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S

Let n S-valued categorical variables be jointly distributed according to a distribution known

only up to an unknown normalising constant. For an unnormalised joint likelihood expressible as

a product of factors, we give an algebraic recursion which can be used for computing the normalising

constant and other summations. A saving in computation is achieved when each factor contains

a lagged subset of the components combining in the joint distribution, with maximum com-

putational efficiency as the subsets attain their minimum size. If each subset contains at most r+1

of the n components in the joint distribution, we term this a lag-r model, whose normalising

constant can be computed using a forward recursion in O(Sr+1 ) computations, as opposed to O(Sn )
for the direct computation. We show how a lag-r model represents a Markov random field and

allows a neighbourhood structure to be related to the unnormalised joint likelihood. We illustrate

the method by showing how the normalising constant of the Ising or autologistic model can be

computed.

Some key words: Autologistic distribution; Gibbs distribution; Ising model; Normalising constant; Partition
function; Markov chain Monte Carlo.

1. I

High-dimensional summations occur in finding normalising constants for, and marginalising

over, discrete probability distributions. The direct evaluation of these sums becomes intractable

for nontrivial problems. We propose an application of forward recursion to these summations for

what we call general factorisable models, which make problems of useful size tractable.

A number of techniques have been proposed for estimating the normalising constant (Ogata &

Tanemura, 1981; Penttinen, 1984; Younes, 1989; Moyeed & Baddeley, 1991; Geyer & Thompson,

1992; Jerrum & Sinclair, 1993; Gelman & Meng, 1998; Huang & Ogata, 1999; Gu & Zhu, 2001).

A direct method for evaluating the autologistic normalising constant for a lattice with cylinder

boundary conditions and a small number of rows has also been presented in previous work (Pettitt

et al., 2003).

Here we present a direct summation generalised from the principal of forward recursion, com-

monly applied to the computation of posterior distributions in product form arising from hidden

Markov models (Scott, 2002). The technique is applicable to lattices with a small number of rows,

up to about 20, and computational time increases in direct proportion to the number of columns.

We consider a joint probability distribution for discrete random variables y= (y1 , . . . , yn )
such that the unnormalised probability distribution can be written as a product of terms

q
i
(y
i
, y
i+1

, . . . , y
i+j
). We call this a general factorisable model. We find computationally efficient

recursions for summing over the state space for such a model, and apply them to the computation
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of the normalising constant. This factorised definition of the joint probability is fundamentally
related to the conditional independence of neighbourhood structures and, with suitable indexing,
applies to any discrete Markov random field. The initial motivation for the development is the
study of the autologistic distribution on the lattice.

2. A   

2·1. Recursion for a general factorisable model

Let a general unnormalised probability distribution for a discrete-valued vector y be given by
q(y). Let the components of y be ordered in such a way that

q(y)=q1 (y1 , y
2
, . . . , y

r+1
)q
2
(y
2
, y
3
, . . . , y

r+2
) . . . q

k
(y
k
, y
k+1

, . . . , y
n
) (1)

is a valid factorisation of q(y), where r<n and k=n−r. We call this a lag-r model, so that a
lag-0 model would correspond to independent y

1
, . . . , y

n
. With the notation that the vector

( y
i
, y
i+1

, . . . , y
j
) is denoted by yj

i
, the normalising constant Z is given by

Z=∑
y

q(y)= ∑
yn
k+1

∑
y
k

q
k
(yn
k
) ∑
y
k−1

q
k−1

(yn−1
k−1

) . . .∑
y
1

q
1
(yr+1
1

), (2)

and this can be evaluated recursively as follows. Let

Q
1
(yr+1
2

)=∑
y
1

q
1
(yr+1
1

), (3)

Q
t
(yr+t
t+1

)=∑
y
t

q
t
(yr+t
t

)Q
t−1

(yr+t−1
t

) (t=2, . . . , k). (4)

Then the normalising constant is given by

Z= ∑
yn
k+1

Q
k
(yn
k+1

). (5)

Since there are k=n−r+1 recursions in (3) and (4), with q
t
( . ) evaluated Sr+1 times at each, the

recursion is performed in O{(n−r+1)Sr+1} computations, with an additional O(Sr ) computations
in the final summation (5), where each y

i
can take one of S possible values.

Equation (3) provides the unnormalised marginal probability distribution for yn
2
by finding

Q
1
(yr+1
2

)q
2
(yr+2
2

) . . . q
k
(yn
k
),

while Q
t
(yr+t
t+1

) from (4) when multiplied by q
t+1

(yt+r+1
t+1

) . . . q
k
(yn
k
) gives the unnormalised marginal

distribution for yn
t+1

. Note that no probabilistic interpretation need be given to the functions q
i
( . )

in (1). The method is essentially an algebraic method, and the exact factorisation is arbitrary,
though ordering y to minimise the lag r reduces the computational complexity. In exponential
models, the factorisation can be easily made by assigning terms to the appropriate functions q

i
( . ),

as we illustrate in § 3 with the autologistic model. The model is motivated if we note that, given
yi+r−1
i

, then yi−1
1
and yn

i+r
are conditionally independent, lending the model to specialisation for

time series and spatial data. When r=1, these recursions correspond to the so-called forward
recursions defined for hidden Markov models, see for example Zucchini & Guttorp (1991), with
y
i
being the state of a Markov chain with S states, at time step i.

2·2. A general factorisable model as a Markov random field

A Markov random field on a set of nodes {1, . . . , n} is defined by conditional probabilities for
each node that depend only on a subset of the remaining nodes. This subset of the remaining nodes
constitutes the neighbourhood of the node. The lag-r general factorisable model defines a Markov
random field with the neighbourhood determined by N

j
={ j−r, . . . , j−1, j+1, . . . , j+r}, where

N
j
is the neighbourhood of node j. For a first-order Markov random field on a rectangular

lattice, we require the lag r to be equal to the smaller of the number of rows and the number of
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columns. The neighbourhood of a first-order Markov random field is a subset of N
j
. Thus a first-

order Markov random field on an m×n lattice is a special case of the more general lag-r model
with r=min(m, n). Similarly, a second-order Markov random field on a rectangular m×n lattice
requires r=min(m, n)+1, and once again the neighbourhood is a subset of the full general
factorisable model neighbourhood.
The full conditionals are easily picked out from the factorised form of the joint probability,

p(y
j
|y
−j

)3q(y
j−r

, . . .y
j
) . . .q(y

j
, . . .y

j+r
),

and the conditional normalising constant is trivially obtained by the sum over y
j
.

2·3. Backward recursion

The stochastic backward recursion, see for example Scott (2002), can be generalised to the
general factorisable model, to produce the joint likelihood in terms of a product of conditional
probabilities,

p(yn
1
)=p(yn

k+1
)p(y
k
|yn
k+1

)p(y
k−1
|yn−1
k

) . . .p(y
1
|yr+1
2

). (6)

Once the normalising constant has been found through forward recursion, the probabilities in the
product of conditionals are given by

p(yn
k+1

)=
1

Z
Q
k
(yn
k+1

),

p(y
i
|yi+r
i+1

)=
q
i
(yi+r
i

)Q
i−1

(yi+r−1
i

)

Q
i
(yi+r
i+1

)
(i=2, . . . , k),

p(y
1
|yr+1
2

)=
q
1
(y1+r
1

)

Q
1
(yr+1
2

)
.

This result is obtained by recognising that p(y
i
|yn
i+1

) is proportional to p(yn
i
), which can be obtained

by marginalising p(yn
1
) over yi−1

1
. An additional summation over y

i
provides the conditional

normalising constant, and the product Z−1q
k
(yk+r
k

) . . .q
i+1

(yi+1+r
i+1

) cancels from numerator and
denominator.
Bartolucci & Besag (2002) also present a recursive algorithm for directly computing the likelihood
of aMarkov random field, in the form of a product of conditional probabilities. While the Bartolucci
& Besag algorithm is similar in spirit to the recursions presented here, the details are quite different.
They employ a conditional probability lemma which allows them to build up the terms of the
recursion from the full conditionals. When applied to an autologistic lattice with r rows, the two
methods have much the same order of computational complexity, with our method increasing with
O(Sr+1 ), while Bartolucci & Besag give an upper bound of O(Sr+2 ) for their method. This is
consistent with Bartolucci & Besag reporting working with autologistic lattices with up to 12
rows or columns, which our algorithm extends by several rows or columns. We have found that
normalising constants for autologistic lattices of 20 rows can be computed feasibly with a desktop
PC, though, in Markov chain Monte Carlo algorithms where the normalising constant is computed
repeatedly, this makes for rather slow iterations. Markov chain Monte Carlo for the parameters
of autologistic lattices with 15 rows is however relatively painless.
An advantage of our method is that the full cycle of forward and then backward recursion is
not required for normalising constant computations, which require only the forward recursion.
Thus the conditional probabilities of (6) do not need to be computed, as they would be if the
Bartolucci & Besag algorithm were used for finding the normalising constant. This would be an
advantage, for example, in Markov chain Monte Carlo algorithms for autologistic parameter
estimation, where the ratio of normalising constants must be evaluated at each proposal for the
parameter values. While not significantly altering the computational complexity and hence com-
putation time, it does simplify the programming task, which may be an advantage in these cases.
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2·4. Permuting the index for minimum lag

The problem of finding the minimum lag index is equivalent to permuting the rows of a sparse
matrix in order to concentrate nonzero entries around the diagonal. Methods for doing this are
well established, including the reverse Cuthill–McKee algorithm (George & Liu, 1981, p. 58). As
an illustration, suppose we have the product

q(y
1
, y
7
, y
9
)q(y
2
, y
4
, y
8
)q(y
3
, y
5
, y
7
)q(y
4
, y
6
, y
8
).

This can be represented as a 4×9 matrix, with each row constructed from a function q( . ), by
placing a 1 in the columns corresponding to the indices of each argument, and 0 elsewhere. For
example, the first row corresponding to q(y1 , y7 , y9 ) has a 1 in columns 1, 7 and 9. Rows of zeros
are then added to produce a square matrix. The reverse Cuthill–McKee algorithm, as, for example,
implemented in the Matlab function symrcm, gives the index permutation

(9�1, 1�2, 7�3, 3�4, 5�5, 2�6, 8�7, 4�8, 6�9),

resulting in the product with permuted indices,

q(y
2
, y
3
, y
1
)q(y
6
, y
8
, y
7
)q(y
4
, y
5
, y
3
)q(y
8
, y
9
, y
7
).

With the permutation, a lag-8 model has been reduced to a lag-2 model.
By definition of a suitable indexing scheme, optimised in this way, the lag-r general factorisable

model can be applied to irregular arrays and neighbourhood structures arising, for example, from
polygonal regions of a geographical map.

3. A       

Let y be binary with y
i
µ{−1, 1}, and defined on a rectangular lattice, with m rows and

n columns. Let the index iµ{1, 2, . . . , mn} be ordered from top to bottom in each column, from
left to right. Then the unnormalised likelihood for the autologistic model is given by

q(y|h)=exp{h
0
V
0
(y)+h

1
V
1
(y)}. (7)

For a first-order neighbourhood model defined with free boundaries we define the abundance
statistic, V0 , and the association statistic, V1 , as

V
0
= ∑
mn

i=1
y
i
,

V
1
= ∑
n−1

j=0
∑

(j+1)m−1

i=jm+1
y
i
y
i+1
+ ∑
n−2

j=0
∑
(j+1)m

i=jm+1
y
i
y
i+m

. (8)

The two terms in the association statistic V1 are then simply the within-column interactions
between neighbours and the between-column interactions. As a result of the interaction between
neighbours in adjacent columns, we note terms of the form y

i
y
i+m
in (8), indicating that a lag of

r=m is the minimum possible. The exponentiated terms of (7) are then distributed amongst the
functions q

i
( . ). There is no unique way of doing this, but the exact method is immaterial. We adopt

the method illustrated in Fig. 1. The first between-column interaction term from V1 , all the V1
interaction terms within the first column and all the V0 terms up to and including y

m+1
are allocated

to q1 ( . ). Subsequent functions q
i
( . ) add the additional within-column and between-column terms

involving y
i+m
to the product, and the additional term y

i+m
from V0 . In the case where subscript

i corresponds to the top row of the lattice, there is no within-column term for that particular q
i
( . ).

Then

q
1
(y
1
, y
2
, . . . , y

m+1
)=expAh0 ∑m+1

i=1
y
i
+h
1
∑
m−1

i=1
y
i
y
i+1
+h
1
y
1
y
m+1B ,

q
i
(y
i
, y
i+1

, . . . , y
i+m

)=exp{h
0
y
i+m
+h
1
(y
i+m−1

y
i+m
+y
i
y
i+m

)},
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Fig. 1. The allocation of the autologistic terms to
the factors q

i
( . ) of the joint distribution. Terms from

V0 corresponding to y
i
are shown as circles. Terms

from V1 corresponding to within-column association,
y
i
y
i+1
, are shown as vertical lines. Terms from V1

corresponding to between-column association, y
i
y
i+m
,

are shown as horizontal lines. Dashed lines show how
these terms are grouped into factors.

for i=2, . . . , mn−m, except that, when i corresponds to the top row of the lattice, that is
i=km+1, where kµ{1, 2, . . .n−2},

q
i
(y
i
, y
i+1

, . . . , y
i+m

)=qtop ( . )=exp(h0yi+m+h1yiyi+m ).

The normalising constant is then found by application of (3), (4) and (5), with r=m.

4. D

Many datasets used in spatial statistics are small enough to have their normalising constants
computed directly by the algorithm we propose, thus eliminating the need to use inefficient approxi-
mations such as the pseudolikelihood or importance sampling in maximum likelihood estimation
or Bayesian inference for the autologistic parameters, as in, for example, Huffer & Wu (1998).
We expect that, in particular, spatial analysis of binary and categorical data that exhibit spatial
clustering of categories will be advanced by our approach. For example, Green & Richardson
(2002) apply a hierarchical model based on a hidden Markov random field to epidemiological
data. To overcome the problem of computing the normalising constant for a Potts model, they
precompute it on a discrete set of parameter values, using the path sampling approach of Gelman
& Meng (1998), an approach followed by Low Choy in her 2001 Ph.D. thesis from the Queensland
University of Technology. A prior probability distribution is constructed to limit the association
parameter to the same discrete set of values. The technique we have proposed could be used to
reduce or eliminate the stochastic variability in their normalising constant estimation, either directly
or in combination with path sampling along the lines of Friel & Pettitt (2004).
The method we propose can be viewed as a complementary approach for Markov random fields
to that of Bartolucci & Besag (2002), defining them in terms of joint probabilities, instead of
conditional probabilities. Whereas the approach of Bartolucci & Besag applies, in theory, to any
probability model, it presupposes that the full conditionals are compatible with a valid joint
distribution. For conditionals that are not derived from a known, though possibly unnormalised,
joint distribution, compatibility must be checked; see for example Casella (1996) and Arnold et al.
(2001). Indeed, one method for checking compatibility would be to execute the Bartolucci & Besag
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algorithm for all possible recursive sequences, checking that the same valid joint distribution results
in each case. Just such an approach, based on similar recursive use of Bartolucci & Besag’s Lemma 1,
was suggested by Meng (1996). Kaiser & Cressie (2000) consider the question of defining Markov
random fields with arbitrary conditionals, and give necessary and sufficient conditions which such
conditionals must fulfil. Their method, which relaxes the requirement of positivity, is based on
checking for permutation invariance in the indices of clique-associated terms of the Gibbs potential.
In either case, checking for compatibility is a nontrivial computational task, avoided at risk of
invalid statistical inference from a conditionally specified model.
Our method, starting with the unnormalised joint density, avoids questions of compatibility.
However, it provides no advantage without a valid lag-r factorisation. Such a factorisation arises,
for example, from the local neighbourhood structure of a Markov random field, and it is the
associated reduction in dependence we exploit to produce efficient recursions. While the general
factorisable model still applies if cylindrical or toroidal boundary conditions are imposed, the lag
of the resulting model after index permutation can be much increased over the free-boundary case.
In these cases, the Bartolucci & Besag algorithm may prove more useful.
Finally, we note that the generalised recursions we have proposed are also applicable to
marginalisation of hidden partially ordered Markov models (Cressie & Davidson, 1998), which
generalise the Markovian dependence structure to a directed acyclic graph.
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