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Bias reduction of maximum likelihood estimates

By DAVID FIRTH
Department of Mathematics, University of Southampton, SO9 5NH, U.K.

SUMMARY

It is shown how, in regular parametric problems, the first-order term is removed from
the asymptotic bias of maximum likelihood estimates by a suitable modification of the
score function. In exponential families with canonical parameterization the effect is to
penalize the likelihood by the Jeffreys invariant prior. In binomial logistic models, Poisson
log linear models and certain other generalized linear models, the Jeffreys prior penalty
function can be imposed in standard regression software using a scheme of iterative
adjustments to the data.

Some key words: Asymptotic bias; Biased estimating equations; Exponential family; Generalized linear
model; Jeffreys prior; Logistic regression; Modified score; Penalized likelihood; Shrinkage.

1. INTRODUCTION
In a regular model with a p-dimensional parameter ¢ the asymptotic bias of the
maximum likelihood estimate # may be written as

b(6) = b(o) bz}:") (1-1)

where n is usually interpreted as the number of observations but may be some other
measure of the rate at which information accrues. The focus of this paper is a general
method for reducing the bias, a specific aim being removal of the O(n™") term.

Two standard approaches have been extensively studied in the literature. The computa-
tionally-intensive jackknife method (Quenouille, 1949, 1956) is very general and does
not require calculation of b,(0) for its implementation. The other standard approach
simply substitutes 6 for the unknown 8 in b 1(8)/n; the bias-corrected estimate is then
calculated as

~ by(6)

éBC=0— (1‘2)

n
Both of these methods succeed in removing the term b,(6)/n from the asymptotic bias.
The jackknife has the advantage of requiring no theoretical calculation, but this is typically
offset by a loss of precision. The estimator OBC of (1-2) is, quite generally, second-order
efficient. See, for example, Cox & Hinkley (1974, §§ 8.4, 9.2) for a discussion of both
methods.

A common feature of the two standard approaches is that they are ‘corrective’, rather
than ‘preventive’ in character. The maximum likelihood estimate 6 is first calculated,
then corrected. Quite apart from any philosophical considerations or matters of principle
that might pertain here, a practical requirement for the application of either method to
a finite sample is the existence of @ for that sample, and in the case of the jackknife for
certain sub-samples also. In practice, particularly with small or medium-sized sets of
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data, it is not uncommon that 6 is infinite in some samples; linear logistic models for a
binary response, for example, are prone to such behaviour, e.g. Albert & Anderson (1984),
Clogg et al. (1991). In such cases the jackknife and OBC estimators are bias-reducing only
in an asymptotic sense.

Motivated partly by this, we explore an approach to bias reduction which does not
depend on the finiteness of 6. A systematic correction will be developed for the mechanism
that produces the maximum likelihood estimate, namely the score equation, rather than
for the estimate itself. The modified score function is derived in § 2. Application to
exponential families in canonical parameterization is discussed in § 3, where an interesting
connection is found with Jeffreys priors. Section 4 discusses application more generally,
both to exponential families in other parameterizations and to models outside the
exponential family.

There may be connections between the results given here and work on adjusted profile
likelihood, e.g. Barndorff-Nielsen (1983), Cox & Reid (1987), but these are not pursued
in this paper. Some very recent work in this direction is mentioned in § 5.

2. MODIFIED SCORE FUNCTION

In regular problems the maximum likelihood estimate is derived as a solution to the
score equation

Vi(6)=U(6)=0,

where /(6) =log L(0) is the log likelihood function. To motivate the general development,
consider initially an exponential family model I(0) = t0 — K(6) in which 0 is scalar. Then

Ue)=1(6)=t—-K'(9),

so that the sufficient statistic ¢ affects only the location of U(#8), not its shape. Now bias
in  arises from the combination of (i) unbiasedness of the score function, E{U(0)}=0
at the true value of 6, and (ii) curvature of the score function, U”(6) 0. Clearly if U(6)
is linear in 6 then E (0) 6; but positive curvature as shown in Fig. 1, for example,
combines with the unblasedness of the score function to induce a bias in 0 in this case
in the positive direction.

The basis of the present work is the idea that the bias in 9 can be reduced by introducing
a small bias into the score function. The appropriate modification to U(#0) is given by

u(o)
U*(0)

Fig. 1. Modification of the unbiased score function.
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simple triangle geometry, illustrated in Fig. 1. If 6 is subject to a positive bias b(8), the
score function is shifted downward at each point § by an amount i(6)b(6), where
—i(0) = U’'(9) is the local gradient; this defines a modified score function

U*(6)=U(8)—i(6)b(8) (2-1)
and hence a modified estimate 6*, given as a solution to U*(68)=0. In the case of a
vector parameter, (2-1) should be read as a vector equation, in which i(8) is the Fisher
information matrix.

To formalize the heuristic argument above and extend it to problems other than
canonical exponential families, it will be convenient to employ the notation and methods
of McCullagh (1987, § 7-3) for log likelihood derivatives and their null cumulants. The
derivatives are denoted by

U.(6)=01/30", U, (68)=06"1/96"06",
and so on, where 8§ =(8',..., ”) is the parameter vector. The joint null cumulants are
k. =n"E{UU}, K., =n'E{UUU}, «.=n"E{UU.,
and so on. We note here the well-known relationships
Kys + Kys = O, Kpst + Ky st + Ks,rt + Ky rs + Krs,t = 0. (22)
Consider now a fairly general modification of the score function, of the form
U¥(0)=U.(0)+ A, (9),

in which A, is allowed to depend on the data and is O,(1) as n— 0. Suppose that 6 and
6* satisfy U(8)=0 and U*(6*)=0, and write % =n*6*—0). Then, by an argument
closely following that of McCullagh (1987, p.209), based on an expansion of U7(6*)
about the true value 6, the bias of 6* is

E(n749") = n7 k" {=k" (Kgpu+ Kon)/ 2+ a3+ O(n72),

where «k"° denotes the inverse of the Fisher information matrix «,, «, denotes the null
expectation of A, and the summation convention applies. The term

—n " kK (K T Ken)/2=1""b1(0)

is the first-order bias of 5, for example Cox & Snell (1968). The modification A, therefore
removes the first-order term if it satisfies

k" a,=—bi+0(n™?),
the solution to which is

a,=—k,bi+ o(n™).
In matrix notation, then, the vector A should be such that

E(A)=—i(0)b,(6)/n+0(n™?).

Obvious candidates for a bias-reducing choice of A are therefore A"’ =—i(6)b,(8)/n
and A‘©’ = —I(60)b,(8)/n, using expected and observed information respectively. In the
case of an exponential family in canonical parameterization the observed information
1(8) does not involve the data, so A‘>> and A’ coincide. More generally, either of these
modifications removes the O(n~") bias term. The difference between A‘®> and A, in
terms of second-order efficiency, is discussed briefly in § 4.
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3. EXPONENTIAL FAMILIES

3-1. Jeffreys prior as bias-reducing penalty function

If 6 is the canonical parameter of an exponential family model, ., =0 for all 7, s and
t. Therefore the rth element of A®)(8), or equivalently of A‘?’(0), is given by

st u,v

a, = —nKr,sbiv/n = KKK Ky, v/2 = Ku,DKr,u,v/2 = _Ku,vav/z’

using the identities (2:2). In matrix notation, this may be written as

ar=-;-tr{i_l(aa;r>} 80{ loglzw)l}

Solution of U¥= U, + a, =0 therefore locates a stationary point of
1*(6) =1(6)+3 log [i(6)|
or, equivalently, of the penalized likelihood function
L*(6) = L(8)i(6)].

The penalty function |i(0)[* here is the Jeffreys (1946) invariant prior for the problem.
The arguments of § 2 show that, for the canonical parameter of an exponential family
model, the O(n™") bias is removed by calculation of the posterior mode based on this prior.

3-2. Example: Normal distribution

Suppose that y,,..., y, is a random sample from the normal distribution with mean
w and variance o>. The canonical parameterization is 8 = {u/ o>, —1/(20°)}, with informa-
tion matrix

2 2
2uoc
i(0)= ( 5 o 4).
2uc’ 4ulo’+2o
The bias-reducing penalty function is therefore |i(8)[oc o, which yields estimates

o= {(ns;;))ﬁ’ ) 2nsZy‘3)}’

where 5 =n"' X y, and s(u) = (y; —)”. In this example, 6* is exactly unbiased for n> 3.

3-3. Example: Binomial logistic regression

The calculation and correction of bias in the maximum likelihood estimates of logistic
regression parameters have been studied by many authors, including Anderson & Richard-
son (1979), McLachlan (1980), Schaefer (1983), Copas (1988), McCullagh & Nelder
(1989, § 15.2) and Cordeiro & McCullagh (1991). If the success probability for the ith
observation is m; =exp (n;)/{1+exp (n;)}, where n;, =X x;,8,, maximum likelihood esti-
mates of the canonical parameter B are found to be biased away from the point g =0.
Bias correction, therefore, requires some degree of ‘shrinkage’ of B towards this point.

In logistic regression the information matrix is i(8) = I(8) = X" WX, where X ={x;}
is the design matrix, W =diag {m;m;(1—m;)} and m; is the binomial index for the ith
count. The determinant is maximized at m; =3 (i= ., n), that is at B =0, so the
Jeffreys prior shrinks estimates towards this point. The arguments of § 2 show that the
amount of shrinkage is that needed to remove the O(n™"') bias. It may also be shown
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that, provided X is of full rank, log|i(8)| is strictly concave and unbounded below as
B~ in any direction. This, combined with the fact that I(B) itself is strictly concave
and bounded above, ensures that the maximum penalized likelihood estimate 8* exists
and is unique.

As an illustration of this shrinkage, consider a variant of a one-parameter example
used by Copas (1988). Suppose that n; = x;8, a regression through the origin on the
logistic scale, and let x; take values in {—2, —1, 0, 1, 2}. Copas (1988) examines b,(8)/n
when 10 binary observations are taken at each of these five points and finds that, for
small B, the asymptotic bias away from zero is about 3-4% of the true value. For our
illustrative purposes, we take a much more severe case in which only one binary
observation is made at each of the five design points, so that complete enumeration is
feasible. The sufficient statistic, t =2 y,x;, has only seven possible values; note, inciden-
tally, that the observation at x; =0 contributes nothing to ¢, so is redundant in this
example. Table 1 gives B, Bsc and B* corresponding to the seven values of ¢, and also
the sampling distribution at two particular values of 8. The mean of 8* is found to be
0-46 when B = 0-5, and 0-82 when the true value is 1-0. This seems satisfactory given the
very small sample size and the large probability that 8 is infinite. Note that B =1 is a
fairly large slope in this context, implying a range of response probabilities from 0-12
to 0-88 at the five design points.

Table 1. Distribution of estimators in a small logistic regression model

Sampling
R R probabilities
t(y) B Bsc B* B=05 B=1
-3 —00 — —1-38 0-010 0-001
-2 -1-01 —-0-52 —0-68 0-034 0-006
-1 —-0-42 -0-27 —-0-31 0-084 0-023
0 0 0 0 0-185 0-083
1 0-42 0-27 0-31 0-229 0-168
2 1-01 0-52 0-68 0-251 0-305
3 o0 — 1-38 0-207 0-415

The simplest of all logistic models is that for a single binomial observation, the target
parameter being B =log {w/(1—m)}. The information is proportional to 7 (1 — ), so that
the penalized likelihood is simply

L*= ,n.y+%(1 _ 77)'"_"'+%.

Maximization of L* yields

+l
B* =log (—y . )

m—y-+;

which is familiar as the bias-reducing form of the empirical logit (Haldane, 1955;
Anscombe, 1956; Cox & Snell, 1989, § 2.1.6). For this single-sample model B* is the
maximum likelihood estimate calculated from adjusted data formed by adding 3 to y and
1 to m. The same adjustment does not produce B* in the case of a general design matrix
X, but is a special instance of a more general adjustment procedure that may be used
for calculation of B*.
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The O(n™") bias vector in general is given by McCullagh & Nelder (1989, § 15.2) in
the form

b,/n=(X"WX) ' XTWg, (3-1)
where W¢ has ith element h;(; —3) and h; is the ith diagonal element of the ‘hat’ matrix
H=WX(X"WX) ' X"W?.

Hence U* = U — X" W¢, with rth component
| U= A+ h/2) - (mi+ h)m}x, (r=1,...,p). (3-2)

Solution of U* =0 is therefore equivalent to solution of maximum likelihood equations
based on adjusted data formed by adding h;(8*)/2 to y, and h,(B*) to m,. This suggests
an iterative algorithm in which the adjustments {h;} are updated at each cycle of a
standard iteratively weighted least-squares procedure. Calculation of B* is thus made
possible in any regression software that allows both weighting of observations and access
to the leverage quantities {h;}. Implementation and properties of the algorithm are
discussed by Firth (1992a, b).

Rubin & Schenker (1987) and Clogg et al. (1991) suggest adjustments that are in a
similar spirit, but different from the ones just described. Their adjustment is noniterative,
but does not take account of differences among the leverages {h;}, and shrinks estimates
towards the mean rather than toward zero; it does not remove the O(n~') bias. A
comparative study would be useful.

3-4. Other generalized linear models

The argument given above for logistic regression may be extended to any generalized
linear model, with canonical link or otherwise, using formula (15.4) of McCullagh &
Nelder (1989) for the vector ¢ in (3-1). In the canonical link case the general form of
the modified score function, of which (3-2) above is a special case, is

Y. (ﬁ)hix,», (r=1,... ,.p),

K

1
2¢

where k,; is the tth cumulant of y; and ¢ is the usual dispersion parameter. Thus, for
example, in a Poisson log linear model where x,=u; (t=1,2,...),

l]:‘< =Zi {(Y.+h,/2) _,U'i}xir (r=1,... ,p),

and B* can be computed by iteratively making adjustments of {h;/2} to the counts {y,}.
In the case of the normal distribution, k;; =0: maximum likelihood estimates in normal
linear regression are unbiased, so no adjustment is made.

Uf=U+

4. OTHER MODELS

4-1. Modified score function
We now discuss application of the results of § 2 in a more general setting that includes
exponential family models in noncanonical parameterization, as well as nonexponential
models.
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The modified score function in this general setting has the form U#* = U, + A,, where
A,(0) is based either on the expected information,

A, = AP =1k, k'K (Ko + Kiwo)/ (21)
= K“’U(Kw,v+ K,,u,,)/Z, (4'1)
or on the observed information,
A=A = —Uk®' k" (Ko + Kiu)/ (20).

Intuition suggests that estimates derived using A!” may be preferable in terms of
efficiency. To explore this further, consider an expansion of U*(6*) about 6. By definition,

0=U¥6*)=U,(6%)+A,(6%).
If A,(0)=A'?(8)=U,(0)b3(8)/n, we have that

(6%*—6)" =—bi(8)/n+0,(n7?), (4-2)
while, if A,(8)=A¥)(0)=—i (0)b5(6)/n,
(6% —8)"=—b}(0)/n—i"(0){Uy(8) +i,(6)}b3(8)/n+ O,(n7?). (4-3)

The difference Us,(é )+ is,(é ) between expected and observed information at the maximum
likelihood estimate is Op(n_i) in general, e.g. Pierce (1975), so that the extra term in
(4-3) is O,(n™*?). In the special case of a full exponential family model, with any
parameterization, this term vanishes.

From (4-2) it may be concluded that if U * is calculated using the observed information
function, 0* agrees with 6y to second order. This is not the case if expected information
is used, unless the model is a full exponential family. Thus both forms of U* yield
estimators that are first-order efficient, and the results of Efron (1975) show that both
forms are second-order efficient in full exponential family models. In curved exponential
families and more generally, use of the modification A‘®) involves a second-order loss
of precision relative to use of A‘?.

There follow some simple examples to illustrate the approach.

4-2. Example: Normal distribution

Here we re-consider the example of § 3-2 in the more familiar (u, o°) parameterization.
For convenience, denote o by ¢. The score vector has components

U,=(.—nw)/¢, U,=s(u)/(2¢*)—n/(2¢),
so the observed and expected information matrices are
=( n/é (v~ )/ & ) i=(”/"’ 0 )
(r.—nw)/¢* s(p)/¢>—n/(26%)) 0 n/(2¢?)
The remaining quantities required for calculation of U™ are
KH-,H-,¢‘ = 1/(¢2)3 Kd),d),qb = l/¢3a K}L,}L¢ = _1/(¢2)9 K¢,¢¢ = _1/¢3’

K i = Ko, = Ky = K up = K g = K g, = 0.

The two alternative modifications to U(u, ¢) are calculated as

AP =0, AP =1/(2¢),
AP =0, AL =s(u)/(nd>)—1/(2¢).
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Solution of U + A‘®) = 0 gives ¢* = s(7)/(n — 1), while the alternative equation U+ A‘?’ =
0 yields ¢*=(n+2)s(y)/{n(n+1)}. The first of these estimators is, of course, exactly
unbiased. In accord with the arguments of § 4-1, both estimators are second-order efficient,
with variance 2¢*(n+1)/n*+ O(n™>).

4-3. Example: Reciprocal mean of a Poisson distribution

Suppose that y,,..., y, are drawn independently from the Poisson distribution with
mean u, and interest is in ¢ =1/u. This could arise, for example, in connection with
analysis of count data from a Poisson process, where ¢ is the mean inter-event time.

In this problem we have

U=n/¢>-y/¢, I=2n/d>-y/d? i=n/¢’,

and the maximum likelihood estimate is ¢ =1/7 with asymptotic bias ¢>/n+ O(n~3).
The two alternative modifications to the score function are calculated as

AP (p)=—-1/¢, AP($)=7-2/¢.
The first of these yields

1
y+1/n’

¢* =

while the second gives

% = {n{y‘+2/n—x/(y'2+4/n2)}/(2y‘) (7>0),
n/2 (7=0).

Both of these estimators are finite for all samples, have bias that is O(n~?), and are
second-order efficient with variance 1/(nu®)+2/(n’*u*)+0(n73).

4-4. Example: Normal distribution with known coefficient of variation

The N(u, cu’) distribution, in which c is known, is perhaps the most tractable instance
of a curved exponential family, and has been studied by Efron (1975) and Hinkley (1977)
among others. For simplicity, consider the case ¢ =1. The score function for x from a
random sample y,,..., y, is

with expectation i(u) =3n/u’. The asymptotic bias calculation in this case yields b,(u) =
—2u/9. Bias-reducing modifications to U(u) are therefore

A®(u)=2/(p),

A () = (9 -'>(6Zy —@—@)
M
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Use of A‘®) corresponds to using (n—3) in place of n; while from (4-2), use of A‘? is
approximately equivalent to multiplication of & by 1+2/(9n).

Since this is not a full exponential family model, the discussion of § 4-1 indicates that
use of A®) will not be second-order efficient. Straightforward but tedious calculation
yields that

L_ 2
3n 81n?

var (;2)=,u,2{ +O(n'3)},

and that use of A‘® to reduce bias adds 12u?/(81n?) to the variance, while use of A®’
adds 36u%/(81n%). In this example, bias reduction is variance-inflating, and A‘®’ inflates
the variance by approximately three times as much as does A‘?.

4-5. Example: Precision of duplicate measurements

This is a severe case of an example discussed by Neyman & Scott (1948), in which
the number of parameters increases with n and the maximum likelihood estimate is
inconsistent. Suppose that {y:k=1,...,K;j=1,2} are drawn independently from
normal distributions with E(y;) = u, and var (yu) = o’. Here ¢ = o is of interest and
M1, ..., ug are incidental parameters. The maximum likelihood estimate of ¢ is

dA’ __Zk Z (yjk )’k)

which has expectation ¢/2 for all values of K and probability limit ¢/2 as K - co.
We now calculate modification (4:1) to the score function for this problem. Using
index k to stand for w,, we have that

K
) 24)
K¢’¢=2¢2a Kk’k=K¢ (k:l’,,.,K),

U, = 222 (yjk ,U«k) Uc=(y.x —2ux)/ b,

and all other k™ are zero. It may be verified that formula (4-1) now yields
AP =K/(2¢), AF =0 (k=1,...,K),
so that U¥ = U, for all k, and
Uj= —54‘27)22 % (e = )’

The resultant estimate ¢* is 2$, which is exactly unbiased and consistent. Note that the
‘profile’ modified score function,

K
2¢ 2d>
in this case is the same as the marginal score function based on the statistic £ = (y; — 7).

The use of A‘? in place of A‘® here also yields a consistent, though not unbiased,
estimate of ¢.

U, uh) = 222 (Ve = 7%,
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This problem may alternatively be considered in the canonical parameterization, (6, A)
say, with

0=-1/120%), A=u/0”> (k=1,...,K).
The Jefireys prior is found to be proportional to o“*?, so that

0*=—(K-2)/12YY (yu—7)°h

which again is consistent for 6, and exactly unbiased if K > 2.

5. DISCUSSION

It has been shown how, in regular problems, the O(n™") bias may be removed from
the maximum likelihood estimator by introduction of an appropriate bias term into the
score function. If the target parameter is the canonical parameter of an exponential
family, the method simply penalizes the likelihood by the Jeffreys invariant prior. For
other parameterizations of exponential family models, and for nonexponential families,
a choice is available between corrections using observed and expected informatuion.
Outside exponential family models, use of the expected 1nformat10n results in a loss of
second-order efficiency.

It is not an assumption of this work that bias reduction is always desirable. The merits
of bias reduction in any particular problem will depend on a number of factors, including
the skewness of the maximum likelihood estimator and any sacrifice in precision that
might result; in the N(u, u®) problem of § 4-4, for example, it was found that bias
reduction inflates the -asymptotic variance by, at best, 12u>/(81n%)+ O(n ), which is
approximately three times the reduction in squared bias. The choice of parameter is
crucial in this respect. In binomial logistic regression, for example, reparameterization
to the mean-value parameters {7, =% mywx;: r=1,..., p} yields a maximum likelihood
estimator that is unbiased without any correction. However, the distribution of 7 is
typically far from normal, so unbiasedness on the 7 scale is not necessarily of great value.
The distribution of the regression coefficients ﬁ is usually closer to normality, and
moreover the ‘shrinkage’ effect of bias reduction brings with it a reduction in variance
(Copas, 1988). In logistic regression, then, bias reduction on the scale of the canonical
parameters seems desirable.

Nothing has yet been said in this paper about standard errors and confidence regions
based on bias-reduced estimates. The first order asymptotic covariance matrix of 6* is
the same as that of 0 namely i "'(6), and this can be used in the usual way for providing
standard errors. A study of the second-order term and its implications for inference
would be useful. R

In the examples of §§ 3-3, 4:3, 6* was found to exist in any finite sample, whereas 6
has positive probability of being infinite. It is not known in precisely what range of
problems 6* can be guaranteed finite, and a systematic study of this aspect would be
valuable.

A special role for the Jeffreys prior has been indicated previously by Welch & Peers
(1963) and Hartigan (1965), though from rather different perspectives. Use of the Jeffreys
prior as a bias-reducing penalty function in exponential family problems, as in the present
paper, is discussed also in a 1991 Habilitationsschrift, ‘Statistical problems with many
parameters: critical quantities for approximate normality and posterior density based
inference’, by Dr W. Ehm at the University of Heidelberg.
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In the example of §4-5, with an increasing number of parameters, the standard
assumptions underlying the asymptotic development in § 2 fail to hold, so the success
of the bias-reducing modification to U is somewhat surprising. The example is, however,
very special. In other problems of this type, such as the binary matched pairs problem
(Breslow, 1981), it is found that the O(1) bias is greatly reduced, but not completely
eliminated, by adjustment of the score function as described in § 2; details are in an
unpublished technical report available from the author. An extensive discussion of
connections between bias reduction and approximate conditional inference in problems
with many parameters is given in the aforementioned report by W. Ehm.
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