linear relation 

E(x,,~ 1 [+ rll(~i-l,i+~ i + ~ , j )  (14)all other values) = +712(~i,i-l+~ i , j + ~ ) ,  
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say, then this gives rise to a spectrum proportional to 

(1-277, cos w, -277, cos 0,)-1, (15) 

in the usual notation, upon which goodness-of-fit tests may be based and from 
which the correlation structure of the process may easily be obtained numerically. 
It is therefore of interest to identify nearest-neighbour systems having the property 
(14).

Before considering this problem in greater detail we make the following remark 
concerning binary systems. For such a system, we have 

E(X,,,.~ all other values)= P{X,,,. = 11 all other values) 

and, since the auto-logistic model (11) does not reduce to a linear form, unless P1 or 
Pz = 0, the relationship (14) must be invalid for any binary system with P1 and PZ 
non-zero. Whilst, even in a classical regression situation, linear binary models are 
not usually strictly appropriate, they often provide useful approximations which are 
comparatively straightforward to deal with. However, in the present situation, such 
a linear model is not even mathematically self-consistent. Incidentally, the spectrum 
(15) is itself valid for a binary system and Bartlett and Besag (1969) have considered 
goodness-of-fit tests based on one-sided approximations to it, but it is stressed that 
this spectrum cannot arise from a binary nearest-neighbour process. 

In examining linear nearest-neighbour systems we make the following restrictive 
assumption. We suppose that the probability distribution (or density function) of 
Xi,?, given all other site values, depends only upon xi-l,i + and xi,,.-l +x,,,.+,. 
This may often seem intuitively reasonable as a first approximation to the real process, 
particularly in the case of continuous variables. Thus, for feasible site values 
X, t, U, v and w, we let 

p(x 1 t, u, v, w) =exp {A(x, t +u, v +w)). (16) 

Then using equation (8), we have 

so that 

and, hence, it follows that 

where 4 is an arbitrary function and P1 and PZare arbitrary constants. This gives 
the necessary and sufficient condition for a nearest-neighbour model to have a 
conditional distribution of the form (16). 

Linear models are generally considered more appropriate for continuous variables 
than for discrete ones and it happens that in the former case we may derive the moment 
generating function corresponding to the conditional density function (16). We let 
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and 

Then 

and 

p, E(XI t, u, 0,w)= a 1% C(h1, A2)IaAl = Act+771A,+ 772 h2) 

for a linear model. Hence, 

with 77,P2 = q2P1. Thus, for continuous array variables, in postulating a conditional 
probability nearest-neighbour model satisfying (14) and (16), the only possibility, 
subject to mild regularity conditions, is that the conditional density of is normal 
and that therefore, from equation (lo), the joint distribution of the inner array 
variables is multivariate normal. For discrete variables, we cannot use the same 
technique to derive M(0) since A,, for example, can only take a countable set of 
values, but it is conjectured that linear models in two (or more) dimensions will not 
occur in practice. For a discussion of quasi-linearization of binary systems, see 
Bartlett (1971). 

Finally, the present section may to some extent be related to the "harnesses" of 
Hammersley (1967). However, in this context, we make the following remark. 
Hammersley defines a one-sided harness (in one dimension) as a process satisfying 
the stochastic equation 

where the E'S are independent error variables having zero mean and variance 02. 

This definition is motivated by considering a system for which one might suppose 
that 

E(X$1 all predecessors) = Xi-l. (18) 

The relations (17) and (18) are, of course, consistent with each other. However, the 
definition of a central harness as a process satisfying 

where, again, the E'S are independent error variables having zero mean and variance 
02, is not consistent with the conditional expectation statement 

E(X, 1 all others) = &(X,, +Xi+l). (20) 

Whilst the harness given by (19) obeys a second-order equation, the relation (20) is 
more compatible with a first-order scheme. 
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