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Statistical Analysis of
Non-lattice Data

JULIAN BESAGt, University of Liverpool and Princeton University

A Markovian approach to the specification of spatial stochastic
interaction for irregularly distributed data points is reviewed.
Three specific methods of statistical analysis are proposed ; the
first two are generally applicable whilst the third relates only fo
“normally” distributed variables. Some reservations are expressed
and the need for practical investigations is emphasized.

1. Introduction

In rather formal terms, the situation with which this paper is concerned
may be described as follows. We are given a fixed system of # sites, labelled
by the first # positive integers, and an associated vector x of observations,
X1, . « . y Xn, Which, in turn, is presumed to be a realization of a vector X
of (dependent) random variables, X3, ..., Xx. In practice, the sites may
represent points or regions in space and the random variables may be
either continuous or discrete. The main statistical objectives are the
following: firstly, to provide a means of using the available concomitant
information, particularly the configuration of the sites, to attach a plausible
probability distribution to the random vector X; secondly, to estimate
any unknown parameters in the distribution from the realization x;
thirdly, where possible, to quantify the extent of disagreement between
hypothesis and observation.

Consider the following example. Cliff and Ord (1973, Section 6.4)
examine data on the yield of wheat in hundredweights per acre for each
county in England during 1936 (Yule and Kendall 1968, p. 311). They
find that when the data are regressed against a particular measure of
productivity for each county (Kendall 1939, pp. 25-9), there is evidence
of high positive correlation between the residuals from adjacent counties.
This leads them to suggest “productivity alone is not sufficient to
account for the spatial variation in wheat yields in the English counties,
and that additional variables such as rainfall or soil type should be con-
sidered”. It is clear that such complications will arise in many geographical
contexts. If local measurements of the offending variables are available,
then the regression can be reformulated in an appropriate manner, but
often the relevant information is not at hand and some attempt must be
made to incorporate spatial stochastic interaction into the analysis.

+ Now at University of Durham.
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One possible means of formulating spatial schemes, as suggested in an
earlier paper (Besag 1974a, is through the adoption of a conditional
probability approach. This requires the user to specify the conditional
distribution of each random variable X;, given the values x; at all the
remaining sites j#i. The alleged advantage of this tactic is that it breaks
down the original problem into a series of simpler sub-problems since,
instead of having to do battle with all » random variables simultaneously,
we may attack each X; in turn. This approach is summarized below: note
that for ease of presentation, the term “conditional distribution’ will be
used to indicate that the conditional distribution of a particular variate,
given all other site values, is being considered.

The simplest assumption which can be made is that the conditional
distribution at each site is independent of all other site values. This, of
course, corresponds to the classical notion of statistical independence.
However, we are here primarily interested in departures from this assump-
tion which arise under the influence of unknown local variations in environ-
mental conditions. This suggests that as a plausible first approximation,
we might assume that the conditional distribution at site / depends only
upon the values at those sites which are, in some sense, in the proximity of
site . This is the essence of local (or Markov) statistical dependence in the
spatial context. Formally, site j (#) is called a neighbour of site i if and
only if the conditional distribution at site / depends upon the value at
site j. A system of sites, each with specified neighbours, is called a graph.
The formulation of conditional probability schemes may therefore be
considered in two parts: firstly, the choice of a suitable graph and, secondly,
the selection of appropriate conditional distributions, consistent with that
graph.

It is contended that, in practical applications, the choice of neighbours
for each site should be implemented on intuitive grounds. It must be held
- in mind that the formulation is not intended to suggest a direct causal
relationship between the random variables but merely aims to take account
of local variations in extraneous conditions—what one might call “third-
party” dependence. It follows that the choice of neighbours will largely
be subjective. However, as a rule of thumb, it is likely that, in physical
geography, geometrical contiguity of sites will be all-important whilst,
in human applications, other measures, such as accessibility between sites,
may also play their parts. As a rough guide, one might anticipate an end-
product averaging around six neighbours per site in typical geographical
contexts.

It is with the other half of the formulation that the conditional probabi-
lity approach runs into trouble. For it transpires that, given a particular
graph, the choice of a valid conditional distribution at each site is subject
to some extremely severe and unobvious consistency conditions. Indeed,
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these remained largely unidentified until the arrival in 1971 of an unpub-
lished paper by Hammersley and Clifford. (For a detailed account,
including a very short proof of the relevant theorem, the interested reader
may refer to Besag(1974a).In section 2.2, we shall mention the impact of
the consistency conditions when the site variables are “normally” distri-
buted but, this apart, the general problem of specifying valid conditional
distributions will not be discussed in any detail in the present paper.

Instead, we shall, in section 2, concentrate upon the Gaussian
situation, examining particular aspects of conditional probability schemes
and the rival simultaneous autoregressions. Not only does the normality
assumption generate the most easily handled distribution theory but also
the resulting schemes probably constitute those of most interest to geo-
graphers. In section 3, some methods of statistical analysis for locally
dependent schemes are described. Two of these are applicable to non-
normal as well as to normal schemes and will be discussed in a general
setting, since this involves no additional difficulty in exposition. However,
before finishing this section, it may be useful to give an outline description
of the Hammersley—Clifford theorem and to follow this by some cautionary
remarks concerning the conditional probability approach as a whole.

The Hammersley—Clifford theorem is formulated in terms of the cliques
generated by a given graph. Here, a clique is defined as any set of sites
which either consists of a single site or else in which every site is a neigh-
bour of every other site in the set. Roughly what the theorem says is that,
for discrete random variables, the joint probability distribution of
X1, ..., Xn» must be a product of functions, one function corresponding
to each clique. For continuous random variables, the analogous result
holds for the joint density function of Xi,..., X». In either case, it is
then a simple matter to obtain the allowable forms of the conditional

. distributions for the site variables.

. Although it is being suggested in this account that the conditional
probability approach can provide an intuitively appealing and tractable
means of analysing certain types of spatial phenomena, it must be admitted
that there still remain many criticisms and many unanswered questions in
regard to practical applications. First and foremost, there is, so far as
I am aware, no empirical evidence yet available to support the use of
spatial Markov schemes. At best, such schemes should perhaps be viewed
as mimics of reality rather than models. Thus, I have specifically avoided
terms such as “model” and “process” in the present paper, since their
usage might have suggested considerations of causality. Indeed, the very
notion of placing intuitive interpretations on conditional probability
statements, in purely spatial settings, is viewed dubiously by some
researchers and should not be accepted uncritically. For some further

181



comments, see Whittle (1963, and in discussion of Besag 1974a). Finally,
I have tended, in the present paper, to use the term “local dependence”
rather than “spatial Markovity”. This is in an attempt to avoid confusion
with the (non-standard) definition of spatial Markovity (in terms of
simultaneous autoregressions) which has been adopted in some of the
geographical literature; see, for example, Cliff and Ord (1973). Fuller
details are given in section 2.3 of the paper.

2. Some Multivariate Normal Schemes
2.1. Introduction

There may be many practical situations where it is reasonable, as a first
approximation, to suppose that the site variables Xi,..., X» have a
multivariate normal distribution. To make any progress with such an
assumption, it is necessary to postulate a plausible structure for the mean
vector  and the dispersion matrix ¥ of the distribution. The specification
of w is likely to be made upon classical grounds and, most commonly,
will involve the use of a linear function of a few unknown parameters.
On the other hand, the description of ¥ may present some difficulty, if the
intention is to escape from the classical assumption of independence (that
is, V= A, say, where A is a diagonal matrix of variances). Various proposals
might be made. For example, the conditional probability approach, with
which this paper is primarily concerned, leads to the so-called auto-normal
prescription. This may be interpreted as a generalized version of the
Markovian regular lattice schemes of Lévy (1948). A second approach is
based upon the regular lattice schemes of Whittle (1954) and, in turn,
leads to the specification of simultaneous normal autoregressions. Unfortu-
nately, there has sometimes been confusion between these two proposals
and we therefore examine their differences in section 2.3. A third approach,

. which may be particularly relevant when sampling a continuum at a
number of point sites, is to attack V directly by assuming that the covari-
ance between X; and Xj depends only upon their distance apart (in the
isotropic case) and then specifying an appropriate correlation function.
This technique may be discussed by other contributors and will not be
considered further in the present paper.

2.2. The Auto-normal Prescription

The aim here, as with all conditional probability formulations, is to
isolate each random variable in turn for specific consideration. In particular
suppose that the conditional distribution of X7 is normal with conditional
mean

E(Jalx;,j¢i)=m+j§1 Bu,1Ger— 1) @.1)
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where B, ¢=0, and conditional variance,
var (Xi| xs, j#i)= o 2.2

As might be expected from the discussion in section 1, certain consistency
conditions must be imposed upon the coefficients in order for the formula-
tion to be valid. Indeed, it can be shown that the dispersion matrix ¥ for
the scheme is given by V=B-1A @.3)

where A is the n x n diagonal matrix of conditional variances o2 and B is
the nxn matrix with diagonal elements unity and off-diagonal (i, )
element — B;,5. Now since any dispersion matrix must be both symmetric
and positive-definite, the same holds true of A-1B; the symmetry condition
implies that (2.1) and (2.2) are valid only if

Bi.1052=Ps,102 2.9

for all 7 and j, whilst positive-definiteness can, in general, only be checked
once the coefficients are known numerically. Since, conversely, any given
dispersion matrix ¥V determines unique values for B and A, it follows that
the class of all valid auto-normal schemes is, in fact, equivalent to that of
all multivariate normal schemes. Thus, the auto-normal formulation does
not imply any inherent simplification of the parameter space. Nevertheless,
the hope is that, by considering each site in turn and invoking the concept
of local dependence, it should be possible to reduce the number of
unknowns, firstly by setting Bi,;=0 for sufficiently “remote” sites, as
described in section 1, and secondly by postulating plausible relationships
between the remaining coefficients. This will be discussed further in
section 2.4.

2.3. Simultaneous Normal Autoregressions

Alternatively, suppose that the structure of the random variables is
specified by the » simultaneous equations,

n
Xt=."4+j2 B 1 (X5— )+ 2y 2.5)
=1

where B:,¢=0 and Z1,...,Z, is a set of independent normal variates,
with Z; having mean zero and variance ;2. It can easily be shown that the
class of all such simultaneous autoregressions again generates the class of
all multivariate normal distributions but that now,

V=B-1ABY 2.6)

where A and B are defined as before. Thus, the validity of (2.5) requires
only that B is non-singular. (This fact can result in identification problems
since, in general, more than one value of B will generate a given dispersion
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matrix V.) Again the aim is to attach a plausible structure to the coeffici-
ents. Indeed, it is likely that, in any given situation, the formal rules
employed to reduce the number of unknown parameters will be similar
(or even the same), whichever of the two approaches is adopted. However,
it is crucial to recognize that the same rules will lead to different covariance
structures, as can be seen from equations (2.3) and (2.6). That is, the
two approaches lead to distinct schemes. For example, taking expectations
in equation (2.5), conditional upon the values x;(j#i), does not produce
the result (2.1).-The reason is that Z; is correlated with the X; in (2.5)
and, although E(Z;)=0, the conditional expectation E(Z;|xj, j#1) is, in
general non-zero. As a specific example, it may be useful to resurrect the
simple rectangular lattice illustration of Besag (1974, section 5.2.2) with
sites now conveniently labelled by integer pairs (r, s). Thus, it can be
shown that, if A= ¢2I, the simultaneous zero-mean normal autoregression,

Xr,s=lg1Xr—1,s+’}’1Xr+1,s+Ber,s_1+'}’2Xr,s+1 +Zr,s

yields conditional moments,
E(Xy,s | all other site values)= w{(B1+y1) (X;-1,s+Xrs1,5)
+(Ba+y2) (xr,s—1+x7,5:1)— (Brya+y1B2) (Xr_1,s-1+Xri1,541)
—(B1Ba+y1ye) (Xr-1,s41+ Xri1,5-1) — Pry1(xr_2,s + Xr12,5)

— Baya(xr, s—2+ Xr, s42)}
and
var (Xr,s | all other site values)= wo?

where w=(1+ B12+y12+ Ba2+7y22)~L. Note how the symmetry require-
ment is automatically satisfied when the conditional expectation structure
is evaluated, without any prior constraints being placed upon i, B,
y1, and 7.

The difference between the two approaches has not always been recog-
nized in the literature on spatial schemes and this has sometimes resulted
in confusion. Although previous warnings have been given, especially for
lattice schemes (Bartlett 1971a, 1974; Besag 1972a, 1974a; Moran 1973),
my impression is that the matter still requires publicity. Of course, the
preceding discussion does not tell us which (if either!) of the two approaches
should be used in practice; indeed, this must, for the moment, remain
largely a matter of personal preference. For myself, I find that the condi-
tional probability approach, as a whole, is one which contains considerable
intuitive appeal, though it must, of course, be remembered not to interpret
the conditioning in a causal sense but rather in the sense of information
flow. Incidentally, it also happens that the ordinary method of least
squares provides a consistent technique of parameter estimation for (local)
auto-normal schemes, whereas it is well-known that the method fails for
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simultaneous autoregressions (Whittle 1954; Mead 1967, 1971; CIiff
and Ord 1973; Hepple 1974; Ord 1975) and other means of estimation
must be sought. We shall discuss this fully in section 3.3. For some
opposing views, see, for example, Whittle (1954, 1963 and in discussion of
Besag 1974a).

2.4. Choice of Auto-normal Scheme

We should now examine the problem of reducing the number of unknown
parameters in given geographical situations. It has already been suggested
that, whichever of the two approaches in sections 2.2 and 2.3 is adopted,
the choice of relationships between the coefficients is likely to look much
the same. However, the rationale and the end products are different and
my personal prejudice therefore leads me to discuss the problem in terms
of the conditional probability viewpoint, although, formally, the reduction
rules will be very similar to those used for simultaneous autoregressions
by Mead (1971), CIiff and Ord (1973) and Ord (1975).

The choice of a structure for the u; can usually be administered separ-
ately, and should not present undue difficulties. The simplest case is that
of an invariant unconditional mean; that is, u:= u, say, for all ;. However,
this situation is presumably of rather limited geographical relevance and
it may usually be more appropriate to set up a classical linear representa-
tion of the ui, typically written as

w=D0 2.7

where D is an nx p matrix of explanatory data and 0 is the associated
p x 1 vector of unknown parameters. Thus, in physical geography, such a
specification might represent a trend surface analysis, with the ith row
of D carrying (powers of) the locational coordinates of site 7, whilst, in
human applications, the ith row of D might relate u; to the values of
certain economic indicators in site (region) i.

In contrast, the problem of reducing the number of unknown interaction
parameters is non-classical and, if we intend to interpret the schemes,
demands the ability to translate experience and intuition into bald state-
ments of conditional probability. Whether this is a viable proposition
remains to be seen. The first step must be to select a restricted set of
neighbours for each site so that the scheme becomes one of local depend-
ence, as described in section 1. Then B;,; is set equal to zero unless sites
i and j are neighbours of each other; that is, unless the pair (7, /) forms a
clique. Incidentally, the fact that sites / and j are not neighbours does not
of course imply that the random variables X; and X; are independent but
merely that the conditional distribution of X; given all other values,
does not depend upon the value obtaining at site j. This is the analogous
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situation to that encountered with classical Markov chains: whilst no
two variates are generally independent, any two are conditionally inde-
pendent given the value at some intermediate time point.

Having chosen the neighbours for each site, the second step is to postu-
late plausible relationships between the non-zero interaction coefficients.
It is suggested that this can often be done by making use of the same
measures as those employed to produce the reduced neighbourhood
structure, or graph, of the system. In particular, quantities such as the
common boundary length, I, of contiguous regions / and j, and the
Euclidean or generalized distance, di,j;, between their appropriately
defined centres may be used. Incidentally, Voronyi polygons, as suggested
previously by Brown (1965), Mead (1971), Besag (1974a) and Ord (1975),
provide one simple method of attaching conceptual regions to point sites.
The eventual aim is to relate the non-zero interaction coefficients to
perhaps one or two unknown parameters, at the same time ensuring that
the symmetry condition (2.4) is satisfied. To reduce the amount of hand-
waving, we consider some specific examples. These are based upon sug-
gestions made for simultaneous normal autoregressions by Mead (1971),
by CIiff and Ord (1973) and by Ord (1975). We assume that 1, ;(=1,s)
and di,;(=dj;, 1) are defined as above and that sites i and j are deemed to
be neighbours if and only if /,;>0. The perimeter of the site 7 boundary
is denoted by 4, whilst ¢ and ¢ represent unknown parameters. In these
terms, we consider six possible specifications of the non-zero B:,;. These
are generated by cases (i) and (ii) below, according to the choices =0,
1, and 2, respectively:

@ Pus=di,*¢ with  o2=0?
G) Bos=Usi/k) diy ¢ with  o2=0o?l

- The forms of the respective conditional variances are clearly necessary,
from equation (2.4), unless the system as a whole can be split up into
two or more independent subsystems. However, the requirement o;2= 02//;
in (ii) looks a little worrying, since the implication is that the larger the
boundary, the smaller the conditional variance. We therefore return to
the form of B, ; in (ii) and see that the term J;, 5/I; is included as a weighting
coefficient. As such, it may be suggested that the scheme is only appropriate
when X; represents a normalized version of absolute *“yield”, such as
yield per unit area. In that case, a conditional variance which declines
with increase in area would seem not only reasonable but actually desirable.

Whilst this final argument needs to be looked at critically, it is neverthe-
less hoped that the suggestions embodied in the section as a whole give
some idea of how auto-normal schemes can be formulated in practice,
especially for regional systems. Whether such an approach will help to
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explain any geographical phenomena remains to be seen. The proof of the
pudding will be in its eating.

Before moving on to methods of Monte Carlo simulation, we remark
that, with a choice such as (ii), it is convenient for subsequent statistical
analysis, though not necessary, to rescale the X; so that the scheme
has invariant conditional variances. Thus, for (ii), the transformation,
Yi=11/2X;, yields

n
E()’i|.}’iaf¢i)=ﬁi+jzlﬁi,f(yf_ﬁf)
where fi=11/2uy, and var(Y;|yy, j#i)= o2, for all i.

2.5. Monte Carlo Simulation

In section 3, we shall be discussing some methods of statistical analysis
for conditional probability schemes. Since the sampling properties of the
techniques, beyond consistency, are largely unknown and likely to be
analytically intractable, it would be useful to carry out Monte Carlo
simulation studies, where feasible. For discrete random variables, no
direct methods of simulation have yet been found. In principle, it is
possible to set up a discrete time, spatial-temporal Markov chain which
yields as its stationary temporal limit the required spatial distribution.
The simulation procedure is to consider the sites cyclically and, at each
stage, to amend or leave unaltered the particular site value in question,
according to a probability distribution whose elements depend upon the
current values at neighbouring sites. For further details, see Hammersley
and Handscomb (1964, Chapter 9); however, the technique is unlikely to
be particularly helpful in many other than binary situations and the Markov
chain itself has no practical interpretation.

~ On the other hand, a directapproachisavailable forthe Gaussian schemes
of sections 2.2 and 2.3. For example, consider the simultaneous auto-
regression of equation (2.5). Re-written in matrix form this becomes,

BX—w)=Z 2.8)
where B is defined as before and Z denotes a vector of independent normal
variates, Z; having mean zero and variance o;2. To obtain a realization x
of the scheme, it is merely necessary to generate a random sample

e=(ey, ..., en) from the standard normal distribution and then to use

the transformation,
x=wp+B-1A/2e

where Al/2 is the diagonal matrix with (i, /) element equal to o;.

For the auto-normal scheme of section 2.2, the procedure is less obvious
but is computationally equivalent. Thus, given B and A, suppose that C

187
13



denotes any » x n matrix such that C’C=A-1B. Then, if e again denotes
a random sample from the standard normal distribution, the transforma-
tion,

x=p+Cle

produces the desired result. This follows since the sampling distribution
of x has mean g and dispersion matrix C-1(C-1)’=B-1A, as required. At
first sight, the numerical evaluation of a suitable C may appear difficult;
however, remembering that A-1B must be symmetric and positive-definite,
we can use the fact that the standard library routine for inverting such a
matrix consists of finding the unique upper (or lower) triangular matrix
C such that C’C= A-1B and then inverting C (which is, of course, trivial)
to obtain B-1=C-1(C-1Y. It follows that an appropriate matrix C and
its inverse C-1 are readily available and that the computational effort
required to simulate auto-normal schemes is no greater than that needed
for simultaneous autoregressions.

3. Statistical Analysis of Conditional Probability Schemes

3.1. Introduction

The two principal techniques of analysis in the classical theory of statistics
are the methods of maximum likelihood and of least squares, respectively.
Unfortunately, neither of these appears applicable in the present context,
unless the variates are blessed with a multivariate normal distribution.
On the one hand, due to the occurrence of a grotesque normalizing func-
tion, the likelihood is generally intractable both to analytical and compu-
tational progress; on the other, it turns out that linear formulations are
generally inappropriate unless the variates are normally distributed
(Besag 1972a). Even for the auto-normal schemes, the implementation of
maximum likelihood estimation is not straightforward. For such reasons,
it is necessary to devise other general methods of estimation, two of which
will be described in sections 3.2 and 3.3. The first involves the use of a
“coding technique” to generate a relatively simple conditional likelihood
function for the scheme. Parameter estimates are then obtained by maxi-
mizing this quantity in the usual way. However, the coding technique
necessarily ignores a substantial proportion of the information which
should be available from the sample. The second method of estimation,
which involves the maximization of an intuitively plausible pseudo-
likelihood function, is intended to partially overcome this deficiency.
Oddly enough, its current justification is in terms of the coding technique
itself. Each of the methods can easily be implemented numerically. Finally,
in section 3.4, maximum-likelihood estimation for auto-normal schemes
is described. The development is algebraically similar to the work of
Mead (1971) and Ord (1975) on simultaneous normal autoregressions,
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although the schemes are, of course, non-equivalent (see section 2.3). It
is emphasized that none of the three techniques described in the sequel
has yet been used in practice for irregularly distributed sites. They should
not be viewed uncritically!

In accordance with earlier discussion, we assume henceforth that all
schemes are locally dependent (that is, each site only has a limited number
of neighbours) and that the conditional distribution at site i is fully
specified in terms of a vector ¢ consisting of a few unknown parameters.
No assumption of stationarity or homogeneity is made. Given a realization
x, we shall, for discrete random variables, use p:(¢J) to denote the condi-
tional probability of observing x; at site i, given the values at all other sites.
For continuous variates, we shall use p;({) to denote the corresponding
probability density. The primary objective is to obtain a reasonable
estimate of ¢ from the realization x.

3.2. The Coding Technique

Although the coding technique was first introduced in the context of
regular lattice systems (Besag 1972b, 1974a), such restriction is unnecessary
and will not be assumed here. The first step is to divide up the # sites,
Sn, into two groups, the one of “dependents™ S, o, the other of “condi-
tioners”. In particular, let S»,0 denote a subset of the sites i=1,...,n,
chosen in such a way that no two members of S»,0 are neighbours. Assign
the ““colour” black to each site in Sy, 0 and white to the remainder. It is
then evident, by the very essence of the conditional probability formulation,
that the set of black-site variates, given the values at the white sites, are
mutually independent. Hence, the corresponding conditional likelihood
is obtained by multiplying together those terms p;(¢J») for which i €Sy, 0.
That is, the corresponding conditional log-likelihood function is given by
La,o(P)= 2 Inpu(P) 3.1
1€8n,0
An estimate vio of ¢ may then be found by maximizing L»,o with respect
to ¢ in the usual way. Note that this is a task of classical proportions
since the need to evaluate any awkward normalizing functions has been
obviated. It is therefore possible to carry out the maximization of (3.1)
by plugging into a standard computer algorithm.

Furthermore, provided the number of blackened sites is not too small,
classical maximum-likelihood theory (Kendall and Stuart 1967, Chapters
18 and 24) can be used to obtain the approximate conditional distribution
of v.l: and to construct conditional likelihood-ratio tests for examining
the adequacy of more restrictive schemes. Since the efficiency of the tech-
nique clearly depends upon the number of blackened sites, Sn,o will
naturally be chosen to contain as many sites as possible. Such a choice
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will not necessarily be unique. For the simplest lattice schemes, the
proportion of blackened sites may be as high as 50 per cent but, in typical
(non-lattice) geographical applications, one might expect a value nearer
30 per cent.

Experience with the coding technique has thus far been extremely
limited. Two very simple lattice examples are considered numerically in
Besag (1974a), whilst Besag and Moran (1975) discuss the efficiency of
the technique for basic auto-normal lattice schemes. These investigations
are unfortunately of little direct relevance in non-experimental situations.
In fact, as a general rule, the coding technique would seem a somewhat
inefficient procedure in the way that the white-site terms p;({) are entirely
ignored once Sy,0 has been generated. We therefore consider an alter-
native proposition.

3.3. A Pseudo-likelihood Technique

Given the previous set-up, perhaps the most naive approach to the esti-
mation of the unknown parameters in the terms p;(¢) would be to take
that vector ¢ which maximizes the quantity

Lu@= 3 Inpi#) 3.2

with respect to . Of course, Ly is not the true log-likelihood function
for the sample (except in the trivial case of complete independence) and
yet its maximization, especially in view of the coding technique, would
seem to present an intuitively plausible method of estimation. That this
intuition can be given a theoretical foundation will be seen later on. Note
that although the pseudo-likelihood technique confers the advantages
that no coding is required and that all the p-functions are used in the
maximization process, it does have the drawback that no sampling proper-
ties of the estimates are yet known. Nevertheless, one supposes that the
method will, on the whole, produce better point estimates of the para-
meters than does the coding technique.

Although maximum pseudo-likelihood estimation is intended to have
fairly widespread applicability, it is of special interest to see how it fares
with the auto-normal schemes of section 2. In particular, we suppose that

()= (2mo?) 17 exp [—%U‘z{xt—lkt— é ﬂz,f(x:—m)}z] 3.3)

so that, possibly following suitable rescaling, X; has conditional variance
o2 for each i. Observing the proposals in section 2.4, we also assume that
w=D0 and that Bi,j=hi, s, where D and H={h;,;} are known rx p and
nxn matrices, respectively; thus B=I—H¢ and 0, ¢ and o together
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constitute . It can be seen immediately from eguations (3.2) and (3.3)
that the maximum pseudo-likelihood estimates 6 and ¢ are obtained by
minimizing
Q= El {xt—m— 2 Big(xi— w)}
i=

=(x—D6)’ B%(x—D6) 3.4

with respect to 0 and ¢. That is, the technique reduces to the ordinary
method of least squares. Also, it follows from equation (3.4) that

8=(D'B2D)! D'Bx (3.5)
where B=1I—HJ, and that
$=(x—DB)’ H(x— D8)/{(x— D)’ H2(x— D)} (3.6)

This suggests finding 8 and <;§, in practice, by using an iterative procedure
of successive approximations, usually initiated by taking 95 =0. An esti-
mate of o2 is then obtained from the residual sum of squares; that is,

&2=n-1(x—DB) B2(x—D0) 3.7

The use of least squares estimators for auto-normal schemes may cause
surprise amongst the advocates of simultaneous normal autoregressions.
For it is well known (Whittle 1954; Mead 1967, 1971; CIliff and Ord
1973; Hepple 1974; Ord 1975) that, in the latter context, the use of
ordinary least squares methods leads to inconsistent parameter estimates.
As an example, suppose

n
=¢ X hi,1X;+Zi (3.8)
i=1

for i=1,...,n, where the h;,; are known coefficients, with A;,;=0. If
the Z; are'. independent normal variates, each with mean zero and variance
o2, we have a special case of the simultaneous autoregression (2.5). The
ordinary least squares estimator of ¢ is then

$=3 I, mxj/{ piy (élm,m)z} 3.9)

=1 j=1
and hence,

R Y R

However, for the simultaneous autoregression, it follows from section
2.3 that Z; is correlated with the X; in equation (3.8) and therefore we
have no reason to expect the right-hand side of equation (3.10) to tend
to zero, in probability, as » tends (conceptually) to infinity. On the other
hand, consider the analogous auto-normal scheme, for which X; has a
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conditional variance o2 and conditional mean,
n
EXi|xs, j#)=¢ X hi,ix;
j=1

with h;,;=0 and hj,1=h;,;. The least squares estimator of ¢ is again
given by (3.9) and if we now define a set of Z; by (3.8), equation (3.10)
will still hold. Moreover, although the Z; themselves now form a dependent
set, each Z; is independent of the Xj, for j#i, and the numerator in (3.10)
has mean zero. It follows that ¢—¢, in probability, as n— 0. Thus, in
the first case, ¢ is quite inappropriate as an estimator of ¢ whilst, in the
second, where ¢ of course has a different interpretation, & is at least
consistent.

We now return to the general problem of providing some mathematical
justification for maximum pseudo-likelihood estimators. The only property
which will be established is that of consistency and, as such, we shall
have to admit a conceptual passage of » to the infinite limit. How relevant
this is to spatial applications, where n is usually fixed, is a matter for
debate; for example, the imagination palls at the thought of extending the
counties of Eire to an infinite set! Nevertheless, the property of consistency
might be thought of as a minimal statistical requirement. We shall sketch
its proof; a rigorous treatment would, for example, require some considera-
tion of the system boundary as » increases.

Thus, we hypothesize a system consisting of a denumerably infinite
collection of sites, labelled by the positive integers in any convenient
manner. We assume that no site has more than » neighbours (v finite)
and then choose v+1 ““colours”, called cq, . . ., ¢,, respectively. It follows
that each site in the infinite system can be assigned one of these colours
in such a way that, firstly, no two neighbours have like colours and,
secondly, the number of sites coloured cx tends to infinity as n— oo, for
each k. In particular, consider the first # sites and let S, » denote those of
colour cx. Each fixed k then generates a coding technique which uses
Shu, 1 as “dependents” (see section 3.2) and is based upon the conditional
log-likelihood

Lo, (P)= X Inpi(¢)
1€Sn, &
In this way, we can obtain v+ 1 consistent estimators of ¢, based upon
La,o, . ..,Ln,,, respectively. Moreover, if L, denotes the logarithm of the
n-site pseudo-likelihood, as defined in equation (3.2), then

Lo($)=Ln,o()+. . .+Ln, ,(P)

and, under suitable regularity conditions, it follows that the maximization
of Ln(¢) must also lead to a consistent estimator of . Indeed, { can be
thought of as a weighted average of coding estimators.
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3.4. Maximum-likelihood Estimation for Auto-normal Schemes

Suppose we reconsider the auto-normal scheme discussed in section 3.3.
That is, in the terminology of section 2, we assume that A=1Jo2, that
w=D0 and that B=I— H¢, where D and H are known matrices and 0, ¢
and o are unknown parameters. This leads to the dispersion matrix
V= B-102 (cf. equation (2.3)) and hence a log-likelihood function given by

240, $, 0)= —3nIn 2702 +1 In | B| —1o-2(x — DO)! B(x— D)

Performing the appropriate differentiations and using circumflexes to
denote maximum-likelihood estimates, it is easily shown that

6=(D'BD)1 D'Bx (3.12)
and
82=nYx— DO) B(x— DH) (3.13)

where ﬁ=I—H$. Substituting back into (3.11), it follows that $ is
obtained by minimizing

—n11n|B|+In [n~1x'B{I- D(D’BD)~1D’'B} x] (3.14)

with respect to ¢ (cf. section 6.3 in Besag(1974b) where some expressions
have a missing n1).

Computationally, the only problem which arises in minimizing (3.14)
iteratively occurs in the evaluation of the determinant | B| at each stage.
For auto-normal schemes, in general, where B depends upon several
unknown parameters, this obstacle is likely to be prohibitive but when,
as here, B=1I— H¢, we can implement a device suggested by Ord (1975)
for use with simultaneous autoregressions. In particular, suppose that H
has eigenvalues &1, ..., é,; then

n

|Bl= 11 (1-£)

=1
This implies that, once the eigenvalues of H have been found, In |B]|
can easily be evaluated for any given value of ¢.

Finally, it is of interest to compare the least-squares estimates (3.5)
and (3.7) with those obtained by maximum likelihood, (3.12) and (3.13).
The apparent contradictions can be resolved by proving that for any
auto-normal scheme, with constant conditional variance o2,

E{(X— ) AB(X—w)}=0o%tr (4)
where A is an arbitrary »x n matrix and tr (4) denotes the trace of A4
(that is, the sum of its diagonal elements). Then it follows, for example,
that
E{(X—w) BA(X—w)}=E{(X—p) B(X—w)}=not
since tr (B)=n.
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4. Final Remarks

The previous sections have reflected some personal views concerning
spatial Markovity and its statistical analysis, my hope being that the
techniques will be of some interest in quantitative geography. It should
be borne in mind that the Markov approach is still in its infancy, with
almost all the theoretical developments appearing in the last five years
or so—indeed, one or two items have made their débuts here. However,
whilst there is therefore much scope for further mathematical excursions,
I believe that the immediate requirement is for some practical analyses
to be undertaken. This will hopefully provide a much-needed preliminary
assessment of the relevance, if any, of spatial Markovity to geographical
problems.

Finally, although this paper is concerned with the statistical analysis of
purely spatial data, it would be unrealistic to make no mention at all of
the spatial-temporal framework which is often intimately bound up with
such considerations. Firstly, spatial systems are usually generated as
instantaneous cross-sections of spatial-temporal processes, and occasion-
ally it is possible to link the two theoretically (see, for example, Bartlett
1971b, 1974; Besag 1972a, 1974b; Whittle 1962). Secondly, it may be
that data are actually available at two (or more) points in time and that
the problem is one of relating the instantaneous realizations statistically.
In such cases, it is sometimes plausible to use a classical spatial-temporal
autoregression (see, for example, Bartlett’s (1974) analysis of contagion
in hop-plants); however, this will only be relevant if the process truly has
only a discrete-time mechanism. For if the process is developing continu-
ously through time and is observed at time points ¢ and ¢+ 1, say, there
will, in general, be no reason to suppose that X;(t+1) and X;(¢+1) are
independent, given (X7). It would then be unreasonable to set up a simple
spatial-temporal model which did not allow for spatial stochastic inter-

- action (contradicting the isolated statement on spatial-temporal models
in Besag (1974a)). Such problems may be considered elsewhere; but first
the data analysis!
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