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Summary. In a Bayesian analysis of finite mixture models, parameter estimation and clustering 
are sometimes less straightforward than might be expected. In particular, the common practice of 
estimating parameters by their posterior mean, and summarizing joint posterior distributions by 
marginal distributions, often leads to nonsensical answers. This is due to the so-called 'label 
switching' problem, which is caused by symmetry in the likelihood of the model parameters. A 
frequent response to this problem is to remove the symmetry by using artificial identifiability 
constraints. We demonstrate that this fails in general to solve the problem, and we describe an 
alternative class of approaches, relabelling algorithms, which arise from attempting to minimize the 
posterior expected loss under a class of loss functions. We describe in detail one particularly simple 
and general relabelling algorithm and illustrate its success in dealing with the label switching 
problem on two examples. 

Keywords: Bayesian approach; Classification; Clustering; Identifiability; Markov chain Monte Carlo 
methods; Mixture model; Multimodal posterior 

1. Introduction 

The so-called label switching problem arises when taking a Bayesian approach to parameter 
estimation and clustering using mixture models (see for example Diebolt and Robert (1994) 
and Richardson and Green (1997)). The term label switching was used by Redner and Walker 
(1984) to describe the invariance of the likelihood under relabelling of the mixture com- 
ponents. In a Bayesian context this invariance can lead to the posterior distribution of the 
parameters being highly symmetric and multimodal, making it difficult to summarize. In 
particular the usual practice of summarizing joint posterior distributions by marginal 
distributions, and estimating quantities of interest by their posterior mean, is often inappro- 
priate. In this paper we summarize and unite some recently suggested solutions to this 
problem. 

The structure of the paper is as follows. In the next section we introduce the notation, 
describe the label switching problem in more detail and illustrate the problem on an example 
data set. In Section 3 we demonstrate that the common strategy of removing label switching 
by imposing artificial identifiability constraints on the model parameters does not always 
provide a satisfactory solution, and we give a brief overview of other recent approaches to 
solving the problem: the relabelling algorithms suggested by Stephens (1997a, b) and Celeux 
(1998), and the decision theoretic approach considered by Celeux et al. (2000). Section 4 
describes how the relabelling algorithms fit into a decision theoretic framework, and we use 
this to rederive a relabelling algorithm from Stephens (1997b) which is easily and widely 
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applicable. The success of this algorithm in removing the label switching problem is demon- 
strated on some examples in Section 5, and results and extensions are discussed in Section 6. 

2. The label switching problem 

2. 1. Notation 
Let x = xl, . . ., x,1 be independent observations from a mixture density with k (k assumed 
known and finite) components: 

p(X Ii, 4), 71) = r1 f(x;X 71)? . .. + Fkf(X; Ok, )' (1) 

where ir = (-rl, .. ., 1rk) are the mixture proportions which are constrained to be non-negative 
and to sum to 1; 4) = (i$, . . , k) are (possibly vector) component-specific parameters, with 
qj being specific to componentj, iq is a (possibly vector) parameter which is common to all 
components andf is a density. We write 0 for the parameter vector (ir, ), r1). 

It is sometimes convenient to assume that each observation xi arose from an unknown 
component zi of the mixture, where zl, . . , z,, are realizations of independent and identically 
distributed discrete random variables Z, . ., Z,, with probability mass function 

Pr(Zi = j l7, >, 71) -_ rj (i = 1, ... ., n; j -_ 1, . . ., k). 

Conditional on the Zs, xl, . . ., x,, are then independent observations from the densities 

p(xiIZi = j, 7r, 4), 71) = f(Xi; qj, 71) (i = 1, ... ., n). 

A Bayesian approach to inference requires the specification of a prior distribution p(iir, 
4), rq) for the parameters of the mixture model. Inference is then based on the posterior 
distribution p(7r, 4), I x), and quantities of interest are calculated by integrating out the model 
parameters over the posterior distribution. For example, the marginal classification prob- 
abilities for an observation xn+l are given by 

Pr(Z,,+1 =jIx,?i,, x) = jf(x,,+l, O' i pq,(47r , rqlx,,+?, x)di7r do d (2) 

Zx | rjf(x,?+i; qj, ,q)p(7r, 0, rjx)derdodq- (3) 

The accurate approximation of such integrals is now routine through the use of Markov 
chain Monte Carlo (MCMC) methods (see Gilks et al. (1996), for example). 

2.2. The label switching problem 
For any permutation v of 1, . . ., k, define the corresponding permutation of the parameter 
vector 0 by 

V(0) = V(r, 4, rq) = ((lrvw, * * *, v(k)), (4b(l), * * *v(k)), 7)- (4) 

The root of the label switching problem is that the likelihood 

,1 

is the same for all permutations of 0. Some implications of this for likelihood analyses are 
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discussed by Redner and Walker (1984). In a Bayesian analysis, if we have no prior 
information that distinguishes between the components of the mixture, so our prior 
distribution p(ir, ?b, rq) is the same for all permutations of 0, then our posterior distribution 
will be similarly symmetric. This symmetry can cause problems when we try to estimate 
quantities which relate to individual components of the mixture. For example, by symmetry 
the predictive scaled component densities, given by the right-hand side of expression (3), are 
the same for every component, and so the marginal classification probabilities, given by 
equation (2), are 1/k for every observation. These classification probabilities are thus useless 
for clustering the observations into groups. Similarly, the posterior means of the component- 
specific parameters are the same for all components and are thus, in general, poor estimates 
of these parameters. 

2.3. Example 
We illustrate the label switching problem on a data set given by Roeder (1990). The data set 
consists of the velocities (in thousands of kilometres per second) of distant galaxies diverging 
from our own, sampled from six well-separated conic sections of the corona borealis. It has 
been analysed under a variety of mixture models by many researchers, including Crawford 
(1994), Chib (1995), Carlin and Chib (1995), Escobar and West (1995), Phillips and Smith 
(1996), Richardson and Green (1997) and Stephens (2000). A histogram of the 82 data points 
is shown in Fig. 1. For illustration we model the data as independent observations from a 
mixture of k = 6 univariate normal distributions: 

p(xl|r, /t, 0 2) = _1 AV(X; u1, o) + -* * ? y ((x; 'k 5/c) (6) 

where JA(; [u, (J2) denotes the density function of the normal distribution with mean [u and 
2 variance (J2. 

We fitted model (6) using Gibbs sampling and the semiconjugate priors used by 
Richardson and Green (1997), where full details of the necessary computational steps can be 
found. The effects of label switching can be seen in the sampled values of the component 
means (Fig. 2). Distinct jumps occur in the traces of the means (Fig. 2(a)) as the MCMC 
scheme moves between relatively well-separated regions of parameter space. Intuitively these 
regions correspond to some of the 6! ways of labelling the mixture components. Estimates 
of the marginal posterior distributions of the means (Fig. 2(b)) are all very similar to one 

LO 
c'J 

0_ 

0 10 20 30 40 

velocity 

Fig. 1. Histogram of the galaxy data, with bin widths chosen by eye, overlaid with the predictive density estimate 
based on fitting a mixture of six normal components to the data 
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Fig. 2. Illustration of effects of label switching in the raw output of the Gibbs sampler when fitting a mixture of six 
normal distributions to the galaxy data: (a) traces of component means; (b) estimated marginal posterior densities 
of component means (the density estimates would all be exactly the same as each other if we ran the MCMC 
scheme for sufficiently long) 

another, anld so estimating the means on the basis of the MCMC output is not straight- 
forward. Traces and density estimates for the mixture proportions and variances also behave 
in this way (data not shown). In contrast, an estimate of the predictive density based on the 
MCMC output (Fig. 1) is unaffected by the label switching problem, since it does not depend 
on how the components are labelled. 

3. Previous work 

3. 1. Identifiability constraints 
A common response to the label switching problem is to impose an iclentifiability constraint 
on the parameter space (such as irl < lr2 < . . . < 1k or ,u <11U2 < . . . <,i+) that can be 
satisfied by only one permutation of 0 for each 0. This breaks the symmetry of the prior (and 
thus of the posterior) distribution of the parameters and so might seem to solve the label 
switching problem. However, for.any given data set, many choices of identifiability constraint 



Label Switching in Mixture Models 799 

Cl 

~~~~~~~0Ci 
0 20 71 _________ 

0 1 0 20 30 40 50 0 1 0 20 30 40 50 0 1 0 20 30 40 50 
mu1 mu_2 mu_3 

U - 

CD CD CDEN [= 

1 0 3 40 50 
0 10 

20 30 40 50 0 1 
u 630 

40 50 

CDu_ mu_ 4u_6 

Fig. 3. Estimated posterior densities for the component means when fitting a mixture of six normal distributions 
to the galaxy data: . obtained by imposing the identifiability constraint til < 112 < . . . < 116; , obtained 
by applying algorithm 2 to the raw output of the Gibbs sampler 

will be ineffective in removing the symmetry in the posterior distribution. As a result, 
problems with label switching may remain after imposing an identifiability constraint if the 
constraint is not carefully chosen. 

For example, suppose that we impose the constraint 1?l < 12 < . . . < 16 in our example. 
This can be done by relabelling the MCMC sample (0(l), . . . 0(N)), applying permutations 
VI, . . ., VN such that the constraint is satisfied by the permuted sample (v#(Q(l)), . . ., VN(O(N)) 

(see Stephens (1997b), proposition 3.1, for a formal justification). Fig. 3 shows estimates of 
the marginal posterior densities of the means based on the permuted sample. These densities 
continue to exhibit multimodality because much of the symmetry in the posterior distribution 
remains, the effect being most noticeable in the densities of b2 and A5. Imposing either of the 
other 'obvious' constraints, irl < cr2 < . . . < 1r6 or o< J< <o, does not solve this 
problem (data not shown). 

3.2. Other approaches 
Despite these problems, few researchers have tried anything more sophisticated or devoted 
much attention to the label switching problem. Exceptions include Celeux et al. (1996) and 
Richardson and Green (1997). Celeux et al. (1996) suggest three methods for detecting label 
switching in simulation studies, but they all rely on the 'true' values of the parameters being 
known, making them difficult to apply to data analyses. Richardson and Green (1997) 
demonstrate that imposing different identifiability constraints (i.e. relabelling the MCMC 
output in different ways) can substantially alter views of the marginal posteriors for the 
parameters, and they advise that the MCMC output should be post processed according to 
different choices of labels to obtain the clearest picture of the component parameters. They 
suggest that labellings be chosen to order on the means, variances, mixture proportions or 
'some combination of all three', without being more specific on what that might mean. 

Stephens (1997a) suggests relabelling the MCMC output so that the marginal posterior 
distributions of parameters of interest are, as far as possible, unimodal and describes 
and demonstrates how this might be achieved in the context of normal mixtures. Other 
relabelling strategies (one of which is more generally applicable, and we consider in more 
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detail later) are investigated and compared in Stephens (1997b). Another generally applic- 
able relabelling algorithm, which relabels the MCMC output 'on line' to reduce storage 
requirements, is mentioned in Celeux (1997) and detailed and demonstrated in Celeux (1998). 
Celeux et al. (2000) compare parameter estimates obtained by using this algorithm with those 
obtained from a more decision theoretic approach, using algorithms that aim to minimize the 
posterior expectation of some suggested loss functions. They found that these (apparently 
different) approaches produced similar results. 

In fact each of the relabelling strategies described by Stephens (1997a, b) and Celeux (1998) 
also has a natural interpretation in terms of attempting to minimize the posterior expectation 
of some loss function, as we now describe. 

4. Relabelling algorithms and the decision theoretic approach 

Estimating parameters, clustering observations into groups and summarizing posterior distri- 
butions can all be viewed as a problem of choosing a single action a from a set of possible 
actions A. The decision theoretic approach is to define a loss function L: A x a -> R, where 
L(a; 0) is the loss incurred for choosing action a when the true value of the parameters is 0, 
and to choose the action a that minimizes the posterior expected loss (or risk) 

R(a) = E{L(a; 0)Ix}. (7) 

Since in the mixture context all permutations of 0 give the same likelihood, it makes sense to 
consider loss functions that are invariant under permutation of 0. We choose to impose this 
invariance by restricting attention to loss functions of the form 

L(a; 0) = min [Lo {a; v(0)}] (8) 

for some L0: A x 0 -- R. 
If 0(l), . . . 0(N) are sampled states (after burn-in) from a Markov chain with stationary 

distribution p(Olx), then it is natural to approximate the risk R(a) by the Monte Carlo risk 

1R(a)=-> min[Lo a; v,(()}] mmi-n > Lo {a; (t(9(t)) ,) N =I vt 1,... lIN IV j= 

and to choose a to minimize 7Z(a). Each iteration of the following algorithm reduces 'k(a): 

Algorithm 1. Starting with some initial values for VL, . . ., VN (setting them all to the 
identity permutation for example), iterate the following steps until a fixed point is reached. 

Step 1: choose a to minimize ENI Lo0 {a; vt(0('t))1 
Step 2: for t = 1, . . ., N choose vt to minimize L0 {a; vt(0't))1 

The computational complexity of this algorithm will depend on the choice of L0, and some 
examples which lead to feasible algorithms are given later. For certain forms of L0, step 2 can 
be solved quickly even for large values of k (see Appendix A). The algorithm is guaranteed to 
reach a fixed point, as each iteration decreases 1D and there are only finitely many possible 
values for the permutations vl, .. ., VN. As with all algorithms which are monotonic in the 
optimization criterion, the solution that is reached may depend on the starting-point, and 
there is no guarantee that the algorithm will converge to the global optimal solution. It is 
therefore prudent to run the algorithm from several starting-points and to choose the a that 
corresponds to the best local optimum found. 
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Each of the relabelling algorithms suggested in Stephens (1997a, b) can be viewed as a 
version of algorithm 1 for some action space and loss function. For example, the relabelling 
scheme described in Stephens (1997a) attempts to permute the sampled values of (ir, si, v.2) SO 

that they fit a distribution of the form 

k 
D(7r; ai) Fl g(u; mi, is) V(,ti; ui, i /ni), (10) 

i= 1 

where the hyperparameters (a, n, 1, u, n) are to be estimated. (D(.; a) denotes the Dirichlet 
distribution, and Ig(.; nin, 1i) denotes the inverse gamma distribution.) The algorithm 
suggested in Stephens (1997a) corresponds to algorithm 1 with the action being the estim- 
ation of (a, m, 1, u, n), and 

LO(a, ni, 1, u, n; Xr, ti, a2) = -log {D(lr; a)171 g(U2; mi, ji) V(pi; ui, ur2/ni)}. (11) 

Similarly, the obvious batch version of the on-line relabelling algorithm described by Celeux 
(1998) is a version of algorithm 1. It corresponds to the action of estimating the means 
m = (nM, ... . md) and variances s = (s1, .. ., Sd) of the elements of the parameter vector 
0 = (01, *..., Od), using 

LO(m, s; 0) =-log { A/(Oi; mi. s2)} (12) 

That is, it is an algorithm that arises naturally if we aim to relabel the sample so that the 
marginal posterior distributions of the parameters look, as far as possible, normal and in- 
dependent. 

This decision theoretic interpretation of relabelling algorithms places them on a sound 
theoretical foundation. It also suggests some insight into which of the methods are appro- 
priate for different situations. In particular the two algorithms corresponding to equations 
(11) and (12) seem most appropriate when primary interest focuses on the posterior distri- 
bution of the model parameters. Although this may be important in some contexts, in other 
contexts we are only indirectly interested in the parameters, for example to cluster the 
observations into groups. 

4.1. A relabelling algorithm for clustering inference 
Suppose that we wish to use our mixture model to cluster the observations into k groups, and 
to give some indication of the uncertainty involved in this clustering. A natural way to do this 
is to report an n x k matrix Q = (qij), where qij represents the probability that observation i 
is assigned to group j (so each row of Q sums to 1). If we interpret the rows of Q as being 
independent probability vectors, then Q corresponds to a distribution on k-group clusterings 
of the data. 

Let P(O) denote the matrix of classification probabilities (pi>(O)), where 

pij(O) = Pr(Zi =jlx, 7r, - = 1f(x; j r/) (13) 

A natural way of measuring the loss for reporting Q when the true parameter values are 0 is 
the Kullback-Leibler divergence from the true distribution on clusterings corresponding to 
P(O), to the distribution on clusterings corresponding to Q: 



802 M. Stephens 

Lo(Q; 0) = ZE pIz, (0) .plz (0) logj 
z1I z,11=1qz n, 

17k rp1j(o) 
- Z Z p1ij(O) logj J. (14) 

For this choice of Lo, algorithm 1 becomes the following algorithm. 

Algorithm 2. Starting with some initial values for VI, . . ., VN (setting them all to the 
identity permutation for example), iterate the following steps until a fixed point is reached. 

Step 1: choose Q = (qij) to minimize 

E E E ps1{z,t(Q(I))} log [_ ] (15) t=I i=I j=I qij 

Step 2: for t = 1, . . ., N choose v, to minimize 

n k [ i 'it_ _ _ _ 

ZP 1{"j t(O)(')) I log pi1{b'1(O )) (16) 
i=l j=l qij 

It is straightforward to show that step 1 is achieved by 

liN 

qij = N p11{i { 1tW) (17) 
Nt=I 

Step 2 is most easily achieved by examining all k! possibilities for each vt. (For moderate k, 
step 2 can be solved more efficiently, as described in Appendix A.) 

Algorithm 2 was first derived in Stephens (1997b) using the less formal motivation of 
attempting to cluster together values of 0(') that correspond to the same way of labelling the 
components. The permutations v, ..., 1VN may be viewed as being chosen to ensure that the 
permuted sample points vj(0(1)), . . ,(0(N)) all lie in the same symmetric mode. The right- 
hand side of equation (17) then approximates the posterior mean of the classification prob- 
abilities taken over just one of the k! symmetric modes. 

5. Examples 

5.1. Fitting a mixture of six normal distributions to galaxy data 
Returning to our example, we applied algorithm 2 to post-process all 20000 sample points 
generated by the Gibbs sampler. (In general we recommend discarding an initial burn-in 
sample before post-processing, but in this case convergence is so rapid that it makes little 
difference.) We applied algorithm 2 from 10 different starting-points: the first chosen by 
initializing all permutations to the identity (corresponding to using the raw output of the 
Gibbs sampler) and nine others chosen by selecting the initial permutations at random. We 
found that, although the optimum found depended on the starting-point used, all optima 
gave qualitatively very similar results. 

For this example the computational requirements of algorithm 2 are moderate by today's 
standards. For example, the run that took the raw output of the Gibbs sampler as its starting- 
point took nine iterations and 18 min to converge (central processor unit times on a Sun 
UltraSparc 200 workstation, using the transportation algorithm to maximize over the 
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permutations, as described in Appendix A) and required of the order of Nkn - 107 bytes of 
storage in our implementation. Both the computational cost per iteration and the memory 
usage increase with N, k and n. Therefore, for larger data sets, with more components, or 
longer runs of the MCMC sampler, an on-line algorithm (along the lines of Celeux (1998)) 
would be preferable. Such an algorithm is given in Section 6. 

We can use the Q found by using algorithm 2 to cluster the observations into groups by 
choosing the allocation variables zi to maximize Qizj (i = 1, . . ., n). The clustering obtained is 
shown in Fig. 4. Of course, the matrix Q contains information on the uncertainty associated 
with the assignment of each individual to its chosen cluster, which is not given in Fig. 4. If a 
single 'best' clustering is all that is required, a more direct approach would be to define a loss 
function on clusterings z = (zl, . ., Z), such as 

fl 

LO(z; 0)=-Z log{pizi(0)}, (18) 

for which algorithm 1 remains straightforward. It seems likely that similar results would be 
obtained. 

It is also interesting to examine the relabelled sample, corresponding to the final values of 
V1,. , VN found by the algorithm. The label switching in evidence in the raw output of the 

oXO 

CD 

V) 

N OD 0 

0 10 20 30 40 

Fig. 4. Clustering of the galaxy data obtained by fitting a mixture of six normal components to the data and using 
the Q found by algorithm 2: the clustering consists of only five groups as no points are allocated to the sixth 
component 
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Fig. 5. Trace plots of the component means from the permuted MCMC sample obtained by using algorithm 2: 
label switching in evidence in the raw output of the Gibbs sampler (Fig. 2(a)) has been successfully removed 
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Gibbs sampler (Fig. 2(a)) appears to have been eliminated from the permuted sample (Fig. 5). 
As a result, most of the multimodality in the estimates of the marginal posterior distributions 
of the means has been removed (Fig. 3), making it straightforward to obtain sensible 
estimates of the component means. This illustrates an advantage of relabelling algorithms 
(i.e. those of the form of algorithm 1) over more general algorithms for minimizing more 
general loss functions, such as those considered by Celeux et al. (2000): the permuted sample 
obtained from a relabelling algorithm may be used to perform inference for any quantity of 
interest, and not just the quantity that was used to derive the algorithm. Under the decision 
theoretic view this is sensible only if the permuted sample that is obtained is reasonably 
similar for different (natural) choices of action space and loss function. In our experience 
(Stephens, 1997b) we have found that this is often so in problems where there is little 
'genuine' multimodality (i.e. multimodality which cannot be explained by permuting the 
parameters) in the posterior distribution of the parameters. Our next example illustrates a 
situation where the posterior distribution exhibits obvious genuine multimodality. 

5.2. Fitting a mixture of three t4-components to galaxy data 
We consider fitting a mixture of three t-distributions, each with 4 degrees of freedom, to the 
galaxy data. Details of the priors and corresponding Gibbs sampling steps used are given in 
Stephens (1997b). The Gibbs sampler was run for 20000 iterations, and the first m = 10000 
sample points were discarded as burn-in. Traces of the remaining sampled values of the 
component means are shown in Fig. 6(a). It is reasonably straightforward to identify by eye 
that 

(a) label switching occurs between the first and second component around iterations 
16 000 and 17 000. 

(b) there is genuine multimodality in the posterior distribution of the parameters, exemplified 
by the change in the means of the first two components, from means near 20 and 23 to 
means near 34 and 21, for about 300 iterations around iteration 14000. 

cli~~~~~~~~~~~~~c E AE E 
10000 14000 18000 10000 14000 18000 10000 14000 18000 

sample point sample point sample point 

(a) 

. . . . .t .. , , . 

10000 14000 18000 10000 14000 18000 10000 14000 18000 
sample point sample point sample point 

(b) 

Fig. 6. Sampled values of means of the three components when fitting a mixture of three t4-distributions to the 
galaxy data: (a) raw output of the Gibbs sampler; (b) permuted sample from algorithm 2 
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In this case it would be straightforward to undo the label switching by eye, or by imposing the 
identifiability constraint m, < IU2 < u3. Nevertheless, it is reassuring that using algorithm 2 to 
post-process the 10000 sample points also successfully undoes the label switching (Fig. 6(b)) 
and retains a clear picture of the two genuine modes in the distribution. Furthermore, 
applying algorithm 2 using random permutations of the Gibbs output as a starting-point 
gave very similar results (data not shown), demonstrating that the algorithm was effectively 
able to undo the label switching separately for each genuine mode in this case. (A different 
relabelling algorithm which we tried on this example (see Stephens (1997b)) did not cope so 
well with the genuine multimodality.) 

Since it makes little sense to perform clustering by averaging over the quite different 
genuine modes, which clearly represent quite different views of the data, we consider the two 
modes separately. We divided the sample by eye, based on the means of the permuted sample 
(Fig. 6(b)), into a minor mode that consisted of 326 sample points (13 786-14 111) and a major 
mode that consisted of the remaining 9674 sample points. Estimates of the scaled predictive 
component densities and corresponding clusterings of the points into three groups, based on 
the permuted sample, are shown in Fig. 7. The probability mass of each mode can be 
estimated by the proportion of sample points lying in each mode, giving 0.0326 for the minor 
mode and 0.9674 for the major mode. However, the sampler mixes poorly between the 
modes, so more simulation would be required for accurate estimates of these quantities. 

01 c 1 0 0 (D0 C| N O .0 

0 10 20 30 40 0 10 20 30 40 

(a) (b) 

o 1 20 3 400 1 20 340 0 10 2 30 4 

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 

(c) 

J -I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' 

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 

(d) 

Fig. 7. Inference relating to individual components when fitting a mixture of three t4-distributions to the galaxy 
data, separating the major mode and minor mode by eye as described in the text: (a) clustering of data, based on 
the major mode; (b) clustering of data, based on the minor mode; (c) scaled predictive component densities (3), 
based on the major mode; (d) scaled predictive component densities (3), based on the minor mode 
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Although in this case genuine multimodality was detectable by eye, in more complex 
situations it would be helpful to detect genuine multimodality automatically. One approach 
which we are currently investigating is to assume the presence of M genuine modes, and 
to summarize information in the posterior by the 'action' of reporting values ( = ((, 
(,2 . . X ,M) for the relative weights of the modes (with E,, (n. = 1), and corresponding 
classification matrices Q = (Ql, Q2, .. QM). Under the loss function 

L {(( Q); 0 = min {-Iog(()?L + C(Qm; 0)), (19) 
in 

where C(Q,,; 0) corresponds to equation (14), a natural extension of algorithm 2 can be used 
to find a locally optimal (t, Q): simply add a step that allocates each 0(t) to the mode mn(t) that 
ninimizes - log(t,.1(,)) + L0Q,n(t), v,(0(t))l, add a step that estimates (l, (,2 . . X ,M by the 
proportion of points allocated to each mode and perform steps 1 and 2 of the existing 
algorithm conditionally on the current values of the mn(t). Informally this will cluster the 
sampled values of 0 into M groups, each representing a genuine mode of the posterior 
distribution of the parameters. The choice of M could be done either manually by examining 
the results obtained for different M or more formally by adding to the loss function a penalty 
term that depends only on M, although it is not clear what form this penalty term should 
take. Preliminary experience suggests that the answers obtained by using this approach can 
be very sensitive to the choice of starting-point of the algorithm, so performing several 
runs with different starting-points can be important. Similar methods for identifying multi- 
modality may also prove helpful for summarizing information in the posterior distribution 
in contexts where the label switching problem does not arise. 

6. Discussion and extensions 

Our examples demonstrate that algorithm 2 provides a more generally satisfactory solution to 
the label switching problem than imposing obvious identifiability constraints. In our experi- 
ence, applying different relabelling algorithms, corresponding to different choices of loss 
function and action space, often leads to similar results (see Stephens (1997b), for example). 
This is consistent with the results reported in Celeux et al. (2000). Algorithm 2 has several 
appealing features that make it our favourite relabelling algorithm. From a theoretical 
viewpoint we prefer clustering-motivated approaches to those motivated by parameter 
estimation, as (while admitting that there will be exceptions) clustering the observations into 
distinct groups seems a more natural aim in many applications. More importantly, from a 
practical viewpoint it is simple to implement and is very general: for example it can be applied 
to any finite mixture model where the component densities can be calculated. In particular, it 
is straightforward to apply the algorithm to mixtures whose component densities have very 
high dimension, where imposing identifiability constraints is likely to be more problematic 
than for the simple univariate mixtures that we considered in our examples. (See Stephens 
(1997b) for an example of application of the algorithm to bivariate normal distributions.) 

6.1. Label switching in other contexts 
Although algorithm 2 is very general, there are contexts other than finite mixture models in 
which the label switching problem occurs, and for which algorithm 2 is inappropriate. For 
example, in a Bayesian analysis of a hidden Markov model (e.g. Robert et al. (2000)) the 
likelihood is invariant under permutation of the labels of the hidden states. If suitably 
symmetric prior distributions are used then the label switching problem arises when attempt- 
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ing to infer, for example, which hidden state zi gave rise to observation xi (i = 1, . . ., ni). The 
derivation of algorithm 2 relied on the zi being independent given parameters 0, which is 
usually not true in a hidden Markov model. We can deal with this by defining a loss L(Q; z) 
for reporting Q when the true clustering of the observations is z (this replaces defining the 
loss C(Q; 0) for reporting Q when the true value of the parameters is 0.) A natural choice 
corresponds to 

RI 

Lo(Q; z) = - log(qiz.). (20) 

This leads to a straightforward algorithm which can be applied to any classification or 
clustering problem where we can construct a Markov chain with stationary distribution 
Pr(zlx)-even when the number of clusters is allowed to vary (e.g. Richardson and Green 
(1997) and Stephens (2000)), although in this case problems with genuine multimodality are 
likely to arise. 

6.2. An on-line algorithm 
Algorithm 2 can be computationally demanding on storage. In our implementation we stored 
N matrices of classification probabilities, each consisting of nk numbers, and in many modern 
applications of MCMC sampling N is required to be rather large (though thinning the 
chain would reduce this burden). Storage requirements could be reduced, at the expense of 
computational speed, by storing 0(l), ., 0(N), and recalculating the classification matrices 
p(M(l)) I .. p(Q(N)) each time that they are needed. None-the-less, for some problems this 
approach could still require very large amounts of storage, and so it is helpful to note that, 
following Celeux (1998), we can define an on-line version of algorithm 2 as follows. 

Algorithm 3. If at stage t the MCMC sample produces 0(t), and the current estimate of Q is 
(t-1) ((t-l) 

(a) choose v1 to minimize 

k r i 1 t O 

pi t vt(0 ) log L--(Ol) ,(2 1 ) 
i=lj=l q11 

(b) set 

^(t) tQ(t l) + P{vt (O(t)} (22) 

By analogy with Celeux (1998) we might choose the starting-point Q(O) by using a small 
preliminary MCMC sample in which it is assumed that no label switching occurs. A more 
reliable (though less convenient) approach would be to choose the starting-point by applying 
the batch algorithm (algorithm 2) to a small preliminary MCMC sample. We have used 
algorithm 3 to undo label switching successfully in cases where there is little genuine multi- 
modality (data not shown). 
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Appendix A 

If the loss function Lo is of the form 

LO(a; 0) = EC (y(a; irj, X>, /), 
kl 

then step 2 of algorithm 1 can be solved quickly, even for large values of k, as follows. It consists of N 
minimization problems of the form 

k 
choose v to minimize E c{j, v(j)} (23) 

j=I 

where 

c(j, I) = L(j) (a; 7r,, 01, TI). 

In particular, for the loss function (14) that produced algorithm 2 we have 

c(j, 1) =il 

log[ 
[P>(0')) lo (24) 

i=l q ij 

Problem (23) is equivalent to the integer programming problem 

k k 
choose { yjl) (j = 1, . k; / = 1, . k) to minimize E E yjl c(j, 1) 

j=1 H11 

k k 
subject to yjl = O or yjl = 1 and E yjl = , yjl = 1, (25) 

with the correspondence between the problems being, if {j } is an optimal solution to problem (25), 
then the corresponding optimal solution to problem (23) is v(j) = 1 if and only if 1 . 

Problem (25) is a special version of the transportation problem, known as the assignment problem, 
for which efficient algorithms exist (see for example Taha (1989), page 195). We used a Numerical 
Algorithms Group Fortran routine to solve this problem. 
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