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Abstract. The Metropolis-Hastings algorithm for estimating a distribution p is based on choosing a candidate

Markov chain and then accepting or rejecting moves of the candidate to produce a chain known to have p as the

invariant measure. The traditional methods use candidates essentially unconnected to p. We show that the class of

candidate distributions, developed in Part I (Stramer and Tweedie 1999), which ``self-target'' towards the high

density areas of p, produce Metropolis-Hastings algorithms with convergence rates that appear to be considerably

better than those known for the traditional candidate choices, such as random walk. We illustrate this behavior for

examples with exponential and polynomial tails, and for a logistic regression model using a Gibbs sampling

algorithm. The detailed results are given in one dimension but we indicate how they may extend successfully to

higher dimensions.
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1. Introduction

The development of the Metropolis and Hastings (M-H) algorithms represents one of the

most active interactions between statistical methodology and applied probabilistic

techniques. The M-H algorithms allow simulation of a probability distribution p which is

only known up to a constant (normalising) factor. This is surprisingly widely relevant,

occurring especially when p is a Bayesian posterior distribution, but in many other

contexts also (Besag and Green (1993), Besag et al. (1995), Gilks et al. (1996)). Recent

work on the probabilistic structure of M-H algorithms includes criteria for convergence

and approaches to the speed of convergence of the algorithm (Mengersen and Tweedie

(1996); Roberts and Tweedie (1996); Smith and Roberts (1993); Tierney (1994); Roberts

and Tweedie (1996)).

In this paper we show that a new class of algorithms, based on the Langevin-type

diffusions introduced in Part I (Stramer and Tweedie (1999)), converge noticeably faster in
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many contexts than traditional versions. We give detailed results for models in one

dimension only, where the underlying diffusion theory is more complete; in Section 9 we

indicate how the approach we use may extend successfully to higher dimensions.

In the standard construction (Metropolis et al. (1953), Hastings (1970)) of the M-H

algorithm on a space X, one ®rst considers a candidate transition kernel Q�x; ? �; x[X,

which generates potential transitions for a discrete time Markov chain evolving on X. To

avoid technical dif®culties and assumptions, we assume here that X is IR � �ÿ?;?�
equipped with the Borel s-®eld b, and both p and Q�x; ? � have densities p�y� and q�x; y�
with respect to Lebesgue measure mLeb: much more general formulations are possible (see

Tierney (1994), Gilks et al. (1996)) and our methods can be adapted to them, albeit with

different degrees of dif®culty.

A ``candidate transition'' to y, generated according to the density q(x,y), is then

accepted with probability a(x,y), given by

a�x; y� � minfp�y�p�x�
q�y;x�
q�x;y� ; 1g p�x�q�x; y�40

1 p�x�q�x; y� � 0.

(
�1�

Thus actual transitions of the M-H chain take place according to a law P�x; ? � with

transition densities p�x; y� � q�x; y�a�x; y�; y 6� x and with probability of remaining at the

same point given by

r�x� � P�x; fxg� �
Z

q�x; y��1ÿ a�x; y��dy: �2�

The crucial property of the M-H algorithm is that, with this choice of a, the target p is

invariant for the operator P: that is, p�A� � R p�x�P�x;A�dx for all x [X, A [b.

As exempli®ed in Roberts and Tweedie (1996), the user is often faced with a choice

between a traditional version of the M-H algorithm, where the candidate is, say, a random

walk which moves independently of the shape of p, and a more ``targeted'' candidate

distribution, designed for the particular p in the problem. The former is often easy to

implement: however, a more p-speci®c algorithm may converge more rapidly.

The idea of shaping the candidate density based on the target was introduced as long ago

as Doll et al. (1978) and in the probabilistic literature has been recently studied in Roberts

and Tweedie (1996): they consider the candidate distribution

QL�x; ? � � N�x� 1

2
hH log p�x�; h� �3�

where h40, N is the standard normal distribution, and H is the differential operator

Hf �x� � df=dx. This choice is motivated by the fact that p is the stationary measure for a

Langevin diffusion process, and (Doll et al. (1978), Roberts and Tweedie (1996), Stramer

and Tweedie (1999) QL are the approximate h-step transition probabilities for this

diffusion, based on a discretization known as the Euler scheme.

The rationale for using this candidate is therefore simple: since the Langevin diffusion

already converges to p, then the chain QL should also converge in the ``right direction'' (if

not quite to p), and should require only minimal corrections through a Metropolis step (1)

in order to converge correctly (Besag (1993)).

308 STRAMER AND TWEEDIE



Given this argument, one particularly surprising result in Roberts and Tweedie (1996) is

therefore that, even when the Langevin diffusions converge quickly, the Metropolis-

Hastings algorithms based on naive Euler discretizations may lose this geometric rate of

convergence, even for quite simple densities p such as p�x�! exp�ÿjxjb� with b42, for

which the classical random walk candidates perform much better (Mengersen and Tweedie

(1996)).

A second problem with the algorithm based on the Euler discretization of the Langevin

diffusion is that, while it may be ef®cient for sampling within a single mode, it may not be

ef®cient for sampling from multimodal distributions, and over any reasonable length of

time it often converges only locally to the distribution, in the vicinity of a single mode.

One way to improve the simple Langevin-Euler scheme is to use higher order schemes

for the Langevin diffusion, based on stochastic Taylor expansions which reduce the error

due to discretization (Kloeden and Platen (1992)). These might lead, for example, to

consideration of candidate distributions using a second order scheme, such as

QL2�x; ? � � N�x� b�x� � 1

2
�b�x�b0�x� � 1

2
b00�x��h2; h� 1

3
h3 � 1

2
b0�x�h2� �4�

where b�x� � 1
2

hH log p�x�; h40, and N is again the standard normal distribution. We

compare this with other methods in Section 8. However, these more complex algorithms,

just like the naive Euler scheme, may also lose the geometric rate of the underlying

diffusion, and may also be inef®cient for sampling multimodal distributions.

In this paper our approach is rather different. We start from the M±H algorithm, and we

use candidate densities based on a wider class of diffusions, developed in Part I (Stramer

and Tweedie (1999)), rather than attempting a closer approximation to the Langevin

diffusion. We then prove that pathological behavior can be avoided with a better choice

from this class, and indeed convergence can be substantially improved.

As in Part I we assume from here on thatp is an arbitrary probability density on IR which is

positive and twice differentiable almost everywhere, and base our choice of candidate on

functions b, s which are bounded on compact subintervals of IR and satisfy the equations

b�x� �
�

1

2
H log p�x�

�
s2�x� � s�x�Hs�x�: �5�

Given any solutions of (5), we de®ne the self-targeting candidate QST by taking, for some

h40 (which we suppress in notation at this point),

QST�x; ? � � N�mx;h; s
2
x;h� �6�

where the mean and variance of the jump from x are given by

mx;h � x� b�x�
b0�x� �exp�b0�x�h� ÿ 1�

s2
x;h �

s2�x�
2b0�x� �exp�2b0�x�h� ÿ 1�; �7�

when x [C, some compact interval around zero, and more simply by
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mx;h � x exp�b�x�h=x�;

s2
x;h �

xs2�x�
2b�x� �exp�2b�x�h=x� ÿ 1�; �8�

when x [= C. This is the ``hybrid'' discretization introduced in Section 5 of Part I. Overall,

we will show that by being somewhat more sophisticated in choosing Q, the effectiveness

of the M-H procedure can be substantially enhanced.

2. The Effectiveness of Self-Targeting: An Example

To motivate what follows, we show here the effectiveness of the diffusion approach using

as the target the distribution

p�x�! �5� �xÿ 10�2�ÿ3
if x � 0

�5� �x� 10�2�ÿ3
otherwise.

(
This target presents two common problems: potentially slow convergence, due to the

heavy tails, and multimodality, which is likely to cause inaccurate convergence over ®nite

runs.

We carry out the M-H algorithm with two choices of candidate. The ®rst, denoted B�i�
in Figures 1 and 2, is QL, given by (3): this is the ``Langevin-Euler'' scheme. We know that

this is not geometrically ergodic from Roberts and Tweedie (1996).

The second, denoted B�ii�, uses the more carefully chosen self-targeting diffusion-based

candidate QST , de®ned in (15), with the choice of parameters given in Example 4 in

Section 7: this is uniformly ergodic from Theorem 5.2.

Figure 1. Comparison of density estimates for B(i) with h � 2 and B(ii) with h � 0:1.
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We assess their behavior using a single long series: details are in Section 7. We simulate

100,000 steps with initial points x0 � 0 and x0 � 200. To eliminate the effect of the initial

point, we have discarded 300 points.

In Figure 1 we show the density estimate when using method B(i) with h � 2 and x0 � 0

and method B(ii) with h � 0:1 and x0 � 0. These simulations show that algorithm B(i)
may tend to ``stick'' in the vicinity of one mode for long periods of time. Worse results

were obtained for other values of the parameter h: over 100,000 iterations we found the

percentage of time in each mode given by

method B(i) with h � 0:1: 1.45% and 98.55% respectively;

method B(i) with h � 2: 7.53% and 92.47% respectively;

method B(i) with h � 5: 91.49% and 8.51% respectively;

method B(i) with h � 10: 5.8% and 94.2% respectively;

In contrast, method B(ii) appears not only to follow each mode well but also to estimate the

relative weights of the modes well. The relative weights of the modes for method B(ii)
with h � 0:1 were 49.63% and 50.37% respectively.

The convergence rate as well as the mode-swapping behavior are shown well by trace

plots. Figure 2 is a trace plot of the steps taken by algorithm B(i) with h � 2 and a starting

point x0 � 200, and shows that model B(i) exhibits the classic problems of burn-in and of

poor mode-swapping: the lower mode is never hit in these ®rst 30,000 points. Figure 3 is a

trace plot of the steps taken by algorithm B(ii) with h � 0:1 and a starting point x0 � 200,

and shows that when using this approach we need to discard only a few points to be

``close'' to one of the modes, and mode-swapping occurs every 1,000 or so points in this

sample.

Thus, by using the non-Langevin diffusion choice, we obtain a scheme which describes

each mode well and also estimates well the relative weights of the modes.

In Section 7, we give a number of other examples of the improvement that using self-

Figure 2. Trace plot of 30000 values from method B(i) with h � 2.
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targeting algorithms may provide: we now develop the theoretical basis on which one

might construct such algorithms.

3. Linking the Convergence Properties of Discretizations and MADA Chains

Since the candidate QST does not actually converge to the ``right'' measure p, even when

(5) holds, the need for some form of correction is apparent. Thus we introduce a

Metropolis accept-reject step, as described in (1). Following Part I, we will write the chain

corresponding to QST as Gh, and we write Mh for the Metropolized version of Gh. We will

call Mh the Metropolis-adjusted diffusion algorithm, or MADA chain. A key result that

enables us to use results from Part I links the convergence properties of discretizations and

MADA chains.

THEOREM 3.1. Suppose p�x� is positive and continuous, and q�x; y� is positive and
continuous in both variables. Let P be the transition law of the Metropolised chain formed
from Q. If a�x; y� is such that

r�x� � P�x; fxg�?0; jxj?? �9�
then

(i) If Q is geometrically ergodic then P is geometrically ergodic.
(i) If Q is uniformly ergodic then P is uniformly ergodic.

Proof: Under these continuity conditions it follows from Mengersen and Tweedie,

(1996) that all compact sets are small for P, as they also are for Q from [11, Chapter 6].

Figure 3. Trace plot of 30000 values from method B(ii) with h � 0:1.
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If Q is geometrically ergodic, we have from Theorem 15.0.1 of Meyn and Tweedie,

(1993) that there exists a function V � 1, bounded on compact sets, and a l51; b5?
such that for all suf®ciently large compact sets CZ

Q�x; dy�V�y� � lV�x� � b1lC�x�: �10�

Choose E small enough that l� E � l051. If C is large enough that r�x� � E; x [Cc then

we have immediatelyZ
P�x; dy�V�y� �

Z
Q�x; dy�V�y� � r�x�V�x�

� l0V�x� � �b� supw[CV�w��1lC�x�: �11�
Thus using the suf®ciency of (11) as in Theorem 15.0.1 of Meyn and Tweedie (1993), we

have that P is also geometrically ergodic.

If Q is uniformly ergodic we have similarly from Theorem 16.0.2 of Meyn and Tweedie,

(1993) that there is a bounded V such that (10) holds; as in (11), this inequality is

maintained for the same bounded V for P, and so from the suf®ciency in Theorem 16.0.2 of

Meyn and Tweedie (1993) we have that P is also uniformly ergodic. j

The continuity conditions can certainly be weakened: all we need is that both Q and P are

T-chains in the sense of Meyn and Tweedie (1993), Chapter 6. However, they hold in all of

the examples below, and although some further ®ne-tuning of QST may be needed to

ensure (9) holds, in general the MADA chain Mh will retain the convergence properties of

Gh developed in Part I.

4. Uniform Convergence of the MADA Algorithms

We now consider geometric convergence properties of the chains Mh. In particular we

show that for a broad class of densities p, one can always construct some MADA chain Mh

that converges uniformly fast to p as its stationary distribution.

Our ®rst result shows that for light-tailed distributions the MADA chain converges

rapidly, no matter how coarse the discretization. To state this we need the following

condition from Part I:

Condition A1: p is in the class e� of densities that have asymptotically exponential tails

such that

ÿ log p�x�
jxjb

?a; x??; �12�

for some a, b40, and s2�x� is chosen such that

s2�x�=�ÿ log p�x��gsb?a; jxj??;

where gs � 0 and a40.
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THEOREM 4.1 Assume that Condition A1 holds with b42. Then the MADA chain Mh is
uniformly ergodic for any h.

Proof: We note that for large jxj, s2�x�&asjxjgs , where as40 and from (5),

b�x�&ÿ abjxjgb sgn�x�, where ab40 and gb ÿ gs � 1 � b. We have from Theorem 6.2

of Part I that under these conditions, the law QST is uniformly ergodic. We thus need only

check (9).

Let e40 be arbitrary. It is easy to verify under the assumptions of the theorem that there

exist 15M15M such that

(i) for all jxj4Mmx;h and sx;h are de®ned as in (8);

(ii) for all jxj4M and jyj5M1, a�x; y� � 1ÿ E;
(iii) P�jZj5M1ÿ1

` � � 1ÿ E, where Z*N�0; 1�, and ` � as

2ab
;

(iv) for all jxj4M; jmx;hj51 and s2
x;h � `.

Set C1 � �ÿM1;M1� and C � �ÿM;M�. Now from (i) we have that for all jxj4M,Z
C1

q� _x; y��1ÿ a�x; y��dy � E:

Moreover, for all jxj4M, from (ii) and (iii),Z
Cc

1

q�x; y�dy � P�jmx;h � sx;hZj4M1�

� P�Z4M1 ÿ mx;h

sx;h

� � P�Z5ÿM1 ÿ mx;h

sx;h

�

� P�Z4�M1 ÿ 1�=`�� � P�Z5�ÿM � 1�=`��
� e:

�13�

Thus for all jxj4M,

P�x; fxg� �
Z

Cc
1

q�x; y� �
Z

C1

q�x; y��1ÿ a�x; y��dy � 2e; �14�

and the result follows. j

Note that as in Theorem 6.2 of Part I, we could directly show that E �tC� is bounded using

the argument above, where tC � infft40 : Mh�t� [Cg is the ®rst hitting time on C: this is

an alternative criterion for uniform ergodicity.

It is clear what is happening here. For large values of jxj the MADA chain Mh is close to

an independent candidate chain (i.e. q�x1; ��&q�x2; �� for large values of jx1j, jx2j) and we

can use arguments such as those in Mengersen and Tweedie (1996) to show directly that

the chain is uniformly ergodic. However, for smaller values of x the MADA chain will
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follow the contours of p more closely, thereby removing one of the unattractive features of

the independent model.

Without light tails we have a converse result.

PROPOSITION 4.2 Assume that Condition A1 holds with b � 2 and gs � bÿ 240. Then Mh

is not geometrically ergodic.

Proof: This follows since under these conditions it is easy though somewhat tedious to

show that the rejection probability r�x�?1 as x??. The result thus follows from

Theorem 5.1 of Roberts and Tweedie (1996). j

Example: To illustrate that r�x�?1 as x?? as in Proposition 4.2, we consider

p�x�! exp�ÿ �������������
x2 � 1
p � and s2�x� � x2 � 1. For this example b � 1 and gs � 2. Then

from (5), b�x� � ÿ0:5x
�������������
x2 � 1
p � x. We now have from (8) that

mx;h � x� x�exp��1ÿ 0:5
�������������
x2 � 1

p
�h� ÿ 1�

s2
x;h �

x2 � 1

2�1ÿ 0:5
�������������
x2 � 1
p � �exp�2�1ÿ 0:5

�������������
x2 � 1

p
�h� ÿ 1�

When this was simulated with Gh�0� � Mh�0� � 1000 and h � 0:1, the ®rst draw from

N(0,1) was a reasonable value of ÿ 0.424896. Then Gh�1� � ÿ13:449848,

p�Gh�1��
p�Gh�0��

� exp�ÿ13:48�
exp�ÿ1000:00� ;

q�Gh�1�;Gh�0��
q�Gh�0�;Gh�1��

� exp�ÿ46938:60�
exp�ÿ4:46�

and so a�Gh�0�;Gh�1��&0. Thus we almost certainly reject the move, and Mh�1� � 1000

again.

5. Using a t-Distribution to Improve Convergence

It is perhaps surprising that the boundary case b � 2 and gs40 is not actually uniformly

ergodic, since Theorem 6.2 of Part I shows that the candidate chain Gh is uniformly ergodic

in this case. Similarly, although the condition gs � bÿ 2 � 0 for p [ e� is suf®cient for

exponential ergodicity of the candidate chain Gh (see Theorem 6.1 in Stramer and Tweedie

(1999)), from Theorem 4.2 the MADA chain Mh is not geometrically ergodic in this

situation if b � 2. Thus the properties of Mh are not always those of the candidate Gh, and

we need to address this by developing some variations to the discrete approximation Gh.

We do this by spreading the candidate Q to have heavier tails, using a t-distribution.

Recall that QST�x; ? � is de®ned by taking

Gh�h� ÿ mx;h

sx;h

*N�0; 1�:

Let us de®ne the related chain Gh by setting, when Gh�0� � x,
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Gh�h� ÿ mx;h

sx;h

�����������
n

nÿ 2

r
*tn �15�

where tn denotes the t distribution with n42 degrees of freedom, and call the resulting

candidate QST , with density q�x; y�. We assume that n42 so that the variance is ®nite (see

Remark 5.1 in Part I).

We will show that this variation guarantees that P�x; fxg�?0 as x??.

THEOREM 5.1 Assume that Condition A1 holds with

gs � 2bÿ 240: �16�
Then the MADA chain Mh obtained from the candidate QST is always geometrically
ergodic and is uniformly ergodic if b � 2 and gs40.

Proof: Let E40 be arbitrary. We show that there exists M40 such that

P�x; fxg� � 2E; jxj4M; �17�
where P is the transition law of Gh.

It is easy to check that if gs � 2bÿ 240 then there exist a40 and 05a51 such that

P
ÿb1�x� ÿ mx;h

sx;h

5tn

�����������
nÿ 2

n

r
5

b1�x� ÿ mx;h

sx;h

 !
?1

as jxj??, where b1�x� � jxÿ ajxjasgn�x�j. Thus, there exists M140 such thatZ
jyj5b1�x�

q�x; y�dy � 1ÿ E

for all jxj4M1. We then note that a�x; y�?1 as x?? for all jyj5b1�x� and hence there

exists M4M1 such that for all jxj4M and jyj5b1�x�, 1ÿ a�x; y� � E. It now follows as in

(14) (with C1 � �ÿb1�x�; b1�x��� that (17) holds.

The result now follows from Theorem 3.1, and the geometric ergodicity of Gh under

(16) (and its uniform ergodicity when b � 2 and gs40): this follows exactly as in the proof

of Theorem 6.1, Theorem 6.2 of Stramer and Tweedie (1999). j

In this case, the t distribution has a longer tail than the normal distribution and thus is more

appropriate for densities with heavier tails.

Example: We again illustrate this for p�x�! exp�ÿ �������������
x2 � 1
p � and s2�x� � x2 � 1. Again

we assume that Gh�0� � 1000. The ®rst draw from the rescaled t3 distribution in our

simulation of this system was ÿ 0.148320. Then Gh�1� � ÿ4:694999,

p�Gh�1��
p�Gh�0��

� exp�ÿ4:80�
exp�ÿ1000:00� ;

q�Gh�1�;Gh�0��
q�Gh�0�;Gh�1��

� exp�ÿ28:24�
exp�ÿ5:14�

and so a�Gh�0�;Gh�1�� � exp�972:09�. Thus we accept the move, and so Mh�1� �
ÿ4:694999.
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We next show that by a further modi®cation of QST we can again produce a uniformly

ergodic algorithm, even in this case.

An appropriate change is to truncate sx;h for large values of sx;h. Let us de®ne the chain

Ĝh by setting, when Ĝh�0� � x,

Ĝh�h� ÿ mx;h

ŝx;h

�����������
n

nÿ 2

r
*tn; n � 3 �18�

where

ŝx;h �
sx;h if sx;h � K

K otherwise,

�
and K is some positive number. We call the resulting candidate Q̂ST .

We now have

THEOREM 5.2 Assume that Condition A1 holds with gs � bÿ 240. Then the MADA chain
M̂h obtained from the variation Q̂ST is uniformly ergodic.

Proof: Using the same argument as in Theorem 6.2 of Part I, we have that the candidate

chain Ĝh is uniformly ergodic. Using the same argument as in Theorem 5.1, P̂�x; fxg�?0

as x??, and the result follows from Theorem 3.1 as before. j

Finally in this section we comment on the results when p only has polynomial tails. Our

result shows that for polynomial-tailed distributions the modi®ed MADA chain converges

rapidly, no matter how coarse the discretization. To state this formally, we ®rst de®ne p to

be in the class p� of densities with asymptotically polynomial tails if for some a40, Z42

p�x�jxjZ?a; x??: �19�
The following condition was used in Part I.

Condition A2: p is in p� and s2�x� is such that

s2�x�=p�x�
ÿg

s
Z ?a; jxj??

where 0 � gs � Z, and a40.

Using a similar argument as in Theorem 6.1 of Part I, we can easily show that under

Condition A2 with Z43 and 2 � gs5Zÿ 1, Gh is geometrically ergodic. However, Mh

based on QST fails to satisfy the condition P�x; fxg�?0 as x??, so we do not know if Mh

retains the geometric ergodicity.

Therefore we once again truncate s2
x;h�x� for large sx;h and show that the resulting

diffusion Ĝh is geometrically ergodic if gs � 2 and uniformly ergodic if 25gs5Z, and that

its Metropolized version retains these properties.

Using Condition A2 with 0 � gs5Z, we have that for large jxj,
s2�x�&asjxjgs ; b�x�&ÿ abjxjgsÿ1

sgn�x�;
where ab � asZ

2
�1ÿ gs

Z�. Thus, for large jxj
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mx;h&x� x�exp�ÿabjxjgsÿ2� ÿ 1�; ŝx;h � K:

It is easy now to check that Ĝh is geometrically ergodic if gs � 2 and uniformly ergodic if

25gs5Z. To guarantee that P̂�x; fxg�?0 as x??, it is suf®cient that the distribution tn

of

Ĝh�h� ÿ mx;h

ŝx;h

�����������
n

nÿ 2

r
has a longer tail than the distribution of the target density p. Clearly, this will happen if

nÿ 15Z, which implies that we must have Z43, since tn is the t distribution with n42

degrees of freedom. Thus if we assume that Z43, the result follows.

We conclude that if we choose s2�x�&asjxjgs for large jxj we always get geometric rates

of convergence if gs � 2 and uniform rates of convergence if gs42, for all p in class e�,
and for all p in the class p� with Z43 provided also Z4gs. In contrast, essentially as noted

also in Roberts and Tweedie (1996), the MADA chain based on the Euler approximation to

the Langevin diffusion is exponentially ergodic if and only if p is in class e� and

1 � b � 2.

We illustrate these results in Section 7.

6. Polynomial Convergence of the Langevin Schemes

As we have shown, one can ®nd geometrically or even uniformly converging schemes for

virtually all distributions p. However, implementing these may require more computations

than for the simple Langevin diffusion with the Euler discretization.

Thus we sometimes prefer to use the Euler scheme to the Langevin diffusion if its

convergence properties are not too poor, especially if we can start from the ``center'' of p
in some sense.

It is shown in Roberts and Tweedie (1996) that when gs � 0 and b�x�?0 when jxj??,

the Euler scheme (with and without Metropolis adjustment) is not geometrically ergodic.

We now will show that it still has a polynomial or better rate of convergence to p, for the

f-norm

kPn�x; ? � ÿ pkf :� sup
jgj�f

jEx�g�Xn�� ÿ Ep�g�Xn��j;

where f is a polynomial of appropriate order. Guided by the results in Tuominen and

Tweedie (1994), Stramer and Tweedie (1999), we ®nd conditions under which such a

polynomial rate of convergence will also hold for the MADA chain.

THEOREM 6.1. Suppose b is continuous, and that either Condition A1 holds with b51 (in
which case choose K below as any positive integer) or that Condition A2 holds with gs52

(in which case choose K � Z). Then

r�n�kPn
L�x; ? � ÿ pkf?0
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where PL is the transition law of the MADA chain obtained from the Langevin-Euler
scheme QL, and for any integer k with 2 � k � K

f �x� � jxjkÿ2V1 x [ IR;

r�n� � nKÿkV1 n � 1:

Proof: For simplicity and in order to show the main idea of the proof we will assume that

condition A1 holds with b � 0:5 and a � 1 (i.e. p�x�! eÿ
���
jxj
p

). Thus if Gh�0� � x, then

Gh�h� � xÿ sgn�x�
4jxj0:5

h�
���
h
p

Z

where Z has standard normal distribution. It is easy to check that there exists some c40

and x040 such thatZ
QL�x; dy�jyjk � jxjk ÿ cjxjkÿ0:5

; jxj4x0; �20�

where QL is the transition probability of the Euler chain. As in (11) it is now suf®cient for

(20) to hold for P as well as for QL to show that r�x�jxjk?0 as jxj??.

Set Cx � �xÿ 2jxja; x� 2jxja� where 05a50:5: Let h40. It is easy to check that for

any e40 there exists M40 such that

(i) if jxj4M thenZ
y=[Cx

QL�x; dy� � P�
���
h
p
jZj42jxja�5 1

jxjN ;

where N4k is some integer;

(ii) if jxj4M and y [Cx then QL�y; dx� is the density from N�yÿ 1
4
��
y
p ; h� at x, which is

approximately the same as N�y; h� at x and QL�x; dy� is approximately the same as

N�x; h� at y. Thus for jxj4M and y [Cx, QL�y; dx�&QL�x; dy�. In other words,

QL�y; dx�
QL�x; dy� � 1ÿ e:

Let Rx � fy [Cx : a�x; y� � 1g. We now have that for x4M

r�x�xk � xk

Z
�1ÿ a�x; y��QL�x; dy�

� xk

xN
� xk

Z
Rx

1ÿ eÿ
��
y
p

eÿ
��
x
p

QL�y; dx�
QL�x; dy�

� �
QL�x; dy�

� xk

xN
� xk

Z
Rx

�1ÿ �1ÿ e�e
�xÿy���
x
p � ��yp �QL�x; dy� � xk

xN
� xk�1ÿ �1ÿ e�eÿ2xa��

x
p �: �21�

Thus using the same argument for x5ÿM, we have that r�x�jxjk?0 as jxj??. The proof

follows now from (20) by using the same argument as in the proof of Proposition 5.2 of

Tuominen and Tweedie (1994). j
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7. Exponential and Polynomial Examples

We can summarize the results above for the various types of tail behavior of p and choices

of gs as in Table 1. Note that in general we get better rates of convergence for lighter tailed

p (i.e. for larger b), and for larger values of gs.

Example 1: The exponential class e

We say that p [e, as introduced in Roberts and Tweedie (1996); Stramer and Tweedie

(1999), if for some x0, and some constants g40 and 05b5?, p takes the form

p�x�! eÿgjxj
b
; jxj � x0. We now compare the MADA chain properties in Table 1 to those

based on the Euler approximations to the Langevin diffusion:

b42: When the tails of p are lighter than Gaussian we have uniform convergence (see

Theorem 4.1) of the algorithm with candidate QST (6), as opposed to non-geometric

convergence of the algorithm with candidate QL (3).

b � 2: When the tails of p are Gaussian we can get uniform convergence (see Theorem

5.1) of the algorithm with candidate QST (15) if gs40, while we can only get a geometric

rate of convergence for the algorithm with candidate QL.

1 � b52: When the tails of p are heavier than Gaussian but at least exponential we get

uniform convergence (see Theorem 5.2) of the algorithm with candidate Q̂ST (18) if

gs � bÿ 240, while we can only get a geometric rate of convergence for the algorithm

with candidate QL.

05b51: When the tails of p are heavier than exponential we still have uniform

convergence (see Theorem 5.2) of the algorithm with candidate Q̂ST , as opposed to non-

geometric convergence of the algorithm with candidate QL.

Example 2: Polynomial convergence: Suppose that p*tn [p
�, the t distribution with

n � 3 degrees of freedom: that is, p�x�! �1� x2

n �ÿ
n�1

2 ; x [ IR. Choose

s2�x� � �n� x2�
gs
2 :

Table 1. Qualitative behavior of various candidate transition laws.

p b gs Candidate Convergence Reference

Light tails b42 All gs QST (6) Uniform Theorem 4.1

Heavier tails b � 2 gs � bÿ 240 QST (6) Not geometric Proposition 4.2

Gaussian b � 2 gs40 �QST (15) Uniform Theorem 5.1

All tails b40 gs � 2bÿ 240 �QST (15) Geometric Theorem 5.1

All tails b40 gs � bÿ 240 Q̂ST (18) Uniform Theorem 5.2
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Then bMh is uniformly ergodic if 25gs5n� 1 and geometrically ergodic if 2 � gs5n� 1.

In Roberts and Tweedie (1996), it is shown that the MALA (Metropolis-adjusted Langevin

algorithm) chain based on QL is not geometrically ergodic for this class of densities.

To illustrate these rates, we now carry out these computations in a little more detail in

one speci®c case.

Example 3: Speci®c polynomial convergence: Consider the model

p�x�! 1

�5� x2�3 ; x [ IR:

We compare three algorithms:

A(i). The Metropolis algorithm with the candidate distribution N�x; 1� (i.e. the random

walk algorithm);

A(ii). The MALA chain obtained from QL with h � 1, (i.e. s2�x�:1 b�x� �
ÿ3x=�5� x2��;

A(iii). The MADA chain bMh with s2�x� � �5� x2�1:5; b�x� � ÿ1:5x�5� x2�0:5 and

h � 0:1; here gs � 3.

We will evaluate convergence through the behavior of the conditional variances

v�x; t� � Var�Mh�t�jMh�0� � x� with x � 1, x � 5 and x � 9. In Figure 4, we show

v�x; t� for the Metropolis algorithm using A(i); in this case as shown in Mengersen and

Tweedie, (1996) the chain does not converge exponentially fast and indeed convergence

clearly depends on the starting point.

Figure 4. Conditional variance v�x; t� with x�0� � 1; x�0� � 5 and x�0� � 9 for A(i).
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In Figure 5, we show v�x; t� for the MADA chain Mh using A(ii); in this case as shown in

Roberts and Tweedie (1996) the chain does not converge exponentially fast but from

Theorem 6.1 it still has a third order polynomial subgeometric rate of convergence to p.

Convergence is still slow and depends on the starting point but it is faster than for the

Metropolis algorithm using A(i).
In Figure 6, we show v�x; t� for the MADA chain bMh using A(iii) which is uniformly

ergodic; the conditional variance converges quite rapidly for all starting points.

Figure 5. Conditional variance v�x; t� with x�0� � 1; x�0� � 5 and x�0� � 9 for A(ii).

Figure 6. Conditional variance v�x; t� with x�0� � 1; x�0� � 5 and x�0� � 9 for A(iii).
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Example 4 : Estimating Mixtures

We now describe in detail the model discussed in the introduction. We take

p�x�! �5� �xÿ 10�2�ÿ3
if x � 0

�5� �x� 10�2�ÿ3
otherwise,

(
and we compare two algorithms:

B(i) This uses the transition law QL with h � 2 and s2�x�:1, and

b�x� �
ÿ3�xÿ10�
5��xÿ10�2 if x � 0

ÿ3�x�10�
5��x�10�2 otherwise.

8><>:
B(ii) This uses the MADA chain Mh obtained from QST with h � 0:1, and

s2�x� �
�5� �xÿ 10�2�3ÿe if x � 0

�5� �x� 10�2�3ÿe otherwise;

8<:
b�x� �

ÿ�xÿ 10��5� �xÿ 10�2�2ÿee if x � 0

ÿ�x� 10��5� �x� 10�2�2ÿee otherwise;

8<:
here 05e&0, and thus gs&6.

For method B(ii) we have chosen s2 in such a way that (i) mx;h is small when p is not too

small and is bigger when p is very small and s2
x;h is larger as p decreases, so that each mode

is well described (see Figure 1, Figure 3); and (ii) the algorithm is uniformly ergodic (see

Figure 3).

In contrast, as shown in Mengersen and Tweedie (1996) when using method B(i) the

chain does not converge exponentially fast and indeed convergence clearly depends on the

starting point (see Figure 2); and the chain also exhibits the problem of poor mode-

swapping for different choices of h (see Figure 1, Figure 2).

8. A Logistic Regression Model

We next consider a Bayesian logistic regression model (see Gilks et al., (1996)). We

suppose that the distribution of y given the covariate z is

yi*Bernoulli ��1� eÿ�m�azi��ÿ1
; 1�; i � 1; . . . ; n;

where the parameters a, m have the distributions

a*N�0; 1�; m*N�0; 1�:
We assume conditional independence between the fyig given the model parameters and
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covariates, and independence between the parameters themselves. Thus the full

conditional for a is

p�ajm�! eÿ
1
2
a2

Pn
i�1f1� eÿ�m�azi�gÿyif1� em�azigyiÿ1

;

and for m is

p�mja�! eÿ
1
2
m2

Pn
i�1f1� eÿ�m�azi�gÿyif1� em�azigyiÿ1;

which do not simplify.

We wish to simulate the two dimensional posterior distribution p�a; m�. One way to do

this is to use the Gibbs sampler, where we successively update each component with a

value picked from its distribution conditional on the current value of the other component

(Gilks et al. (1996)). We simulate 1000 observations from this logistic model with

m � 1:10096 and a � 2:276053: these were random draws of m and a from the prior which

is N(0, 1). For the sake of illustration we ®x m � 1:10096 and simulate p�ajm � 1:10096�.
We compare the four algorithms:

C(i) The Metropolis (random walk) algorithm: we use the candidate distribution

N�x; �2:4�2 0:016�, which is optimal in some ways for reasons explained below;

C(ii) The Langevin diffusion with the Euler scheme: we use s2�x�:1; b�x�
� 1

2
q
qx log�p�xjm � 1:10096��, with the MADA chain obtained from QL with h � 0:01;

C(iii) The Langevin choice with the second order scheme (4): here b and s are de®ned

as in C(ii) with the MADA chain obtained from QL2 with h � 0:01;

C(iv) A MADA chain bMh with h � 0:01: we took s2�x� � ÿd log�p�xjm � 1:10096��
with d � 0:005, b�x� � ÿ d

2
q
qx log�p�ajm � 1:10096���log p� 1�, so that gs � 4.

We ®rst assess the behavior of a single long series for case C(iv) with 50,000 steps; we start

from x0 � 10 and discard 300 steps to eliminate the effect of the initial point. Figure 7

shows the estimated histogram for p.

Using Figure 7 we have that p�ajm� is approximately normal with variance 0.016 and

thus from Roberts et al. (1995) we have that among the class of symmetric normal

candidate distributions, the most ef®cient candidate distribution is N�x; 2:42 0:016�, which

we use in C(i).
In Figure 8 we estimate the conditional mean m�x; t�, where t denotes the number of

steps and x is the starting point. for C(i), C(ii), C(iii) and C(iv) with x � 10, and 10,000

replications.

Cases C(i), C(ii) and C(iii) are geometrically ergodic, from Theorem 5.1 for C(ii) and

C(iii) and from Mengersen and Tweedie (1996) for case C(i). It is perhaps surprising that

there is almost no improvement moving from the MADA chain based on the ®rst order

(Euler) scheme for the Langevin diffusion as in C(ii) to the second order scheme as in

C(iii); but both converge more rapidly than the traditional random walk algorithm C(i), for

which convergence could be even slower without the information obtained by using

algorithm C(iv).

All three of these are much slower than C(iv), which is uniformly ergodic and very

clearly outperforms all other choices.
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9. Metropolis Adjusted Multi-Dimensional Algorithms

We have considered in detail the effect of a Metropolis-Hastings adjustment to diffusion

based algorithms only in one dimension. In practice, of course, the multi-dimensional case

is of even greater interest. In this section we sketch the possible effects of adding an

accept-reject step to discretizations of the multi-dimensional diffusions such as those

described in Section 9 of Part I. These results are only sketched here, but they do indicate

Figure 8. Conditional mean m(x,t) with x�0� � 10, for C(i), C(ii), C(iii) and C(iv).

Figure 7. Histogram for C(iv): the sample mean is 2.232 and the sample variance is 0.016.
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that the MADA approach can be expected to work well in higher dimensions under

reasonable circumstances.

As for the one dimensional case, we write Mh for the Metropolised version of the

discretization Dh, de®ned in (37) of Part I; and again call Mh the Metropolis-adjusted

diffusion algorithm, or MADA chain. Our goal is to show that by choosing the candidate

transition probability from a broader class of self-targeting candidates, the effectiveness of

the M-H procedure can be substantially enhanced. We will illustrate this in just two

examples.

Example: As in Section 9 of Part I, we consider

p�x�! 1

2� x2
1 � x2

2

� �2

; x � �x1; x2� [ IR2:

For this example, the Metropolis-adjusted Langevin algorithm (MALA) is not

exponentially ergodic (see Theorem 4.3 of Roberts and Tweedie (1996)).

Now let us choose a�x� � �2� x2
1 � x2

2�I, where I is the identity matrix, so that

b�x� � �ÿx1;ÿx2�0 and the Jacobian J�x� of b�x� is

J�x� � ÿ1 0

0 ÿ1

� �
:

In this case the local linearization scheme is de®ned by

Dh��k � 1�h�jDh�kh� � �x1; x2�0*N�mx;h; s
2
x;h�;

where

mx;h � x1 exp�ÿh�
x2 exp�ÿh�
� �

; ax;h �
2� x2

1 � x2
2

2
�exp�ÿ2h� ÿ 1�I:

As in the one dimensional case, to obtain a geometric rate of convergence of the MADA

chain we need some modi®cation of the candidate Dh. In practice we would propose for

this example to use both truncation of ax;h and a t distribution instead of the normal

distribution above.

Example: Secondly, also as in Section 9 of Part I, we consider

p�x�! exp�ÿx4
1 ÿ x4

2 ÿ x2
1x2

2 ÿ x2
1 ÿ x2

2�; x � �x1; x2� [ IR2:

For this example, MALA is not exponentially ergodic from Theorem 4.2 of Roberts and

Tweedie (1996).

In contrast, if we choose the local linearization scheme for the Langevin diffusion

(Section 9 of Part I), then the MADA algorithm is exponentially ergodic. We omit the

proof, but illustrate the exponentially ergodic behavior of Mh in the following two ®gures.

Figure 9 is a trace plot of the steps taken by Mh�kh� for h � 0:1, k � 1; . . . ; 5000 and a

starting point (100, ÿ 40). The arrows indicate the end of each step. Figure 10 is a trace

plot of the steps taken by Mh�kh� for k � 301; . . . ; 5000. It is clear from Figure 9 that the
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process Mh hits a neighborhood of [0,0] (the mode of p ) rapidly, and then proceeds to

approximate the target density p. Over a longer run of 50,000, the rate of rejection for this

example is just 1243/50000, so that clearly, this scheme performs better than the MALA

scheme.

Figure 10. Trace plot of Mh�kh� for k � 301; . . . ; 5000. This shows the shape of the target density p.

Figure 9. Trace plot of 5000 values from Mh�kh� with h � 0:1. This illustrates the speed of convergence from a

distant starting point.
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