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Exponential convergence of Langevin 
distributions and their discrete 
approximations 
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In this paper we consider a continuous-time method of approximating a given distribution .ir using the 
Langevin diffusion dL, = dW, + $Vlog~(L,)dt .We find conditions under this diffusion converges 
exponentially quickly to .ir or does not: in one dimension, these are essentially that for distributions 
with exponential tails of the form ~ ( x )  m 0 < P < co,exponential convergence occurs if e ~ ~ ( - ~ l x l ' ) ,  
and only if P > 1. 

We then consider conditions under which the discrete approximations to the diffusion converge. 
We first show that even when the diffusion itself converges, naive discretizations need not do so. We 
then consider a 'Metropolis-adjusted' version of the algorithm, and find conditions under which this 
also converges at an exponential rate: perhaps surprisingly, even the Metropolized ve~sion need not 
converge exponentially fast even if the diffusion does. We briefly discuss a truncated form of the 
algorithm which, in practice, should avoid the difficulties of the other forms. 

Keywords: diffusions; discrete approximations; geometric ergodicity; Hastings algorithms; irreducible 
Markov processes; Langevin models; Markov chain Monte Carlo; Metropolis algorithms; posterior 
distributions 

1. The Langevin method for Markov chain Monte Carlo methods 

There has recently been a real explosion in the use of the Hastings and Metropolis 
algorithms, which allow simulation of a probability density ~ ( x )which is known only up 
to a factor: that is, when only T(x ) /T (~ )is known. This is especially relevant when T is the 
posterior distribution in a Bayesian context: see Besag and Green (1993), Besag et al. 
(1995), Mengersen and Tweedie (1996), Roberts and Tweedie (1996), Smith and Roberts 
(1993) and Tierney (1994) for a variety of approaches and properties of such methods, and 
their applications in statistical modelling. 

*To whom correspondence should be addressed. 
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The class of Hastings-Metropolis algorithms is very broad. As a consequence, the user is 
often faced with a choice between a 'plain vanilla' algorithm such as the random walk 
Metropolis algorithm, where the candidate dynamics are chosen to be those of a random 
walk, independently of the target distribution, and a more 'shaped' candidate distribution, 
designed for the particular T in the problem. The former is easy to implement, and it can be 
demonstrated that the random walk algorithm has rather robust theoretical properties. A 
more problem-specific algorithm may converge more rapidly. 

We will be concerned here with one such class of algorithms. Langevin algorithms, which 
are derived from diffusion approximations, use information about the target density (in the 
form of the gradient of log T) to construct such a problem-specific proposal distribution. 
We study the convergence properties of these algorithms; and as a precursor to this, we 
consider the convergence properties of the diffusions themselves, which have recently been 
suggested as a continuous-time method of approach to this simulation problem (see 
Grenander and Miller 1994). 

In this paper, our main aim will be to study geometric convergence properties of these 
algorithms. For a discussion of some of the stability properties enjoyed by geometrically 
ergodic chains in simulation, which motivate our evaluations, we refer the reader to 
Roberts and Tweedie (1996). We note, for example that such chains have central limit 
theorems and the like available, which makes it much easier to assess the algorithms. 

One particularly important consequence of our work is that, whereas the genuinely 
continuous-time processes often perform well on large classes of target densities, the 
situation is much more delicate for the approximations which would be used in practice. In 
particular, naive discretizations of the continuous-time models may lose not only the 
geometric rates of convergence but also all convergence properties, even for quite standard 
densities T. We indicate a truncated and 'Metropolized' form of the discretization which, in 
practical circumstances, will avoid such rather surprising pathologies. 

We do not consider here the problem of how to choose the scaling of such discrete 
approximations to diffusions. This problem is considered in Roberts and Rosenthal 
(1995a). 

In order to describe the approach, it is useful to outline the standard construction of the 
Hastings and Metropolis algorithms (see Metropolis et al. 1953; Hastings 1970). These first 
consider a candidate transition kernel with densities q(x, y) ,x,y E X, which generates 
potential transitions for a discrete-time Markov chain evolving on X. Here we will generally 
think of X as a subset of IRk equipped with the Bore1 o-field 9l,and both ~ ( y )  and q(x, y) will 
be densities with respect to Lebesgue measure pLeb, although more general formulations are 
possible. 

A 'candidate transition' to y generated according to the density q(x, .) is then accepted 
with probability a(x ,  y), given by 

Thus actual transitions of the Hastings chain, which we denote by a,, take place according 
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to a law P with transition probability densities 

P(X, Y) = 4%y)ff(x,Y) ,  Y # x, 

and with probability of remaining at the same point given by 

With this choice of cu we have that T is invariant: that is, satisfies T(A) = 
J ~ ( x ) P ( x ,A)dx, x E X, A E a.Provided the chain is suitably irreducible and aperiodic, it 
is then standard (Meyn and Tweedie 1993a, Chapter 13; Roberts and Smith 1994) that the 
n-step transition probabilities, defined for each n 2 1 by Pn(x,  A) = P(@, E A]@,,= x), 
x E X, A E a ,  converge to T in the total variation norm: that is, for T-almost all x 

In this paper we consider special forms of the density q based on the Langevin diffusion 
model below, and find conditions leading to geometric convergence in (4): in the cases 
where q(x, y) = q(lx - yl) (the Metropolis algorithm) this has been addressed in Mengersen 
and Tweedie (1996) and Roberts and Tweedie (1996) and our results for the Langevin- 
based models can be compared with those. 

Other recently proposed algorithms such as hybrid-Monte Carlo algorithms (see, for 
example, Neal 1994), are related to the class of Langevin algorithms, although in this paper 
we will content ourselves with a detailed study of the simplest kind of Langevin algorithm, 
constructed from the natural reversible diffusion process. Methods induced by non-
reversible diffusion can certainly be analysed similarly to those considered in this paper, 
and will suffer similar problems caused by sensitivity to the tails of the target density. 
However, it is worth remarking that often methods induced by non-reversible methods can 
be shown to converge more quickly than their reversible counterparts (see, for example, 
Sheu 1992). 

1.2. THE LANGEVIN DIFFUSION 

The form of the candidate density which we study is derived from the Langevin dzffusion, 
which is itself constructed so that in continuous time it converges to T under suitable 
regularity conditions. In principle this should be a good choice of q, since even before being 
'Metropolized' using (I), the candidate chain approximates one with stationary distribution 
T. The improvement in using this algorithm rather than a simple random walk candidate is 
also considered in Roberts and Rosenthal (1995b), from different perspectives. 

We assume that T is everywhere non-zero and differentiable so that V l o g ~ ( x )  is well 
defined. Then the Langevin diffusion L, is defined by the k-dimensional stochastic 
differential equation 

dL, = dW, + ;V log ~ ( L , ) d t ,  

where W, is k-dimensional standard Brownian motion. When T is suitably smooth, it can be 
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shown that L,  has .rr as a stationary measure, and also that 

l I P t ( ~ l . )-41 + 0 (5) 

for all x ,  where here P t ( x ,  A )  = P(L,  E AILo = x ) ,  t 2 0: we give details in Section 2.1. 
We will be interested in when the convergence in (5) is exponentially fast, and also in 

when such exponential convergence occurs for higher moments of the process: this last can 
be seen as a useful byproduct of our approach. 

1.3. EXPONENTIAL EXAMPLES 

Our results are probably most easily demonstrated by considering the following examples, 
which we use repeatedly. 

1.3.1. The one-dimensional class &(P, y )  

Suppose .rr is one-dimensional. We will say that .rr E &(P, y )  if for some xo, and some 
constants y > 0 and 0 < /3 < m ,  .rr takes the form 

so that for 1x1 > xo 

v log ~ ( x )= -yp sgn ( x )  1x1~-'  (7) 

We will also assume that T is smooth enough for 1x1 5 xo so that any assumptions on 
differentiability are satisfied, although in practice we expect that these can be avoided in 
specific examples. 

Then we shall see in Section 2.3 that the diffusion L, converges to .rr exponentially quickly 
when .rr E b(P,y )  if and only if P > 1: that is, if and only if the tails of .rr are no heavier than 
exponential. This is exactly similar behaviour to the symmetric or random walk algorithm 
as shown in Theorem 3.5 of Mengersen and Tweedie (1996). 

1.3.2. The multidimensional exponential class 9, 

For higher-dimensional models we consider the exponential family 9, introduced and 
studied in the context of the random walk Metropolis algorithm in Roberts and Tweedie 
(1996), and consisting of sufficiently smooth densities with the form (at least for large 1x1) 

where p is a polynomial of degree m of the following type. Decompose p as 

where qm-l is a polynomial of degree 5 m - 1, so that p, consists of the full-degree terms in 
p. Then we say that T E 9, if p,(x) + m as 1x1 +m:  this is a positive definiteness 
condition, and we note that this condition requires that m 2 2. 
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We will see that there is exponential convergence of the multidimensional diffusion if 
.ir E 9,. This behaviour is identical to that exhibited by the multidimensional random walk 
algorithm, as shown in Roberts and Tweedie (1996). 

1.4. DISCRETE APPROXIMATIONS TO L, 

In practice, of course, one implements a discrete approximation to the diffusion L,, and we 
will also consider when such discrete approximations converge to T, and when they do so 
geometrically fast. Two different 'h-approximations' are defined below for fixed h > 0: we 
shall see in Section 3 that the more naive approximation (ULA) may not even converge for 
light-tailed T (that is, when P > 2 in b(P,y)), and certainly need not always converge 
geometrically; and the Metropolized algorithm (MALA), although it must converge, can 
fail to do so geometrically quickly even when the diffusion itself converges at an exponential 
rate. 

1.4.1. The unadjusted Langevin algorithm 

The unadjusted Langevin algorithm (ULA) is a discrete-time Markov chain U, which is the 
natural discretization of the ordinary Langevin diffusion L,. Any naive algorithm using (1 1) 
below might be constructed in this way, as in Parisi (1981) or Grenander and Miller (1994). 
We shall see that the algorithm may have some undesirable convergence properties, 
although since its implementation may involve less computational expense than some of 
its more robust alternatives, it may still have practical merit. 

To form this chain, given U,-l, we simply construct U, according to 

As noted by Besag (1994), this chain only approximately maintains the invariance of .ir : as a 
graphic example, if .ir is itself N(0, 1) on R, then when h = 2, we have each U, -N(O,2) so 
that clearly if the discretization step h is this coarse then we get immediate 'convergence', 
but to a quite unintended distribution. 

We show below in Section 3 that the ULA chain may in fact behave quite badly: for 
example, it may converge but not geometrically quickly even when the original diffusion is 
exponentially ergodic, or quite startlingly it may actually be a transient chain even though 
L, has a very well-behaved invariant distribution. 

1.4.2. The Metropolis-adjusted Langevin algorithm 

Following Besag (1994), we therefore introduce a further modification, and follow the 
structure in (1) and (2) to construct a Metropolis-based Langevin algorithm (MALA). This 
is a Hastings-Metropolis chain M, which uses ULA to construct the candidate chain. Thus 
U, given M,-I is first taken as a variable distributed as 
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Call this proposal density q(M,-, ,U,). Now carry out an acceptlreject step, accepting U, 
with probability 

If U, is accepted then set M, = U,, otherwise, let M, = MnP1. 
By the Hastings construction as in (2) and (3), the MALA chain converges to T, in the 

sense that 

llPh(x,-1 - TI1 - 0 (11) 

for T-almost all x where we write P&(x, A) = P(M, E AIMo = x): this follows since the 
chain is clearly pLeb-irreducible and aperiodic from Roberts and Tweedie (1996). As a 
minor but useful by-product of our results we show that in the geometrically ergodic case 
the convergence also holds from all starting points. 

Our interest is again in finding conditions under which convergence in (1 1) occurs 
geometrically quickly and from every starting point. We will prove that (roughly speaking) 
when ULA is transient MALA is not exponentially ergodic; but that it is geometrically 
ergodic otherwise unless the tails of the target density are heavier than exponential. 

1.4.3. The Metropolis-adjusted Langevin truncated algorithm 

Finally, we mention briefly a simple adjustment to the algorithm which is designed to try to 
capture the best properties of both the random walk Metropolis algorithm, and the 
'targeted' Langevin candidate ULA. We call this MALTA (the Metropolis-adjusted 
Langevin truncated algorithm). This revised algorithm involves replacing the first ULA 
approximation by choosing the truncated candidate distribution 

Tn WMn-1 + R(Mn-11, hlk), (12) 
where the drift term is now 

DV log n(x) 
R(Mn)= 2(D V V log a(x) 1) 

for some constant D > 0. The candidate jump T, is then adjusted to ensure the correct 
stationary distribution holds, as in (10). 

With MALTA, the chain has much more robust geometric ergodicity properties. We do 
not pursue a detailed analysis of MALTA, merely pointing out that the methods employed 
in this paper and in Roberts and Tweedie (1996) are readily transportable to the analysis of 
this algorithm. 

2. Exponential convergence of the Langevin diffusion algorithm 

2.1. GENERAL CONVERGENCE RESULTS 

In this section we apply convergence properties of general diffusions to the Langevin 
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diffusion. For the concepts of pLeb-irredu~ibility,aperiodicity and small sets, the reader 
should see Meyn and Tweedie (1993b). 

Theorem 2.1. Suppose that Vlog ~ ( x )is continuously dzfferentiable and that, for some 
N , a , b  < m, 

Then the Langevin diffusion L, satisfies the following: 

(a) The dgusion is non-explosive, pLeb-irreducible, aperiodic, strong Feller and all compact 
sets are small. 
(b) The measure .rr is invariant for L and, moreover, for all x, 

Proof. Under (14) a simple comparison argument, comparing IL,I with an appropriate 
Ornstein-Uhlenbeck process, demonstrates that the radial component of L, is non-
explosive. It follows that L, is also non-explosive. From the conditions on .rr and the 
constant diffusion coefficient we then have that the diffusion drift is locally bounded. 
Therefore the chain is pLeb-irreducibleand strong Feller, by a straightforward extension 
(which is possible by non-explosivity)of Theorem 2.1 of Bhattacharya (1978), which is due 
to Stroock and Varadhan. The strong Feller result plus the irreducibility gives that all 
compact sets are small (see Tweedie 1994, Theorem 5.1). The aperiodicity is then obvious 
since all skeleton chains are also pLeb-irreducible. 

Under these conditions it follows that .rr is invariant for L, from Section 5.4 of Ikeda and 
Watanabe (1989), that is, .rr is invariant for P,since by construction it is invariant for the 
generator of the Langevin diffusion given by 

d Lf (x) = ( i V  log.rr(x))Vf(x) +1V2f (x) (16) 

for any twice continuously differentiablefunctionf .  (These functions form a distribution-
determining class for a non-explosive diffusion.) 

Since the process has a stationary distribution it is at least recurrent, from Tweedie (1994, 
Theorem 2.3), and the continuity of the sample paths ensures that this extends to Harris 
recurrence. The total variation norm convergence in (15) then follows from Meyn and 
Tweedie (1993b, Theorem 6.1) for all x, and we have the result. 

The operator d L ,  over a domain that contains at least all functions satisfying (16), is 
easily checked to be the extended generator of L, as described in Davis (1993). For our 
purposes we do not need the exact form of the domain, but merely the form (16) of dL. 

Note that (14) is certainly not necessary for non-explosivity. However, it should be 
appropriate for virtually all commonly encountered target densities. 

The limiting result (15) is basically the result that justifies the use of the Langevin diffusion 
model: the drift on this diffusion is specifically designed to ensure convergence to T .  We 
now turn to new results in this area that ensure that the limit is exponentially fast. 
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2.2. EXPONENTIAL ERGODICITY OF L, 

We will use the following approach for exponential ergodicity (see Meyn and Tweedie 
1993b; Down et al. 1995). When V 2 1 is a measurable function on X, we define V-uniform 
ergodicity by requiring that for all x 

0 )IIPt(., - .I1 v 5 V(x)Rpt, t 2 0, (17) 

for some R < m ,  p < 1, where 

for any signed measure A. As is shown in Meyn and Tweedie (1993b), this strong form of 
exponential ergodicity is in fact implied (for some V 2 1) by the seemingly simpler 
requirement that 

for some R x  < co,p < 1 and all x. 
We will use relationships between geometric ergodicity, 'exponential recurrence' and the 

existence of an exponential form of 'drift function' equation involving the generator of the 
process. Many more of these are given in Meyn and Tweedie (1993b), Down et al. (1995), 
and the full force of (17) is described there in detail. These results, in this specific case, give 
us the following theorem. 

Theorem 2.2. Suppose that L, satisjies the conditions of Theorem 2.1. 

(a) The Langevin diffusion L, is V-uniformly ergodic for any twice continuously dzfferenti- 
able V 2 1, such that 

d L V  5 -cV + b l c  (19) 

for some constants b ,  c > 0, andsome compact non-empty set C ,where the functional operator 
dLis defned as in (16).  

(b) I f  the Langevin dzfusion is exponentially ergodic in the sense that (18) holds, then for 
some compact non-empty set C there exist constants K > 1,S > 0, such that 

sup E [ K ' ~ ]  < m 
x E C  

where 

7: = infit 2 S : L, E C) 

for any x E X. 

Proof. Recall that a set C is small if there exists a positive constant E, an integer no and a 
probability measure v such that 

P" (x, .) 2 EV(.). 
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Since C is small, (a) follows from Theorem 5.2 of Down et al. (1995) or Theorem 6.1 of 
Meyn and Tweedie (1993b): note that since the chain is non-explosive from Theorem 2.l(a) 
above, we do not need V to be 'normlike' as in that theorem. 

To see (b), note that if (18) holds, then any 6-skeleton is also geometrically ergodic. The 
hitting time on C for the 6-skeleton is at least as large as 7: and since any compact non-
empty C is small for the skeleton because L, is strong Feller, we have that (20) follows from 
Theorem 15.0.1 of Meyn and Tweedie (1993a). 

We now use these results to classify the behaviour of L, in much more concrete terms. 

Theorem 2.3. Suppose there exists S > 0 such that I.rr(x)l is bounded for 1x1 2 S.  Then a 
suficient conditionfor the Langevin difsusion L, to be exponentially ergodic is that there exists 
0 < d < 1 such that 

lim inf(1 - d)lV log.rr(x)12+ V2log ~ ( x )> 0. 
1x1+c.2 

Proof. To use Theorem 2.2(a), we try the test function V = .rr-d for some fixed 0 < d < 1. 
Then 

2 d L V= v ( I v ~ o ~ T ~ * ( ~ ~- d )  - dV210g.ir). (23) 

Since V is bounded away from zero for large 1x1 by hypothesis, it is sufficient for (19) that 
(22) holds for the chosen d. 

In the other direction we can show the following: 

Theorem 2.4. If IV log ~ ( x )I -+0, then L, is not exponentially ergodic. 

Proof. Suppose that L, is exponentially ergodic. Then from Theorem 2.2(b) there exists a 
compact set C such that (20) holds. Choose R large enough so that IV log ~ ( x )I L 2(logK ) ' ~ ~  
for 1x1 2 R, and fix 

S 2 sup 1x1v R. 
x € C 

Now consider TC = T: for starting points lyl 2 2s .  Also define the radial process for 
L,, 2,= lLtl which satisfies the stochastic differential equation 

for some standard Brownian motion W, and a drift coefficient a(-) satisfying 
a(L, > -(logn)li2 for /L,I > S. So if B, denotes W,- (logn)li2t, and a(X) denotes the 
first hitting time of S by any process X, then o(Z)2 a(B) almost surely. Therefore, 
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where @ denotes the standard normal distribution function, and the final inequality follows 
from the Bachelier-LCvy formula (see, for example, Lerche 1986). Denoting the density of 
a(B)by f ,  it is therefore easy to check that 

which contradicts (20). Therefore the process is not exponentially ergodic. 

For distributions .rr with essentially exponentially decreasing 'tails' the results above give a 
fairly thorough classification of the behaviour of the Langevin algorithm. 

2.3.1. The one-dimensional class b(P,y) 

Let us apply these results to the class of densities b(P, y)given by (6). As in (7), we have that 

(1 - d)lV log.rr(x)12 + v2logr(x) = (1 - d )a2,02~2P-2aP(P- 1)xPP2.-

Therefore: 

(a) for 1 5 /3 < m,  the diffusion is exponentially ergodic by Theorem 2.3; 
(b) for 0 < ,Ll< 1, IV log .rr(x) 1 + 0 so that, by Theorem 2.4, the diffusion is not 

exponentially ergodic. 

This mimics exactly the behaviour found in Section 3 of Mengersen and Tweedie (1996) for 
Metropolis algorithms in one dimension: the exponential convergence is governed by the 
tails of the target density, and occurs if and only if those tails decrease at least exponentially 
quickly. We remark that there are a number of ways in which the Langevin diffusion can be 
considered to be the weak limit of an appropriate sequence of Metropolis algorithms (see, 
for example, Roberts et al. 1994). 

2.3.2. The multidimensional class 9, 

For higher-dimensional models our results are not as complete. We consider the exponen- 
tial class 9,introduced in (8). 

Now, it is easy to show that, by the positive definiteness condition, 

lim inf ~vlogr(x)12 = m 
1x1 -02 1v2log 7r(x)I 

and 

liminf(1 - d ) I Vlog.rr(x)12> 0 
1x1'02 

for all 0 < d < 1. Exponential convergence of the Langevin diffusion for all .rr E 9, 
therefore follows from Theorem 2.3. 
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Continuing to follow the type of example contained in Roberts and Tweedie (1996), we 
examine the situation where .ir has the exponential form (8), but where the positive 
definiteness condition does not hold. Specifically, consider such a two-dimensional density 
where 

2 2 2  2p(z,y) = a z  + z  y + y  . 
Note that here the dominant term is z2y2, which does not go to co along either of the 

2rays (z, 0) or (0,y). Now, lvp12= 4z2(a+ y2)2+ 4y2(1+ z212, and V p = 

2(a + 1 + z2+ y2). Hence lvp12will dominate v2(-p) except along the coordinate axes. 
Setting y = 0, therefore, we find that if 2(1 - d ) a 2> 1 for some 0 < d < 1, then we can 

ensure exponential convergence by Theorem 2.3: hence a > 1 / f i  is sufficient for expon- 
ential ergodicity. 

In contrast, other polynomials failing to satisfy the positive definiteness condition of 9, 
above will never satisfy the hypothesis of Theorem 2.3: consider, for instance, 

which can never achieve (22) along the ray y = 0. Hence, if we are to show that such models 
are exponentially ergodic, some other method of proof needs to be found. 

3. The unadjusted Langevin algorithm 

3.1.CONVERGENCE OF ULA 


The naive way to implement the diffusion algorithms in practice is to use the unadjusted 
Langevin algorithm (ULA): that is, use a first-order Gaussian approximation to the 
diffusion distributions on a grid of size h and construct 

as in Parisi (198 1). 
This is easily seen to be pLeb-irreducible and weak Feller, provided Vlog.rr(x) is 

continuous, and hence, as in Chapter 6 of Meyn and Tweedie (1993a), all compact sets 
are small, and it suffices for geometric ergodicity from Theorem 15.0.1 of Meyn and 
Tweedie (1993a) to find a function V 2 1 such that for some compact set C and some 
A <  l , b < c o ,  

Note that this is the discrete version of (19). 
Under some circumstances the discrete approximation is well behaved and under others 

it is not. We will only describe the range of behaviour when the chain is on R rather than in 
higher dimensions: since the ULA is only an approximation, and since it can be shown to 
converge in general to a stationary distribution which is not .rr, there is a limit to the extent of 
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our interest in the rate of such convergence. However, it is the simple and natural 
discretization and thus its behaviour warrants careful analysis. 

Conditions under which the chain can be evaluated are mostly easily described when, for 
some fixed d,  the limits 

lim t h~ log T ( X ) X - ~= ~ d +  
X ' 0 2  

and 

lim i h v  ~ o ~ T ( x ) ~ x I - ~= S; 
X' -02 

exist. Clearly the results below can easily be extended to other situations where ~ d f ,S; are 
replaced by lim sup or lim inf in appropriate combinations, and where the exponent d varies 
for positive and negative x. 

Theorem 3.1. The ULA chain U, or R is geometrically ergodic gone of thefollowing holds: 

(a) for some d E [0,I),  both ~ d +< 0 and Sd > 0 exist; 
(b)for d = 1, both S$ < 0 and S; > 0 exist and 

Proof. In the first instance for (a), consider d =0. We compare the ULA model with a 
random walk [0,oo) for positive x:  the result follows by symmetry for negative x. 

We have that, if W 1is an N(0,h)  variable, then, for all large enough positive Uo= x ,  

U , = U o + S x +  W, ,  

where Sx E ( S i  - E ,  ~ d ++ E )  and E is small enough that 0 > + E. We can then show, 
exactly as in the argument in Meyn and Tweedie (1993a, pp. 318-319), that for some 
sufficiently small s the function V ( y )= eSylsatisfies (29), and geometric ergodicity follows. 

For d E ( 0 , l )the argument is virtually identical. The mean increment at x is now even 
more negative, with the new mean position being approximately x + s , f x d ;nevertheless, 
since d E (0,I) ,  for large enough x this will still be sufficiently positive that the truncation 
approximations needed to emulate the proof above still go through, and we omit details. 

For (b), note again that, for large Uo > xo > 0, we can write 

u1= Uo[1+ Sx]+ W l, 
while for Uo < -xo < 0 we have 

U1= Uo[l- Bx]+ W l  

where now S, E (Sd+- E, S$ + E )  < 0,Bx E (S; - E,  S i  + E )  < 0 and this time we choose 
E such that ( 1  + Sx )(1 -B,) < 1 ,  which is possible from (32). 

Now, rather than the random walk, the analogue we use in this case is the SETAR (self-
exciting threshold autoregression) model in nonlinear time series. Following the proof of 
Proposition 11.4.5 of Meyn and Tweedie (1993a) (see also Meyn and Tweedie, 1993a, p. 
505), let us choose V ( x )= ax , x  > xo and V ( x )= blxl,x 5 - x o  Then we have that (29) 
again holds because of (32), and so the chain is again geometrically ergodic. 



353 Convergence of Langevin dzfusions 

The interesting case in (b) is perhaps not when sd+E (-2, O), Sd E (0,2), for then both 
negative and positive sides of the algorithm behave like simple autoregressions; rather, it is 
when one of the values (say, s;) is strictly less than -2, so that from the positive side one 
makes a long negative jump; but then the next value satisfies (32) and so compensates either 
by drifting back towards zero like a positive-coefficient simple autoregression or by making 
a jump back over the origin while being centred around a smaller absolute value than the 
initial point, after these two steps. 

Thus we have that geometric ergodicity is possible in a range of cases of ULA. 
Conversely, we can show that in selected cases the ULA chain is not geometrically 

ergodic, and, of rather more concern, may not even be ergodic at all. We illustrate this with 
two different results. 

Theorem 3.2. (a) The ULA chain on JR is ergodic but not geometrically ergodic if,for some 
d E (-1,0), both ~ d +< 0 and S i  > 0 exist. 

(b) The ULA chain on JR is not ergodic, and is indeed transient, if, for some d > 1, both 
sd+< 0 and S; > 0 exist, or if,for d = 1, both sd+< -2 and Si > 2 exist. 

Proof. The second, transient, case (b) is rather obvious, although disturbing. When d = 1, 
from a large positive value of x the next position is approximately (1 + S;)X < -x, and 
then the next oscillation is to a positive but still more extreme value, and so on; while for 
d > 1 and x sufficiently large the same pattern repeats but more strongly. Again the formal 
verification follows the proof of transience for the SETAR model: see Meyn and Tweedie 
(1993a, p. 222). 

The other case (a) requires rather more subtlety. 
To see the chain cannot be geometrically ergodic, we use Theorem 15.0.1 of Meyn and 

Tweedie (1993a). Note first that, for large x, from Uo = x the expected increment is 
approximately s i x d  --t 0, x --t oo. Thus for any E > 0, there is a large enough xo that the 
mean next step is to the right of x - E when we start above xo. From x 2 xo the ULA chain 
is therefore always stochastically larger than a random walk with increments N(-E, h), at 
least until the first time to hit the set Co = (-oo, x o )  The time taken by the random walk to 
hit Co is also correspondingly longer than that of a Brownian motion with constant drift 
- ~ / h ,  since the random walk can be viewed as the embedded h-skeleton of the Brownian 
motion. Finally, since E is arbitrary we can use the Bachelier-Levy formula as in (24) to 
show that these hitting times do not have exponential tails. So none of the chains above are 
geometrically ergodic. 

And yet, in this case the ULA model is indeed ergodic. We take V(x) = x 2  in the Foster 
drift criterion (see, for example, Meyn and Tweedie 1993a, p. 262) to show this: following 
the argument in Lamperti (1963), and being careful with truncations, we see that ergodicity 
will follow if, writing pk(x) = E[(Un+l- U , ) ~ ~ U ,= x], we can show 

2 ~ ~ 1  I -E, (33)(x) + P ~ ( x )  

for large enough x > 0 and some E > 0 (with a symmetric drift for negative x). But now 
we have that for d E (- 1, O), 2xp1 (x) = 2s;x which is increasingly large and negative, 
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while p2(x)"N h + [sd+xd12--ih, for large x. Thus ergodicity is indeed maintained in this 
model. 

Note that if, for d = 0, we have Sdf = 0 or S i  = 0, then by the same proof there can be no 
geometric ergodicity. Depending on finer structure, one may find that the chain is ergodic 
from a condition such as (33); or conversely, is not ergodic if the mean drift becomes very 
quickly close to zero, so the chain behaves too closely like a zero-drift random walk. 

Clearly other behaviour is possible for sufficiently pathologically constructed tail 
behaviour of n: as in the SETAR examples in Meyn and Tweedie (1993a), various 
combinations of null recurrence and positive recurrence may occur. We do not pursue 
this here: our goal was to show that the ULA model is not guaranteed to behave well, more 
or less independently in most cases of the choice of h. 

We conclude from this analysis that the ULA model is not to be recommended without 
considerable care and knowledge of the behaviour of T. 

Again for a one-dimensional distribution n E &(P,y), as in (6), we have a rather complete 
evaluation of the categories above. We find, since V log ~ ( x )= -ypxB-' for positive x: 

(a) For 0 < ,B < 1, when the tails are heavy, it follows from Theorem 3.2 that the ULA 
chain is ergodic but not exponentially ergodic; thus the ULA approximation mimics the 
behaviour of the diffusion. 

(b) For 1 5 p < 2, the ULA is geometrically ergodic, again as for the diffusion; the 
exponential case ,B = 1 follows from Theorem 3.l(a) with d = 0, and the cases between 
exponential and Gaussian tails follow from Theorem 3.l(a) with d E (0, l) .  

(c) For p = 2, when the tails are like those of a symmetric Gaussian, the behaviour is 
surprisingly mixed. From Theorem 3.l(b) we have that if yh < 2 then the chain is 
exponentially ergodic; but from Theorem 3.2, if yh > 2 then the chain is transient. Thus 
the choice of h is crucial here, as it is not in most models. We have not classified the chain at 
yh = 2, though we would expect that this might be null recurrent. 

(d) For p > 2, when the tails are light, it follows from Theorem 3.2 that (perhaps 
surprisingly at first sight) the ULA chain is transient: this is in contrast to the case with the 
random walk Metropolis algorithm in Mengersen and Tweedie (1996), where such chains 
are shown to be geometrically ergodic. In this situation the ULA over-corrects for the light 
tails by throwing the chain in increasing oscillations. The underlying diffusion, since it has 
continuous sample paths, cannot of course have such aberrant behaviour even though it 
does 'drift' very quickly from the tail regions, but is then forced to 'slow down' in the centre 
of the space and is exponentially ergodic, as shown in Section 2. 

4. The Metropolis-adjusted Langevin algorithm 

4.1. CONDITIONS FOR EXPONENTIAL CONVERGENCE OF MALA 

The need for some form of correction of the simple ULA models is now quite apparent 



355 Convergence of Langevin dzfusions 

since even the finest discrete approximation of the Langevin diffusion can lead to the 
approximating Markov chain behaving radically differently from the diffusion process it is 
trying to approximate. 

One way of preserving the stationarity of IT in any discrete approximation is to introduce 
a Hastings-Metropolis accept-reject step, and, for any fixed h > 0, this algorithm is 
described in Section 1.4. 

In order to develop a positive result on geometric convergence of MALA algorithms, 
especially in higher dimensions, we need some constraints on the way in which proposed 
moves are accepted. The following covers many standard examples, although in other 
situations variations on the approach will be needed: we do not strive for total generality 
here. 

We write A(x )  for the acceptance region of MALA from the point x: that is, A ( x )  is the 
region in which proposed moves are always accepted. Thus 

where q is the ULA density for a candidate move, given by (28).We also write R ( x )  for 
A(x)' ,  the 'potential rejection' region. 

Denote by Z(x) the points interior to x: that is, 

Z(x) = {Y; I Y I  5 1x1). 

We say that A(.) converges inwards in q if 

where we denote the symmetric difference ( AU B)\(A n B) by AAB. For densities IT that 
have this property we have a simple and intuitively plausible condition that guarantees 
geometric ergodicity. 

Theorem 4.1. Suppose that c (x)  = x +$ hV logn(x) is the mean 'next candidate position' and 
that 

Assume A(.) converges inwards in q. I f  V s ( x )= eSIXI,then the MALA chain is Vs-uniformly 
ergodic for s < 2hq. 

Proof. We will check (29)for the function V,. Splitting the integral over obvious regions, we 
find: 
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Now exp(s((x1- Ic(x)l)) times the first term on the right-hand side asymptotes to 
exp(s2/2h), so that limsup of the first term is less than 1. Moreover, the second term 
asymptotically converges to zero since A(.) converges inwards in q. Hence 

PVAx) < I ;lim sup-
lxl+cc Vs(x) 

so that, noting that compact sets are small from Roberts and Tweedie (1996), geo-
metric convergence in V,-norm is guaranteed by Theorem 15.0.1 of Meyn and Tweedie 
(1993a). 

We note from the steps of the proof that condition (35) is far from necessary. In fact it is 
quite easy to relax (35) to find that the following condition is sufficient for geometric 
convergence in V,-norm for sufficiently small s: there exists E > 0 such that 

I(x) = {y : a(x,Y) > E )  

asymptotically has q-measure zero. We omit the details of this. 
Condition (36) is implied by some obvious conditions on V loga(x). For example, the 

following two conditions together imply (36): 

lim sup n,.V log a(x) < 0, 
I x I ' ~  

(38) 

and 
lim n,.Vloga(x) - 1x1 = 0,

I x I ' ~  
(39) 

where n, = x/lxl denotes the outward normal vector at x. Other conditions are clearly 
available, although they are more usefully pursued when specific models are being 
considered. 

The 'inward converging' property is also often easy to evaluate. It is possible to rewrite 
A(x) as 

A(x) = {y : 1;v log a(z)dz 5 (x - y).(V log a(x) + V log ~ ( y ) )  

h 
(40) 

f 6(lV10g'(x)12 - ~ ~ l o g ~ ( y ) ~ ' ) ) .  

Here the line integral can be interpreted along any curve between x and y, but most 
conveniently along the straight line, where this expression for A ( . )  offers interpretation in 
terms of notions of convexity. 
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We will illustrate this interpretation in Section 4.3 below. Before doing so, we consider 
conditions under which MALA does not converge geometrically quickly. 

The following theorem implies (essentially) that when ULA is transient (for example, when 
the tails of T are lighter than Gaussian), MALA is not exponentially ergodic. 

Theorem 4.2. I ~ Tis bounded, and 

lim inf IVlogT(x)l > 4 
-

1x1-+m 1x1 h 

then the M A L A  chain is not exponentially ergodic. 

Proof. Let r ( x )  to be the rejection probability from each point as in (3): we know from 
Roberts and Tweedie (1996) that if ess sup r ( x )  = 1 then the algorithm is not geometrically 
ergodic. 

Assume, then, for contradiction that the algorithm is exponentially ergodic, so that by 
the continuity of T and q,  there exists E > 0 such that 

r ( x )  5 1 - c 1  

for all x E IRk. Now choose T such that 
E 

P [ N ( O ,  hIk)l 2 1 5 2 1 

and S large enough such that there exists M > 4 / h  such that 

and ( M  - 4 / h ) S  > T .  Define 

B ( x )  = { y ; l y  - x - i h V l o g ~ ( x ) l  5 T ) : 

we will show that 

lim sup -q ( y ,  x )  = 0. 
I x I  -+my E B(x) q(x1 Y )  

To see this, first note that the denominator in (42)is uniformly bounded away from zero. 
Therefore it is sufficient to consider the numerator. Now for 1x1 > S ,  
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since lyl > 1x1 for y E B ( x ) .  Therefore since [ i h ~ ] ~- 4 > 0, 

1 
sup q ( y ,x )  5 sup ( 2 r h ) ~ ~ l 'exp{- -( [ i h ~ ~ "- 4 ) l y 1 2 }  

Y E  ~ ( x )  Y E ~ ( x )  2h 

as 1x1 +oo,as required. 
Now define a sequence of points recursively in the following way. Let lxol > S be such 

that r ( x o )  > 0, and let 

It is easy to check that { x , )  + cc so that 

q ( ~ ,xn)lim sup ---0. 
X + ~ Y E B ( X , )  q ( x n lY) 

Now 

so choose N large enough so that 

q ( y , x n )  Esup ---< 4, 
y E B ( x )  d x n ,  Y )  

for n 2 N. Then we have 

so that T ( X , + ~ )  2 2 r ( x n ) ,demonstrating that r is unbounded: and thus we have our 
contradiction. 
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This result covers light-tailed densities.In the other direction, if T has heavy tails, MALA 
looks too much like a random walk on JRk to be geometrically ergodic. Specifically, we will 
be able to use the following theorem. 

Theorem 4.3. If V log ~ ( x )+ 0, then MALA is not geometrically ergodic. 

Proof. This follows by a similar argument to that used in the proof of Theorem 2.4. We only 
sketch the ideas here. Suppose MALA is geometrically ergodic. Then, for some bounded set 
of positive measure under T, C say, there exists K > 1 such that for all x E JRk,  

E , [ K ~ ~ ]< co. 

However if V log ~ ( x )+ 0, then it is easy to check that r(x) + 0 as 1x1 -+co, so that the 
process behaves like a random walk with normally distributed increments. More specifi-
cally, we can find N large enough such that ePIMis a submartingale for IMI > N, and such 
that ,f3 is small enough so that, when TX denotes inf{n; IM,I < N), the collection of random 
variables {epxn"~,n > 1) are uniformly integrable, so that optional stopping applies for a 
contradiction. 

4.3. EXPONENTIAL MODELS 

We conclude by applying the results above to the exponential models that we have analysed 
for our previous algorithms. 

4.3.1. The one-dimensionalclass €(P, y) 

In order to use Theorem 4.1, we need to consider the orientation of A(x), and whether it 
'converges inwards': this depends on the convexity properties of ~ ( x ) ,as shown in (40). In 
order to give some intuition about convergence inwards, we will indicate how this 
behaviour occurs in one dimension, even for those chains for which Theorem 4.1 fails. 

Let T E b(P,y) and recall that T is bounded over compacta when assessing A(x)for large 
1x1.Note also that because the ULA candidate is a normal distribution with fixed variance, 
to check if (35) will be satisfied we need to evaluate whether the ULA step is centred near 
values in A(x)AI(x) or not. 

We then have the following description: 

(a) For 0 < ,f3 < 1, we have limn,,IV log ~ ( x )1 = 0 and we get non-geometric conver-
gence by Theorem 4.3, as we did with ULA. In this case, using (40), we have that the set 
{lyl > 1x1) approximates A(x) for 1x1 large: since the candidate density q(x,y) is concen-
trated near x for 1x1 large, we see that the set A(x) does not converge inwards in q. 

(b) At p = 1, for x > 0, we see that q(x,y) is concentrated around x - hy/2 for x positive. 
Using (40), we have that, for large 1x1, we acceptjumps in A(x) = {y > -x), so that in this 
situation A(x)AI(x) = {y > x) and so (35) fails since the integral is constant and positive 
for all x; thus the model does not converge inward in q, and we cannot use Theorem 4.1. 

However, since we accept essentially all proposals in this case, the MALA chain from 
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positive x is in effect just a random walk with negative drift on the positive half-line and 
with (more than) exponentially decreasing right tails; and this can be shown to be 
geometrically ergodic using the argument in Meyn and Tweedie (1993a, Section 16.1.3). 

(c) For 1 < /3 < 2 and for x > 0, the candidate density q(x,y) is concentrated near 
x - [hyp/2]xP-', and this is a value between 0 and x for x large. Since V log ~ ( x )  is convex 
for x positive, and concave for x negative, A(.) converges inwards as 1x1 + oo. From 
Theorem 4.1 we have geometric ergodicity for this case. 

(d) The Gaussian case P = 2 is again a threshold case, as it was for ULA. From (40) we 
have that, for 1x1 large, A(x) = {lyl I1x1) so that A(x) always converges inwards in q. Now 
if hy < 2 Theorem 4.1 shows that we have geometric ergodicity. If hy > 2, however, (36) is 
violated; but we can now use Theorem 4.2, since (41) holds in exactly this case, to see that 
the chain is not geometrically ergodic. 

(e) Finally, in the light-tailed case, P > 2, the term involving h dominates (40) and A(.) 
converges inwards as 1x1 + oo. But again (36) is violated, and indeed in this case 
lim inf,, , l/lxl = GO, so that the Markov chain is not geometrically ergodic IV log ~ ( x )  
by Theorem 4.2. 

4.3.2. The multidimensional class 9, 

Next consider the multidimensional case with ~ ( x )  E 9,, m > 2. Then 

llim inf IV 1% 4 ~ )  
nim 1x1 

= oo, 

so that MALA is not geometrically ergodic, no matter how small h is chosen to be. Note 
that in contrast, the random walk Metropolis algorithm is always geometric for T E 9, (see 
Roberts and Tweedie 1996). 

4.3.3. A slowly converging Bayesian algorithm 

The examples we have used so far are all simple, although they do indicate the range of 
good and bad behaviours we might expect. We conclude with an example of a density T that 
occurs naturally as a Bayesian posterior density and where the arguments above show lack 
of geometric convergence of the MALA chain M,. 

Let Yo, Y,, . . . be conditionally i.i.d. N(p, T-') variables and let T, p have the conditional 
conjugate priors 

CL -N(PO, Ti1), - F(a0, Po). 

Then the posterior density T is given by 
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so that 

This is typical of the structure in hierarchical models. 
By the same arguments used above, the MALA chain would perform badly here. This 

example is not quite covered explicitly above but it is easy to show that geometric 
convergence will not hold: to see this, merely choose T and /I large enough that the 
algorithm proposes steps further into the tail, by setting r h  and h C(yi- /I)~large, say. The 
detailed justification that we can make the rejection probabilities r(., .) as close to unity as 
we wish in this case then follows as in the proof of Theorem 4.2, and we leave the details to 
the reader. 

5. Concluding remarks 

Although using the Langevin candidate ULA seems like a good strategy for generating a 
'targeted' initial dynamic, and although Metropolizing to get the MALA chain guarantees 
convergence, we have shown that in many cases this gives an algorithm which is not 
guaranteed to converge geometrically fast even in situations when the simpler random walk 
candidate is known to do so. This is not very appealing, but we do note that it is a product 
of bad behaviour in the far reaches of the space. 

We therefore conclude by recalling the MALTA algorithm with drift defined by (12). 
Like MALA and the random walk Metropolis algorithm, MALTA is aLeb-irreducible and 
Feller, and therefore converges in total variation to the target density. But since the 
MALTA drift is truncated, the problems with MALA are not encountered, and MALTA 
enjoys more stable geometrically ergodic properties, central limit theorems and the like, just 
as the random walk-based algorithms do, for target densities that are not heavy-tailed. 

Moreover, since the algorithm behaves like MALA except in extreme situations, it will 
inherit most of the other desirable rapid convergence properties of MALA, and, for 
example, the complexity result of Roberts and Rosenthal (1995a) for high-dimensional 
MALA algorithms will also hold for MALTA. 

For practical purposes, this truncated algorithm thus seems the most desirable version of 
this class of algorithms. 
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