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A Boltzmann machine is a classic model of neural computation, and a
number of methods have been proposed for its estimation. Most meth-
ods are plagued by either very slow convergence or asymptotic bias in the
resulting estimates. Here we consider estimation in the basic case of fully
visible Boltzmann machines. We show that the old principle of pseudo-
likelihood estimation provides an estimator that is computationally very
simple yet statistically consistent.

1 Introduction

Assume we observe a binary random vector x ∈ {−1,+1}n, and we want to
model its probability distribution function by

P(x) = 1
Z(M, b)

exp
(

1
2

xT Mx + bT x
)

. (1.1)

The parameter matrix M = (m1, . . . , mn) has to be constrained in some way
to make it well defined, because M and MT give the same probability
distribution, and the diagonal elements of M do not interact with x at all.
We choose the conventional constraint that M is symmetric and has zero
diagonal. The vector b is an n-dimensional parameter vector. This is a special
case (“fully visible,” that is, no latent variables) of the Boltzmann machine
framework (Ackley, Hinton, & Sejnowski, 1985).

The central problem in the estimation is that we do not know the constant
Z(M, b). In principle, Z is given by the sum:

Z(M, b) =
∑

ξ∈{−1,+1}n

exp
(

1
2
ξT Mξ + bTξ

)
, (1.2)

whose computation is exponential in the dimension n. Thus, for any larger
dimension n, direct numerical computation of Z is out of the question.
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For continuous-valued variables, we could use score matching (Hyvärinen,
2005), but here we have binary variables.

Maximum likelihood estimation of the model is not possible without
some kind of computation of the normalization constant Z, also called
the partition function. Typical methods for maximum likelihood estima-
tion are thus computationally very complex (e.g., Markov chain Monte
Carlo, MCMC, methods). Different kinds of approximation methods have
therefore been developed, including pseudolikelihood (Besag, 1975), con-
trastive divergence (Hinton, 2002), and linear response theory (Kappen &
Rodriguez, 1998). None of these approximative methods has been shown
to be consistent. Our contribution here is to show that pseudolikelihood is
consistent, and it is closely connected to contrastive divergence.

2 Pseudolikelihood of the Model

In pseudolikelihood estimation (Besag, 1975), we consider the conditional
probabilities P(xi |x1, . . . , xi−1, xi+1, . . . , xn; θ ), that is, conditional probabil-
ities of the random variable given all other variables, where θ denotes the
parameter vector. Let us denote by x/∈i the vector with xi removed,

x/∈i = (x1, . . . , xi−1, xi+1, . . . , xn), (2.1)

and the logarithms of the conditional probabilities by

Ci (xi ; x/∈i , θ ) = log P(xi |x/∈i , θ ). (2.2)

We then estimate the model by maximizing these conditional probabilities
in the same way as one would maximize ordinary likelihood. Given a
sample x(1), . . . , x(T), the pseudolikelihood (normalized as a function of
sample size by dividing by T) is thus of the form

JPL(θ ) = 1
T

T∑
t=1

n∑
i=1

Ci (xi (t); x/∈i (t), θ ). (2.3)

Consistency of the pseudolikelihood has been thoroughly investigated for
Markov random fields (see, e.g., Gidas, 1988, and Mase, 1995). However,
there seem to be few results for the basic case of a random vector.

It is easy to compute the pseudolikelihood for the model in equation 1.1.
We have

P(xi |x/∈i , M, b) = exp(xi mT
i x + bi xi )

exp(mT
i x + bi ) + exp(−mT

i x − bi )
, (2.4)
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which gives

Ci (xi |x/∈i , M, b) = xi mT
i x + bi xi − log cosh(mT

i x + bi ) − log 2, (2.5)

and thus, for a given sample x(1), . . . , x(t) of T observations,

JPL(M, b) = 1
T

T∑
t=1

n∑
i=1

xi (t)mT
i x(t) + bi xi (t)

− log cosh(mT
i x(t) + bi ) + const., (2.6)

where the constant does not depend on the parameters.

3 Consistency Proof

We now proceed to prove the consistency of the maximum pseudolikeli-
hood estimator obtained by maximization of JPL with respect to the param-
eters.

The natural starting point is to analyze the point where the gradient
of JPL with respect to the parameters is zero. The point of true parameter
values is one such point, as shown in the following proposition:

Proposition 1. Assume data are generated by the distribution in equation 1.1
for parameters m̃i j and b̃i . Then the gradient of JPL is zero at mi j = m̃i j , bi = b̃i .

Proof. We first compute the derivative of the pseudolikelihood with re-
spect to mi j , i �= j :

∂ JPL

∂mi j
= 1

T

∑
t

xi (t)xj (t) − xj (t) tanh(mT
i x(t) + bi ) (3.1)

A well-known property of Boltzmann machines is that

E{xi |x/∈i } = exp(m̃T
i x(t) + b̃i ) − exp(−m̃T

i x(t) − b̃i )
exp(m̃T

i x(t) + b̃i ) + exp(−m̃T
i x(t) − b̃i )

= tanh(m̃T
i x + b̃i ).

(3.2)

At the point where the parameters have the true values, the derivative thus
becomes

∂ JPL

∂mi j
(M̃, b̃) = 1

T

T∑
t=1

xj (t)(xi (t) − E{xi (t)|x/∈i (t)}). (3.3)
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Now, by the basic properties of conditional expectations, xi − E{xi |x/∈i },
which is the residual in the best prediction of xi given x/∈i , is uncorrelated
from x/∈i and thus of xj .1 Thus, we have in the limit of T → ∞,

∂ JPL

∂mi j
= E{xj }Exi {xi − E{xi |x/∈i }} = E{xj } × 0, (3.4)

because the expectation of the residual is zero: Exi {E{xi |x/∈i }} = E{xi }. Thus,
the gradient with respect to mi j is zero. As for the bi , we obtain

∂ JPL

∂bi
= E{xi } − E

{
tanh

(
mT

i x + bi
)}

, (3.5)

which is zero by the same logic. We have proven the proposition.

We still have to make sure that this critical point is really the global
maximum of pseudolikelihood. For this end, we have to make the following
assumption. Denote by x̄T = (x1, . . . , xn, 1)T an augmented data vector. We
assume

E
{(

qT x̄
)2

cosh−2 (
mT x + b

)}
> 0 (3.6)

for any vector q ∈ R
n+1 of nonzero norm, and for any m ∈ R

n and b ∈ R.
This is not a very strong assumption because, obviously, the expectation is
always nonnegative (cosh is a positive function). Basically, the expectation
could be zero only in some pathological cases.

Now we use the concavity of JPL, which is possible due to the following
proposition:

Proposition 2. Assuming equation 3.6 and in the limit of an infinite sample,
JPL is strictly concave with respect to the vector consisting of the elements of M
and b.

Proof. Since a sum of strictly concave functions is still strictly concave, we
can consider each term in the sum with respect to i separately. Each such
term is a function of [mi , bi ] only. So we only have to prove that

J i (mi , bi ) = E
{

xi mT
i x + bi xi − log cosh

(
mT

i x + bi
)}

(3.7)

1 In general, we have for any two random variables x, y:
Ex,y{(E{y|x} − y)x} = ∫

x

∫
y(

∫
y′ p(y′|x) y′ dy′ x − xy) p(x, y)dxdy = ∫

x(
∫

y′ p(y′|x) xy′ dy′)
(
∫

y p(x, y)dy)dx − ∫
x

∫
y p(x, y)xy dydx. Since

∫
y p(x, y)dy p(y′|x) = p(x, y′), the two terms

are equal, and the difference is zero.
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is strictly concave. The Hessian of J i with respect to mi equals

Hmi JPL = −E
{
xxT cosh−2 (

mT
i x + bi

)}
. (3.8)

The second derivative with respect to bi equals

−E
{

cosh−2 (
mT

i x + bi
)}

, (3.9)

and the cross-derivatives equal

∂ J i

∂mi∂bi
= −E

{
xT cosh−2 (

mT
i x + bi

)}
. (3.10)

Collecting these in a single matrix, we see that the total Hessian equals

H[mi ,bi ] J i = −E
{
x̄x̄T cosh−2 (

mT
i x + bi

)}
, (3.11)

which is, by our assumption in equation 3.6, negative-definite for any values
of the parameters. A function whose Hessian is always negative-definite is
strictly concave. Thus, we have proven the strict concavity of JPL.

This leads us finally to the theorem

Theorem 1. Assume equation 3.6. Then the pseudolikelihood estimator is (glob-
ally) consistent for the model in equation 1.1.

Proof. A strictly concave function defined in a real space has a single maxi-
mum. If the function is differentiable (as JPL here), the maximum is obtained
at the point of zero gradient. This would seem to prove the theorem. How-
ever, we have one additional complication because M is constrained to be
symmetric and to have zero diagonal. This is actually not problematic since
it means only that the optimization is constrained to a linear subspace. The
restriction of a strictly concave function on a linear subspace is still strictly
concave. Also, since the gradient is zero for the true parameter values, the
projection of the gradient is zero for the true parameter values. Thus, the
restrictions of symmetricity and zero diagonal do not change anything. So
we have proven that in the limit of an infinite sample, the pseudolikelihood
is maximized by the true parameter values alone. This implies the theorem.

4 Gradient Algorithm

Let us briefly consider how pseudolikelihood can be computationally maxi-
mized. The simplest way of maximizing the pseudolikelihood is by gradient
ascent. The relevant gradients were already given above. However, since
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M is constrained to be symmetric and to have zero diagonal, the gradient
has to be projected on this linear space. Thus, we compute the symmetrized
gradient,

D(m̂i j ) = 1
2

JPL

∂mi j
+ 1

2
JPL

∂m ji
, (4.1)

where the derivatives are given in equation 3.1 and evaluated at the current
estimates for the parameters. We then update the current estimates m̂i j , for
i �= j only, using this projected gradient in a gradient ascent step:

�m̂i j = µD(m̂i j ) for all i �= j, (4.2)

where µ is a step size. As for the bi , we can use the gradient directly and
update

�b̂i = µ
∂ JPL

∂bi
, (4.3)

where the derivative is given in equation 3.5.
The algorithm we have given here is a batch algorithm, using the whole

sample to calculate the pseudolikelihood. Online variants are easy to con-
struct as well.

5 Connection to Contrastive Divergence

Contrastive divergence (Hinton, 2002) is an approximation of MCMC meth-
ods. It consists of two related ideas: first, we fix the initial values in the
MCMC method to be equal to the sample points themselves, and second,
we take a small number of steps in the MCMC method—perhaps just one.
This is a general framework that can be applied on nonnormalized mod-
els with continuous-valued or discrete-valued variables and also in latent
variable models.

We shall here prove that for the model in equation 1.1, contrastive diver-
gence is equivalent to pseudolikelihood if we use single-step Gibbs sam-
pling, which is the most basic setting.

In the general MCMC setting, the expectation of the gradient of mi j , i �= j
is given by Ackley et al. (1985),

�mi j = Êxi xj − EMxi xj , (5.1)

where Ê denotes the expectation over the sample distribution and EM

denotes the expectation over the distribution given by the model with
current parameter values.
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In contrastive divergence, the expected gradient update for mi j is given
by

�mi j = Êxi (t)xj (t) − Ê EG(k)xi (t)xj (t), (5.2)

where EG(k) means the expectation under the distribution given by one
step of Gibbs sampling on the kth variable, that is, replacing xk(t) by a
random variable that follows the conditional distribution of xk given all
other variables. In the simplest random update sheme, the index k is a
random variable that has uniform distribution over the indices 1, . . . , n.
Note that there are two different methods called contrastive divergence
defined in Hinton (2002): one based on an objective function and the other
based on an approximative gradient of that objective function. Here, we
consider the latter because it is the one to be used in practice.

As above, the expectation of the conditional distribution can be com-
puted as

EG(i)xi (t) = tanh
(
mT

i x(t) + bi
)

(5.3)

while EG(k)xi (t) = xi (t) for k �= i . Now, in the second term on the right-hand
side of equation 5.2, there is a probability of (n − 2)/n that the index k is not
equal to i or j . Then the Gibbs sampling has no effect and can be ignored.
With probability 1/n, k equals i , and with the same probability, it equals j .
Thus, equation 5.2 equals

�mi j = Êxi (t)xj (t) − n − 2
n

Êxi (t)xj (t)

− 1
n

Ê tanh
(
mT

i x(t) + bi
)
xj (t) − 1

n
Êxi (t) tanh

(
mT

j x(t) + bi
)

= 2
n

[
Êxi (t)xj (t) − 1

2
Ê tanh

(
mT

i x(t) + bi
)
xj (t)

− 1
2

Êxi (t) tanh
(
mT

j x(t) + bi
)]

. (5.4)

As for the parameters bi , we obtain in a similar way

�bi = Êxi (t) − ÊEG(k)xi (t) = Êxi (t) − tanh
(
mT

i x(t) + bi
)
. (5.5)

As the gradient step size in contrastive divergence is typically taken
from a sequence that converges to zero fast enough, the convergence of
contrastive divergence is given by the point where the expected gradient
is zero. Now, the expected gradients in equations 5.4 and 5.5 are equal (up
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to some insignificant multiplicative constants) to the corresponding sym-
metrized gradients of the pseudolikelihood. So the two methods converge
in the same points.

The convergence of contrastive divergence (the same gradient version as
we analyzed here) was analyzed in Carreira-Perpiñán and Hinton (2005),
with the conclusion that contrastive divergence is asymptotically “biased”
for the model in equation 1.1. This discrepancy with our results is due to
the difference of the definition of biases. In Carreira-Perpiñán and Hinton
(2005), the bias was computed as the Kullback-Leibler divergence between
the distributions given by the model when the estimated parameters for
contrastive divergence or likelihood are used. Thus, their conclusion was
that contrastive divergence gives, in general, a different estimate from like-
lihood. However, they also noted that the difference disappears (asymp-
totically) if the data are really generated by the model, which is the case
we consider here. Different variants of contrastive divergence that always
give the same estimate as maximum likelihood were further developed in
Carreira-Perpiñán and Hinton (2005). (See also Welling & Sutton, 2005, for
related work.)

6 Simulation Results

We performed simulation to validate the different estimation methods for
the fully visible Boltzmann machine. We created random matrices M so
that the elements had independent normal distributions with zero mean
and standard deviation of .5. The parameters bi were randomly generated
from the same distribution. The dimension n was set to 5, which is small
enough to enable exact sampling from the distribution, which is important
in order to be able to reliably validate the estimation results.

We generated data from the distribution in equation 1.1 and estimated the
parameters using maximum pseudolikelihood for various sample sizes: 500,
1000, 2000, 4000, 8000, and 16,000. We also estimated the parameters using
ordinary likelihood for comparison; exact computation of the maximum
likelihood estimator was possible due to the small dimension. For each
sample size, we created five different data sets and ran the estimation once
on each data set using a random initial point. For each estimation, the
estimation error was computed as the Euclidean distance of the real matrix
[M, b] and its estimate. Finally, we took the mean of the logarithms of the
five estimation errors.

The results are shown in Figure 1. The maximum pseudolikelihood es-
timator seems to be consistent in the sense that the estimation error seems
to go to zero when the sample size grows, as implied by our theorem. Sur-
prisingly, its estimation errors are not really larger than that of ordinary
maximum likelihood. Actually the errors are almost identical; they seem to
depend more on the random parameters generated than on the method.



Pseudolikelihood Estimation of Boltzmann Machines 2291

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

 2.6  2.8  3  3.2  3.4  3.6  3.8  4  4.2  4.4

Figure 1: The estimation errors of maximum pseudolikelihood/contrastive di-
vergence (solid line) and maximum likelihood (dashed line). Horizontal axis:
log10 of sample size. Vertical axis: log10 of estimation error.

7 Conclusion

We have shown that pseudolikelihood, a rather old estimation princi-
ple (Besag, 1975), provides a consistent estimator for the fully visible
Boltzmann machine. This estimator turns out to be a special case of
contrastive divergence. The literature on Boltzmann machines does not
seem to have paid much attention to pseudolikelihood estimation so
far.

We considered the fully visible case only, because that is where pseu-
dolikelihood estimation can be directly applied. Extensions to hidden vari-
ables are an important subject for future work and have been partly ad-
dressed in work on contrastive divergence (Carreira-Perpiñán & Hinton,
2005).
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