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Abstract

The rapid development of biological technology in recent years has generated an
overwhelming quantity of highly complex genetical data. In retrospect it is perhaps
now obvious that standard stochastic sampling algorithms were destined to fail when
applied to the type of models that these data require. During this period, both the ge-
netical and statistical research communities have developed a range of new algorithms
that have endeavoured to avoid these failures. In this article we present a brief jour-
ney through the development of some of these algorithms. We hope to demonstrate
that continued collaborative research and education in both genetics and statistics
disciplines is crucial for the advancement of future sampling frameworks, and call on
researchers in both fields to take up this challenge.

Keywords: Approximate Bayesian Computation; Markov Chain Monte Carlo; Popula-
tion Genetics; Reversible Jump; Simulated Tempering; Statistical Genetics.
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1 Introduction - Initial Value

Research literature in different disciplines has a tendency to persist in parallel streams, al-
though genuine cross-disciplinary research is not as uncommon as it once was. Unfortunately
this seems to occur no matter how closely related the concepts in principle or in practice.
In spite of this, the occasional meme transmission between two literatures often induces an
advancement in methods or understanding in previously overlooked or abandoned areas, as
suddenly fresh viewpoints on old subject matters spark new ideas and insight. While diverse
disciplines, genetics and statistics are especially fortunate in this respect. In particular, in
light of the creation of enormous amounts of genetic data from complex systems through
recent technological advancement, researchers in both communities have been eager to take
up the challenges which have followed.

In this article we examine a snapshot of the development of one aspect of research in the
genetical and statistical literatures in which there is substantial overlap – namely that of
novel stochastic sampling frameworks. Naive implementations of standard algorithms, such
as Markov chain Monte Carlo, have faced many unforseen obstacles when applied to genetics-
based problems, given the complex nature of the implemented models and the involved
local dependency structures these models induce. The resulting development of algorithmic
solutions to these problems has had implications in both genetics and statistics. We hope to
demonstrate that progress in one field, and the transmission of these new ideas between the
disciplines, has in the past proved crucial for the methodological advancement in the other.
While these developments are not necessarily causal, we argue that the continuation of this
interaction, and the implementation of interdisciplinary education, is crucial for technological
progress in the future.

In the spirit of the sampling frameworks themselves, we take as our initial value (and
admittedly not quite at random) one of the most accessible and popular algorithms to date.

2 Transmissions between literatures

2.1 Metropolis-Hastings samplers

Despite arising originally in the statistical physics literature over 50 years ago, the Metropolis-
Hastings algorithm (Metropolis et al. 1953; Hastings 1970) was only brought to the attention
of the mainstream statistics literature by Gelfand and Smith (1990).

This algorithm broadly states how to sample from a distribution π(θ|x) defined upon a
parameter vector θ ∈ Θ and with observed data x. Subject to a few technical requirements,
a sequence of dependent vectors θ(0), θ(1), . . . may be constructed given an initial value θ(0).
For each step, a new value θ′ ∼ q(θ′|θ(t)) is generated by sampling from a non-empty subset
of the components of θ(t), for each t = 1, 2, . . ., where q is an arbitrary density defined upon
Θ. The resulting vector in each case is accepted as the new point, so that θ(t+1) = θ′, with
probability

min
{
1, A

[
θ(t) → θ′

]}
,

where A
[
θ(t) → θ′

]
= π(θ′|x)q(θ(t)|θ′)/π(θ(t)|x)q(θ′|θ(t)) in this case, otherwise θ(t+1) = θ(t)

remains unchanged. A special case of this algorithm, known as the Gibbs sampler, arises
when π(θ′|x) = q(θ′|θ(t)) generating an acceptance probability of one. See, for example, Chib
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and Greenberg (1995) for a useful introduction, or Robert and Casella (2004); Gilks et al.
(1995) for more detailed reference texts.

A popular and conceptually accessible generalisation of the above scheme is the “re-
versible jump” sampler proposed by Green (1995) which extends the Metropolis-Hastings
sampler to a multi-model setting. Here we now entertain a (usually) countable set of mod-
els M = {M1, M2, . . .} each defined upon their own (possibly overlapping) state spaces
Θ1, Θ2, . . . admitting inference on the model vector and model indicator pair (θk, k). The
procedure is then the same as for the Metropolis-Hastings algorithm (albeit with a few more
details) in that new samples are generated by proposing to move from the current pair
(θ(t), k(t)) to a proposed pair (θ′, k′) for which k′ may not be equal to k(t), and for which θ′

and θ(t) may be of differing lengths. This move is then similarly accepted with probability

min
{
1, A

[
(θ(t), k(t)) → (θ′, k′)

]}
,

so that (θ(t+1), k(t+1)) = (θ′, k′) or else (θ(t+1), k(t+1)) = (θ(t), k(t)) as before. The exact expres-
sion for A

[
(θ(t), k(t)) → (θ′, k′)

]
is a little more detailed than for the standard Metropolis-

Hastings, which we omit here for brevity. However tutorial-style expositions in the QTL and
change-point modelling settings are provided respectively by Waagepetersen and Sorensen
(2001) and Green (2001), or in a more research-oriented setting by Sisson (2005).

The application of these two samplers alone in the literature is immense – their endemic
usage is certainly too vast to do justice here. We merely refer the interested reader in
particular to the informative sources of Sorensen and Gianola (2002), Balding et al. (2003)
and Gelman et al. (2004) and the extensive applications and references therein.

2.2 Naive samplers don’t mix

While simple Monte Carlo methods had been established in the genetics literature for many
years previously (Wright and McPhee 1925; Edwards 1968, for example), the Gibbs sampler
was immediately adopted as a means to approximate probabilities on genealogies when exact
computation (via the peeling algorithm of Cannings et al. 1978) was infeasible (Thompson
2000).

Under Mendelian laws of inheritance an individual randomly receives one allele (gene
type) independently from each parent, and in turn randomly transmits an allele to each of
its own offspring. For example, in the pedigree in Figure 1, individual 11 receives an A-allele
from its maternal parent, and transmits either a B or C-allele to its progeny. Accordingly,
individual 11 must carry either genotype AB or AC.

Given the Mendelian laws, the Markov nature of the models adopted on pedigrees made
the Gibbs sampler particularly attractive from a computational viewpoint. In such a sampler,
the parameters of interest were the unknown genotypes, at a single locus, of individuals
related via a pedigree structure (such as in Figure 1), or similarly through the reformulation
into inheritance vector representations (Lander and Green 1987). However it was soon
discovered that naive application of Markov chain based samplers would lead to problems in
terms of poor sampler mixing (whereby the sampler moves inefficiently around the parameter
space), and could even result in reducible samplers – that is, samplers that were not able to
visit all parts of the parameter space (Jensen and Sheehan 1998; Sisson 2002).

For the pedigree in Figure 1, while individuals 11 and (by symmetry) 12 must both carry
either AB or AC genotypes, because both B and C alleles are transmitted to individual
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Figure 1: An inbred pedigree featuring a first-cousin mating with three alleles (A,B, C) at the
locus of interest, taken from Jensen and Sheehan (1998). Circles, squares and diamonds denote
female, male and individuals of unspecified gender respectively. Shaded individuals have known
genotype.

13, the genotypes of the pair (11, 12) are constrained to either (AB, AC) or (AC, AB).
Given these restrictions on the parameter space, a Markov chain starting at (AB, AC) for
these individuals could never reach the configuration (AC, AB) with single genotype Gibbs
updates as the necessary intermediary states (AB, AB) or (AC, AC) were inconsistent (i.e.
occurred with probability 0) with the pedigree structure and observed genotypes. Hence,
such a sampler is reducible. In addition for this example, because the B and C alleles must
originate from individuals 2 and 3, this pair is similarly constrained to carry (AB, AC) or
(AC, AB).

In general, sampler reducibility stemmed from the complex local dependency structures
induced by pedigree structure, in combination with partial information observed through the
genealogy. To complicate matters, in general it is not known which nor how many individ-
uals have such constraints. As most real world studies constitute multi-locus analyses the
magnitude of the problem was compounded further, affording severe problems for algorithm
design.

A number of solutions to the sampler reducibility problem were proposed, either focusing
on extra and (often unavailable) knowledge of the problem (Jensen and Kong 1999; Hurn
et al. 1999; Lin 1995) or by adopting an augmented state space approach to improve mixing
(Sheehan and Thomas 1993; Lin et al. 1993; Geyer 1991). The method of Sheehan and
Thomas (1993) proposed assigning a small probability, γ, to all inconsistent configurations
on the pedigree, enabling a Markov chain to step through the necessary states needed to
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Genotype
Individual AA AB AC BB BC CC

γ = 0 2 0 0 1.00 0 0 0
Rejection rate = 0% 8 0 0.26 0 0.45 0.30 0

Length of chain = 1,000 11 0 0 1.00 0 0 0
γ = 0.001 2 0 0.89 0.11 0 0 0

Rejection rate = 50.98% 8 0 0.11 0.18 0.20 0.28 0.24
Length of chain = 2,041 11 0 0.41 0.59 0 0 0

γ = 0.005 2 0 0.41 0.59 0 0 0
Rejection rate = 92.18% 8 0 0.14 0.20 0.17 0.33 0.16
Length of chain = 12,768 11 0 0.53 0.47 0 0 0

γ = 0.05 2 0 0.51 0.49 0 0 0
Rejection rate = 99.02% 8 0 0.18 0.14 0.14 0.35 0.18

Length of chain = 101,386 11 0 0.50 0.50 0 0 0
2 0 0.50 0.50 0 0 0

True values 8 0 0.17 0.17 0.17 0.33 0.17
11 0 0.50 0.50 0 0 0

Table 1: Marginal genotype distributions of selected individuals, estimated from 1,000 con-
sistent simulations for varying values of γ = 0, 0.001, 0.005, 0.05.

visit each consistent configuration. Following the simulation, all inconsistent states were
discarded and only the consistent configurations taken as the final sample.

Table 1 shows the results of applying this method to the pedigree in Figure 1 for varying
values of γ. If for simplicity we assume that all consistent configurations on the pedigree are
equally likely, then individuals 2, 3, 11 and 12 will each carry an AB genotype for exactly
50% of all consistent samples, and genotype AC for the rest (while respecting the known
joint constraints). Similarly, individuals 8 and 9 may carry every genotype excluding AA,
with the BC genotype being twice as common.

A Markov chain was implemented until 1,000 consistent configurations were obtained.
When γ = 0 the sampler only considers consistent configurations, and so is unable to move
away from the consistent starting configuration of genotype AC for individuals 2 and 11.
This chain is clearly reducible, as expected. As γ increases, thereby giving greater probability
to inconsistent states, two things happen. Firstly, the chain moves increasingly freely around
the parameter space, enabling more frequent visits to consistent configurations and thereby
enabling more accurate probability estimates. Secondly, the chain spends longer periods
of time in inconsistent configurations, meaning that a longer Markov chain is required to
generate a fixed number of consistent samples. Here, when γ = 0.05, although the marginal
probabilities are fairly constistent with their true values, a chain of length 101,385 was needed
to produce 1,000 consistent configurations. Accordingly there is a trade-off between accuracy
and computational intensity.

However, of all such augmented state space algorithms, one in particular has had a hugely
important influence in the mainstream statistics literature.
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2.3 Simulated tempering samplers

In an application involving ancestral inference on a (then) very large genealogy, Geyer and
Thompson (1995) generalised the ideas behind some of the augmented state space samplers
to develop a broad sampling framework that would “mix rapidly enough to be usable for
problems in which other methods would require eons of computing time... which [is] essential
for attacking very hard problems, which arise in areas such as statistical genetics.” Broadly
the simulated tempering algorithm reformulates the multiple coupled sampler of Geyer (1991)
into a single Markov chain and, given a more general framework, permits application to a
wider range of modelling situations. The method has now become a standard technique to
overcome problems associated with slowly mixing Markov chains.

Commonly (although not exclusively – we adopt this setting for illustration), simulated
tempering comprises simulation via standard stochastic methods from a model π(θ, τ |x) ∝
π(θ|x)1/τ , defined over an augmented state space Θ×T with T = {1, 2, . . . , τmax}, leading to
a generated series {(θ(t), τ (t))}. Here, τ is colloquially referred to as the “temperature” of the
system in analogy with the physical annealing process. Thus τ = 1 is the “cold” distribution,
and τ > 1 generates increasing degrees of “heated” distributions. Our distribution of interest
is then π(θ|x) = π(θ|x, τ = 1). Subsetting the sampler output to obtain {θ(t) : τ (t) = 1}
results in a series whose stationary distribution is the target distribution. The augmented
sampler will possess improved mixing properties as π(θ|x)1/τ is flat relative to π(θ|x) when
τ is large, so that move proposals made when τ is large will have a greater acceptance
probability. For the augmented state space sampler of Sheehan and Thomas (1993) in
the previous section, γ is the augmenting parameter. Permitting γ to vary during chain
implementation would be an illustration of a simulated tempering sampler in this setting.

Although a generic sampling scheme in its own right, the simulated tempering algorithm
is beginning to be incorporated into other areas in the sampling literature, both genetical and
statistical, that are currently active in research. One such area in genetics is discussed in the
next section. Another, in the statistical literature, known as perfect or exact sampling aims
to draw independent realisations exactly from π(θ|x). Thereby the usual Markov-sampler
practicalities, such as the necessity of ensuring that the chain has converged, are circum-
vented, and the output realisations are independent rather than dependent, accordingly
reducing the number required for inference. Perfect sampling is considered one of the “holy
grails” of statistical sampling algorithms. While there are certainly other exact sampling
algorithms available, we only consider those based on the tempering framework here.

Intuitively, in analogy with simulated tempering, the sampler proceeds by moving through
the augmented state space of “heated” models, indexed by τ ∈ T , and in each round
of parameter updates, proposes a move from (θ(t), τ (t)) to the same point (θ(t), τ ∗) in a
distribution indexed by τ = τ ∗, from which it is possible to sample directly. Here, any of the
standard statistical distributions, such as the Normal or Uniform (for which τ ∗ →∞), would
be sufficient. The smallest possible probability of this occurring at any stage, assuming an
identical state space Θ for all tempering models, is given by

ε = inf
θ∈Θ ,τ∈T

q(τ ∗|τ) min {1, A [(θ, τ) → (θ, τ ∗)]} ,

where q(τ ∗|τ) is the probability of proposing the move from model τ to model τ ∗.
We now hypothetically consider an infinite number of samplers commencing at time

t = −∞ initialised at every possible point θ ∈ Θ. If we can reasonably assume that all of
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these chains coalesce into a single chain in the model τ ∗ with probability ε (and we make
this assumption), focus would then naturally be upon the first instance this occurred in the
reverse-time chain from t = 0,−1,−2, . . . ,−T . By logical argument it can be deduced that
T ∼ Geometric(ε). Consequently, commencing a forward-time Markov chain sampler start-
ing in model τ ∗ at time t = −T , where T is sampled randomly from its known distribution,
will have the effect of generating an independent realisation exactly from π(θ|x) at time
t = 0. The process is then repeated for as many realisations as required.

The above argument is fairly subtle, but is now generally accepted. Propp and Wil-
son (1996) discuss the original above idea of “coupling chains from the past,” whereas the
tempering-based sampler is described in Brooks et al. (2006) (see also Møller and Nicholls
1999). The perfect sampler derived from the simulated tempering framework of Geyer and
Thompson (1995) is unique among current perfect samplers in that it may additionally be
extended to the “reversible jump” setting.

This extension is conceptually straight-forward. The Markov chain is now defined on
joint parameter and model indicator space, where τ ∈ T now indexes individual models, and
the parameter θτ ∈ Θτ may depend on the model. The description of the algorithm remains
unchanged, except that the smallest probability of moving to model τ ∗ at any stage must
now be explicitly calculated over all models of possibly varying dimension. That is

ε = inf
θτ∈Θτ ,θτ∗∈Θτ

τ∗ ,τ∈T
q(τ ∗|τ) min {1, A [(θτ , τ) → (θτ∗ , τ

∗)]} ,

where Θτ
τ∗ ⊆ Θτ∗ denotes the subset of parameter space in model τ ∗ which it is possible

to reach from model τ . While a number of issues remain regarding implementation for this
algorithm – mainly involving the practicality in estimating ε in this setting – it is clear that
the tempering framework has high importance in both genetical and statistical literatures.

We now examine yet another area in which the concepts of simulated tempering are
beginning to influence new types of algorithms in statistical genetics.

2.4 Bayesian computation with intractable likelihoods

While the standard Metropolis-Hastings algorithm and its variants have proved invaluable
in a wide range of genetics-based analyses, many scenarios – particularly in the population
genetics literature – have uncovered unforseen limitations to these methods in practice.
Specifically, many studies typically consist of large numbers of nuisance parameters which
in theory may be stochastically “integrated out” through the sampling procedure. However,
in practice, large numbers of parameters in combination with complex models can result
in likelihoods that are computationally prohibitive or even impossible to evaluate. See, for
example, Beaumont et al. (2002); Marjoram et al. (2003); Estoup et al. (2004); Hamilton
et al. (2005). In addition, Chikhi and Bruford (2005) note that when likelihoods are available,
their evaluation can be prohibitively slow simply due to the shear size of typical genetics
datasets generated in the genomic era (e.g. 10–20 microsatellite loci typed for 200-300
individuals). The practicality of likelihood-driven stochastic sampling methods is thereby
severely limited.

Over the last few years a new family of stochastic simulation algorithms has been devel-
oped, primarily in the genetics literature, in order to circumvent problems faced in evaluating
the likelihood in traditional sampling methods. These have since been termed “approximate
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Bayesian computation” techniques (c.f. Beaumont et al. 2002), although they are by no
means restricted to inference under the Bayesian paradigm.

Broadly, rather than evaluating the likelihood, these methods assess how closely a given
vector of parameters, θ, corresponds to the observed data through elicitation of data sum-
mary statistics, S = (S1, . . . , Sq), in accordance with the “model” under consideration. A
basic rejection sampling algorithm has evolved following methods proposed by a number of
authors (Tavaré et al. 1997; Fu and Li 1997; Weiss and von Haeseler 1998; Pritchard et al.
1999). These state that at each stage, a new point θ′ ∈ Θ is sampled independently from the
prior (or non-Bayesian equivalent) π(θ). A simulated data set generated from the proposed
parameter vector is then simulated according to the model, and the appropriate summary
statistics Si(θ

′) then evaluated. The correspondence of the vector θ′ to the data is then
evaluated through the summary statistics via an appropriate metric

ρ(S, S(θ′)) = ||(S1, . . . , Sq)− (S1(θ
′), . . . , Sq(θ

′))||,

and the point θ′ is accepted if ρ(S, S(θ′)) ≤ δ for some tolerance δ. Otherwise, the point
is rejected as not residing in the portion of the state space which adequately represents the
observed data.

While possessing considerable intuitive appeal, these methods unfortunately enjoy a num-
ber of impracticalities which have only recently begun to generate possible solutions. One
clear problem is the inefficient nature of simulating proposal values directly from the prior,
as in general prior densities do not coincide with the posterior. Another relates to the choice
of tolerance, δ. If this value is taken too low, the algorithm will yield very poor acceptance
rates; if too high, then the sample will generate a biased distribution as unlikely parameter
vectors are accepted.

Two qualitatively different approaches have attempted to tackle these issues. The first,
suggested by Beaumont et al. (2002) aims to reuse those samples otherwise rejected as being
in exceedance of the tolerance δ. In this scenario, all proposed samples are transformed
via a local-linear regression in the direction of the (S − S(θ′)) axis, weighted according
to the value of ρ(S, S(θ′)) to reduce the effect of the discrepancy between S and S(θ′).
The transformed samples are then accepted as realisations from the distribution of interest.
Thus poor acceptance rates are circumvented, and the tolerance does not become a defining
efficiency parameter.

A second approach to the problem of sampling inefficiency has been the adoption of a
Markov chain sampling framework (Marjoram et al. 2003), where the proposal parameter
vector θ′ is drawn conditionally on the previous value θ(t) via some proposal density q(θ′|θ(t)).
A Metropolis-Hastings approach is then adopted, accepting the move from θ(t) to θ′ with
probability min

{
1, A

[
θ(t) → θ′

]}
, where in this situation

A
[
θ(t) → θ′

]
=

π(θ′)q(θ(t)|θ′)
π(θ(t))q(θ′|θ(t))

1(ρ(S, S(θ′)) ≤ δ),

where 1(X ) = 1 if X is true, and 0 otherwise. The acceptance probability is thereby equiva-
lent to the standard Metropolis-Hastings formulation with the difference that the likelihood
ratio is replaced with the equivalence to within a tolerance of the simulated summary statis-
tics via the indicator 1(·). In this manner, the Markov chain will converge to the region
of the state space with the greatest posterior density, increasing the acceptance rate of the
algorithm.
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As an illustration, consider the analysis of Tanaka et al. (2006), who construct a stochas-
tic model at the genetic level, to examine the transmission and mutation of tuberculosis.
Their model simulates a sample of infected individuals from which it is possible to count and
group the different genotypic strains of the pathogen, and compare directly to an observed
sample from a real outbreak. The “clusteredness” of the sample – a function of the number
of individuals with each strain – provides information on the extent of recent transmissions,
assuming the mutation rate is known. For example, a high proportion of single-individual
clusters indicates a high level of recent disease transmission. The innovation of Tanaka et al.
(2006) lies in using an explicit model of transmission and mutation, along with Bayesian
estimation of key parameters from genotypes of tuberculosis isolates.

Denoting ni as the number of individuals with pathogen genotype i, and n =
∑

ni as
the sample size, Tanaka et al. (2006) apply the Metropolis-Hastings approach of Marjoram
et al. (2003) with

ρ(S, S(θ)) = |H −H(θ)|+ 1

n
|g − g(θ)|,

where
H = 1−

∑
(ni/n)2

is a summary statistic describing the genetic diversity of the sample, and g is the number of
distinct genotypes in the sample. Figure 2 illustrates posterior output of this analysis.

The top image in Figure 2 illustrates the effect of the tolerance, δ, on the performance
of the chain. Visually, lower tolerances yield appreciably lower acceptance rates. Tanaka
et al. (2006) attain an acceptance rate of 0.3% in their final analysis (black line). The other
two images in Figure 2 illustrate the relative bias induced by the tolerance on key posterior
estimates of the study. The doubling time is the required duration for the number of cases
in the population to double. The reproductive value is the expected number of new cases
produced by a single infectious case while the primary case is still infectious. Clearly there is
an evolution of each posterior as the tolerance decreases. While the true posterior can only
be realised for δ = 0, this is in general impractical in all but the simplest simulations. In
practice, the hope is that the posterior will remain essentially unchanged beyond the adopted
tolerance level.

The method of Marjoram et al. (2003) still requires a priori specification of the toler-
ance δ, and is clearly affected by mis-specification. An extension by Bortot et al. (2006)
proposed improving this framework in analogy with the simulated tempering framework of
Geyer and Thompson (1995) by augmenting the parameter space to include the tolerance
(θ, δ). By specifying a “pseudo-prior” on δ (that is, a prior that serves only to facilitate sam-
pler performance), the algorithm will exhibit improved mixing over a range of tolerances.
This permits the final sample to be derived by either conditioning on those samples with
ρ(S, S(θ′)) ≤ δ∗, for some δ∗ chosen a posteriori, or by weighted transformation of the full
sample in the manner of Beaumont et al. (2002). Most recently, Sisson et al. (2006) have
noted that likelihood-free Bayesian computation methods based on Markov chains (that is,
the methods by both Marjoram et al. 2003 and Bortot et al. 2006) are particularly inef-
ficient at estimating the distributional tails. They advocate a population-based sequential
Monte Carlo sampler as a way to realise improved and more efficient estimation, and suggest
that their algorithm is more flexible than single Markov chain-based methods in terms of
simulating from more complex (e.g. multi-modal) distributions.
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Figure 2: Various posterior estimates using the model of Tanaka et al. (2006) with a range of
tolerance values, δ. Darker lines denote lower tolerances. Final posterior estimate is denoted by
black line.

There remain a number of unresolved issues relating to all of the above methods, ensuring
that research in this area will be active for years to come. These involve the derivation of ap-
propriate sufficient (or approximately sufficient) summary statistics which is not necessarily
a trivial procedure, the sampling variability of these statistics which will affect the accep-
tance rate of the algorithm, the metric ρ and the most efficient formulation of the algorithm
itself.

3 Discussion - Future Proposals and Implications

In this article we have presented a small subset of the ways in which genetical and statis-
tical research have interacted in a positive way to advance methods and tools in stochastic
simulation techniques. Others undoubtedly exist. For example, the biologically inspired ge-
netic algorithms again coupled with ideas from simulated tempering are now being adopted
to perform simulation according to specified densities (Liang and Wong 2000) rather than
merely finding solutions according to their fitness functional. Similarly, methods recently
developed in the statistical literature to increase the acceptance rates between models in
reversible jump samplers (Brooks et al. 2003) are now being taken up in the analysis of
quantitative trait loci.
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The implications of these interactions are multi-faceted. One important issue arises
regarding within which academic journals both geneticists and statisticians should be pub-
lishing and reading. While motivated by problems in applying routine statistical methods
to problems in genetics, the simulated tempering article of Geyer and Thompson (1995)
appeared in the statistics literature (Journal of the American Statistical Association). The
impact of the leap in technology was accordingly presented to an audience interested in fur-
ther developing this methodology, while simultaneously highlighting the rich area of geneti-
cal problems and applications. A decade on, so-called “biostatistics” is now overwhelmingly
considered an important area of statistical research in its own right.

In contrast, the early approximate Bayesian computation papers (Beaumont et al. 2002;
Marjoram et al. 2003) respectively appeared in Genetics and the mildly biologically oriented
PNAS. Accordingly, while many population geneticist researchers now have the tools to im-
plement analyses that were previously intractable, these methodologies have been largely
overlooked by the statistics community. While that is now beginning to change (and con-
tinuing this trend is one of the aims of this article), the obvious difficulty is that unless
statisticians read a broader literature than mainstream statistics journals, they risk missing
out on exciting developments in related disciplines, and detecting unforseen problems with
their own methods. This process can be greatly aided, for example, by signing up to receive
table-of-contents email alerts from a selection of the most suitable genetics journals. Simi-
larly, statisticians also need to publish in a broader range of journals than the top statistics
journals, to ensure that the latest methodologies are available to those who wish to use them.

Given the multidisciplinary implications for research reading and publishing, a down-
stream effect is that to achieve optimal research dynamics more encouragement should be
given to researchers to conduct research of an interdisciplinary nature. For statisticians this
directional research is sometimes self-driven; the latest example of this being the recent rush
to develop methodology appropriate for the analysis of “large p, small n” microarray data.
Similarly consider the number of positions open for bio-statisticians in recent years. However,
this push can only be sustained and fully realised if statisticians are increasingly trained in
relevant biological and genetics-based areas as part of their graduate education, and if the
prominence of interdisciplinary programs are raised. It is no coincidence that the authors
Geyer and Thompson (1995), Beaumont et al. (2002) and Marjoram et al. (2003) primarily
research in the interface between statistics and genetics.

In concluding, while we have so far resisted the temptation to describe the transmission
of research theory and practice between genetical and statistical literatures as analogous to
a Markov chain defined on a “literature” state space, perhaps the resemblance is not only
superficial. The propagation of ideas between the two strongly bimodal research streams are
vital to achieving good mixing, both in terms of the metaphor and also with respect to the
technologies developed. The search for a family of sampling algorithms that may be adopted
for use in a broad range of modelling situations is a generic and ongoing challenge. However
it is readily observed that analyses in genetic-based disciplines, by their very nature, generate
some of the greatest obstacles to be faced in terms of model complexity and good sampler
efficiency. Our belief is that only through continued development within both genetical and
statistical literatures will these goals be achieved. Genetics and stochastic simulation do mix
— but proposals from both research streams are necessary for future progress.
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