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Simulating Normalizing Constants: 
From Importance Sampling to Bridge 

Sampling to Path Sampling 
Andrew Gelman and Xiao-Li Meng 

Abstract. Computing (ratios of) normalizing constants of probability 
models is a fundamental computational problem for many statistical and 
scientific studies. Monte Carlo simulation is an effective technique, es- 
pecially with complex and high-dimensional models. This paper aims to 
bring to the attention of general statistical audiences of some effective 
methods originating from theoretical physics and at the same time to ex- 
plore these methods from a more statistical perspective, through estab- 
lishing theoretical connections and illustrating their uses with statistical 
problems. We show that the acceptance ratio method and thermodynamic 
integration are natural generalizations of importance sampling, which is 
most familiar to statistical audiences. The former generalizes importance 
sampling through the use of a single "bridge" density and is thus a case 
of bridge sampling in the sense of Meng and Wong. Thermodynamic 
integration, which is also known in the numerical analysis literature 
as Ogata's method for high-dimensional integration, corresponds to the 
use of infinitely many and continuously connected bridges (and thus a 
"path"). Our path sampling formulation offers more flexibility and thus 
potential efficiency to thermodynamic integration, and the search of op- 
timal paths turns out to have close connections with the Jeffreys prior 
density and the Rao and Hellinger distances between two densities. We 
provide an informative theoretical example as well as two empirical ex- 
amples (involving 17- to 70-dimensional integrations) to illustrate the 
potential and implementation of path sampling. We also discuss some 
open problems. 

Key words and phrases: Acceptance ratio method, Hellinger distance, 
Jeffreys prior density, Markov chain Monte Carlo, numerical integration, 
Rao distance, thermodynamic integration. 

1. THE NEED FOR COMPUTING 
NORMALIZING CONSTANTS 

Thanks to powerful Markov chain Monte Carlo 
(MCMC) methods, we can now simulate from a com- 
plex probability model p(o),  where o is in general a 
high-dimensional variable, without knowing its nor- 
malizing constant. That is, one can evaluate q(w), 
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an unnormalized density function, but cannot di- 
rectly calculate z = Sq(w),u(dw), the normalizing 
constant, where ,u can be a counting measure, a 
Lebesgue measure or a mixture of them. Distribu- 
tions for which q(o) can be easily computed but z 
is intractable arise in many statistical models, such 
as spatial models, Bayesian hierarchical models and 
models for incomplete data. In addition, sometimes 
a quantity of interest is deliberately formulated as a 
normalizing constant of a density from which draws 
can be made. 

For example, in likelihood analysis with miss- 
ing data, it commonly occurs that if one had all 
the observations, denoted by y,,,, the computation 
of the complete-data likelihood for parameters +, 
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L(@1 ycom) 1 @),would be straightforward. = p( ycom 
This suggests the following method for simulating 
the observed-data likelihood L($l yob,) = p(yob,$) 
in the cases where it is difficult to calculate 
L(@lyob,) directly (an example is given in Sec-
tion 5.2). Because 

we can treat the likelihood of interest L($lyobs) 
as the normalizing constant of p(ycomIyobs, $), with 
the complete-data likelihood L ( $  ycom) serving as 
the unnormalized density. In this formulation, ycom 
plays the role of w in our general notation. 

For instance, in genetic linkage analysis a key 
step is the computation of the likelihood of $, the 
locations of disease genes relative to a set of mark- 
ers, based on the observed data yobs from a pedigree. 
The problem turns out to be very difficult for a large 
pedigree with many loci, because of the missing ob- 
servations (e.g., allele types inherited from parents) 
from some members of the pedigree. In this exam- 
ple, simulating ycom from p(ycom yob,,@)is feasible 1 
though far from trivial, for example, by using the 
sequential imputation method (see Irwin, Cox and 
Kong, 1994, and Kong, Liu and Wong, 1994). Be- 
cause of (I) ,  we can use draws from p(ycoml yob,,+) 
to estimate L($lyob,) as a normalizing constant; 
this is essentially the only known effective method 
for dealing with this problem (see, e.g., Thompson, 
1996).An application of bridge sampling, which we 
discuss in Section 3, in linkage analysis with large 
pedigrees is given by Jensen and Kong (1997). 

A related general problem is, given an unnormal- 
ized joint density q(o,  O), to evaluate the marginal 
density p(6) = j"p(o, O),u(dw). Marginal densities 
can be of interest in physical models (e.g., eval- 
uating the distribution of the energy in a Gibbs 
model at a specified temperature) or in statistics, 
as marginal likelihoods or marginal posterior den- 
sities (e.g., if 6 is a parameter of interest and o 
is a vector of nuisance parameters; see Section 5.3 
for an example). The computation of a Bayes fac- 
tor, which requires the calculation of two proba- 
bilities, each of which is the marginal density un- 
der an individual model, p(y) = Jp(y l$)p($) d$, 
is another problem of this sort. This problem has 
received much attention in recent literature; for ex- 
ample, Gelfand and Dey (1994), Chib (1995), Raftery 
(1996), Lewis and Raftery (1997) and DiCiccio, Kass, 
Raftery and Wasserman (1997). In particular, Di- 
Ciccio et al. (1997) provide a comparative study on 
a variety of methods, from Laplace approximation to 
bridge sampling, for computing Bayes factors. Their 
main conclusion is that bridge sampling typically 

provides an order of magnitude of improvement. The 
path sampling, which was not part of their study, 
has potentials for even more dramatic improvement, 
as we demonstrate in the current paper. 

In physics and chemistry, a well-studied problem 
of computing normalizing constants is known as free 
energy estimation. The problem starts with an un- 
normalized density, the system density: 

where H ( o ,  a )  is the energy function of state w,  k is 
Boltzmann's constant, T is the temperature and a 
is a vector of system characteristics. The free energy 
F of the system is defined as 

(3) F (T ,  a )  = -kTlog(z(T, a)),  

where z(T, a )  is the normalizing constant of the 
system density. Simulation of w from p(wlT, a )  = 

q(w T, a)/z(T, a )  is typically carried out via MCMC 
methods. For detailed discussions of this and re-
lated topics, see, among others, Ciccotti and Hoover 
(1986), Ceperley (1995) and Frankel and Smit 
(1996).A more statistically oriented review is given 
in Neal (1993). 

In applications in both genetics and physics, the 
real interest is not a single normalizing constant 
itself, but rather ratios, or equivalently differences 
of the logarithms, of them (i.e., differences of log- 
likelihoods; free energy differences). This is also 
true in many other applications, such as comput- 
ing observed-data likelihood ratios for the purpose 
of monitoring convergence of Monte Carlo EM al- 
gorithms (Meng and Schilling, 1996). Even when 
it appears that we need to deal with a single nor- 
malizing constant, we can almost always bring in a 
convenient completely known density on the same 
space as a reference point, as done in DiCiccio et al. 
(1997). Therefore, without loss of generality, we can 
consider a class of densities on the same space, 
which we denote either by a numerical index t or 
by a continuous parameter 6; that is, 

We make a convention that whenever one of the 
triplet {p, q, z) is defined with a proper index, so 
are the other two with the same index. We also 
use A as a generic notation for the log ratio (e.g., 
A = log(zl/zo)). For some examples, we are inter- 
ested in a particular log ratio A; for others, we wish 
to evaluate z(O), up to an arbitrary multiplicative 
constant, for a continuous range of 6. 

There are three common approaches for approx- 
imating analytically intractable normalizing con-
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stants: analytic approximation (e.g., DiCiccio et 
al., 1997), numerical integration (e.g., Evans and 
Swartz, 1995) and Monte Carlo simulation. Of 
these, Monte Carlo simulation is widely used in 
statistics, mainly because of its general applica- 
bility and its familiarity to statisticians. Arguably, 
it is also the only general method available for 
dealing with complex, high-dimensional problems. 
Current routine simulation methods in statistics 
rely on the scheme of importance sampling, ei- 
ther using draws from an approximate density or 
from one of p,(w) (or p(w0)); see Section 3. How- 
ever, the theoretical evidence provided in Meng and 
Wong (1996) and the empirical evidence provided 
in DiCiccio et al. (1997) and in Meng and Schilling 
(1996) in the context of bridge sampling, show that 
substantial reductions of Monte Carlo errors can be 
achieved with little or minor increase in computa- 
tional effort, by using draws from more than one 
p,(o). The key idea here is to use "bridge" densities 
to effectively shorten the distances among target 
densities, distances that are responsible for large 
Monte Carlo errors with the standard importance 
sampling methods. 

The purpose of this paper is fourfold. First, we de- 
scribe the method of path sampling for estimating 
A unbiasedly (Section 2); the method is a general 
formulation, with the introduction of flexible paths 
aiming at reduction of Monte Carlo errors, of the 
thermodynamic integration method for simulating 
free energy differences. Second, we show that im- 
portance sampling, bridge sampling and path sam- 
pling represent a natural methodological evolution, 
from using no bridge densities to using an infinite 
number of them (Section 3); we thus show that ther- 
modynamic integration is a natural generalization 
of the acceptance ratio method, another well-known 
method for free energy estimation, since the latter 
corresponds to bridge sampling with a single bridge. 
Third, we investigate the problem of optimal paths, 
which turns out to be closely related to the Jef- 
freys prior distribution and the Rao and Hellinger 
distances between two distributions; we illustrate 
the theoretical results by a simple yet informative 
example (Section 4). Fourth, we provide two ap-
plications (Section 5 )  to illustrate the implementa- 
tion and potential of path sampling for statistical 
problems. 

2. A GENERAL FRAMEWORK 
FOR PATH SAMPLING 

2.1 Basic Identities for Path Sampling 

Unless otherwise stated, we assume that densi- 
ties are indexed by a continuous (vector) parame- 

ter 0. This may come naturally from a paramet-
ric family, as in many statistical applications. In 
general, given two unnormalized densities with the 
same support (not necessarily from the same fam- 
ily), qO(w) and ql(w), we can always construct a con- 
tinuous path to link them (the issue of optimizing 
over the choice of path is discussed later in this pa- 
per). For example, as suggested in statistical physics 
(e.g., Neal, 1993, page 96), we can construct a geo- 
metric path using a scalar parameter 0 E [O, 11, 

(5) geometric path, q(w 10) = q;-'(w)q!(w), 

or a harmonic path by analogy to the harmonic 
mean. (As we show in Section 4.3, the geometric 
path is in general suboptimal for the purpose of es- 
timating the ratio of normalizing constants.) 

To derive the basic identity for path sampling, 
we first assume that 0 is a scalar quantity; with- 
out loss of generality, we assume that 0 E [O, 11 
and that we are interested in computing the ratio 
r = z(l)/z(O). Taking logarithms and then differ- 
entiating both sides of the second equation in (4) 
with respect to 0 yields the standard formula (e.g., 
Ripley, 1988, page 64), assuming the legitimacy of 
interchange of integration with differentiation, 

where E ,  denotes the expectation with respect to 
the sampling distribution p(o0) .  Identity (6) is a 
consequence of the fact that the expected score func- 
tion is zero for any 0. By analogy to the potential in 
statistical physics, we label 

Integrating (6) from 0 to 1yields 

Now, if we consider 0 as a random variable (as in 
Bayesian analysis) with a uniform distribution on 
[O, 11,we can interpret the right-hand side of (7) as 
the expectation of U(w, 0) over the joint distribution 
of (w, 0). More generally, we can introduce a prior 
density p(0) for 0 E [O, 11and rewrite (7) as 

where the expectation is with respect to the joint 
density p (o ,  0) = p(olO)p(0). 



166 A. GELMAN AND X.-L. MENG 

Identity (8) immediately suggests an unbiased es- 
timator of A: 

using n (not necessarily independent) draws (w ,, 
Bi) from p(w, 0). In addition, we can estimate 
log(z(b)/z(a)) for intermediate values a ,  b E [0,1] 
by just using the sample points i for which 0, E 

[a, b]. The simulation error of i depends both on 
the choice of p(0) and how the samples are actu- 
ally drawn. A key advantage of (8) or (9) is that 
the summand is on the log scale, which is generally 
more stable than the ratio scale. This is particu- 
larly important when computing the log-likelihood 
ratio as a weighted sum of log-ratios of normalizing 
constants, as in Meng and Schilling (1996). 

Extensions of (8) to multivariate 0 are straightfor- 
ward and in fact suggested to us the term path sam- 
pling. Suppose 0 is now a d-dimensional parameter 
vector and we are interested in the ratio z(Ol)/z(Oo) 
for given vectors 80 and O1. We first select a con- 
tinuous path in the d-dimensional parameter space 
that links Oo and 01: 0(t) = (Ol(t), . . . , Od(t)), for 
t E [0, 11, with O(0) = 80 and 0(1) = 81. Defining 

and applying the same argument as with (7) for t 
going from 0 to 1, we obtain 

From (lo), we can easily construct the correspond- 
ing path sampling estimator for A, 

where the ti's are sampled uniformly from [0,11 and 
wi  is a draw from p(wO(ti)). For any given path, 
(11)is a consistent (and unbiased) estimator of h as 
long as the sample average converges to its popu- 
lation average, a requirement that is met by many 
MCMC methods. The choice of the path obviously 
affects the Monte Carlo error, as we shall illustrate 
later. In searching for optimal estimators, the in- 
troduction of a nonuniform density for t on [O,1] 
is unnecessary, as such a density can be absorbed 
by the path function 0(t). In fact, even in the uni- 

variate case (i.e., (8) and (9)), we can reexpress the 
prior density via a path function by solving 6(t) = 

l lp(0(t)) .  

2.2 Thermodynamic Integration 
and Ogata's Method 

Using identity (7) for calculating h is not a new 
idea. For example, the thermodynamic integration 
method uses (7) for computing the free energy dif- 
ference between two molecular-dynamic systems. As 
a simple example, using the notation in (2)-(3), we 
can calculate the free energy difference between two 
systems with the same temperature T as 

where ET,a denotes the expectation with respect 
to the system density p(w T ,  a )  (here a is a scalar 
quantity, such as the volume). Equation (12) is 
an application of (7) in conjunction with (3) using 
log q(w 10 = a )  = -H(w, a)/(kT). Similarly, we can 
calculate free energy difference for systems with 
different temperatures but the same a; identity (10) 
also allows for different a's and different T's simul- 
taneously. See Frenkel (1986), Frankel and Smit 
(1996) and Neal (1993, Section 6.2) for more dis- 
cussions of thermodynamic integration-~~ named 
because identities such as (12) were originally de- 
rived from differential equations for describing 
thermodynamic relationships. 

Applying (7), Ogata (1989; also see Ogata and 
Tanemura, 1984) proposed an innovative method for 
high-dimensional integrations. For simplicity, sup- 
pose we are interested in integrating a positive func- 
tion q(wl, . . . , wh) on the k-dimensional cube [a, bIh 
that includes the origin (0, . . . , O), where k can be 
very large (e.g., k = 1000). To apply (7), we con- 
struct a family of densities indexed by a scale para- 
meter a ,  

where 

Treating q(awl,.  . . , amk) = q(aw) as the unnor- 
malized density, we obtain from (7) that 

1% zh(l) - 1% ~ h ( 0 )  
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where E,  is with respect to the density given in 
(13). Since zk ( l )  is exactly the integration we want, 
and ~ ~ ( 0 )  (b u) '~(o) ,  (14) allows us to esti- = -

mate ~ ~ ( 1 )  	 ai) ,  i 1,. . . ,n)by using draws ( ( ~ ( ~ 1 ,  = 
from p(wla)p(a), where p(o la )  is given by (13) 
and p (a )  = 1for a E [O,l]. Simulations from (13) 
can be accomplished via the Metropolis algorithm 
(Metropolis et al., 1953), as illustrated in Ogata 
(1989). In view of (a), we do not have to simulate 
a from a uniform distribution; other densities may 
provide better Monte Carlo errors (see Section 4). 
Ogata's (1989) original proposals include the use of 
deterministic choices of ai (e.g., equal-spaced) and 
the use of numerical integration techniques (e.g., 
trapezoidal rule) to carry out the one-dimensional 
integration in (14), in which cases one needs mul- 
tiple draws of w for any given a i ;  see Sections 2.3 
and 5.1. 

It appears that Ogata (1989) had independently 
discovered the thermodynamic integration method. 
In a subsequent paper, Ogata (1990, page 408) 
wrote: "Recently, I learned that such an estimation 
method of log ZN(a) ,  which is called free energy, 
by the derivative of a suitable scalar parameter a 
has been commonly used in the field of statistical 
physics since late the 1970's (see Binder (1986) for 
example)." On the other hand, although Ogata's 
work was motivated by high-dimensional integra- 
tions for Bayesian computations (Ogata, 1990), 
there is no mention of his method in Evans and 
Swartz's (1995) review article on methods for ap- 
proximating integrals with special emphasis on 
Bayesian integration problems, nor is there a men- 
tion of thermodynamic integration or other popular 
MCMC-based methods in physics, such as the 
acceptance ratio method (see Section 3). 

We note these lack of citations not to criticize any 
author, but rather to emphasize the great need of 
communications among researchers, especially from 
different fields. Indeed, when we initially worked 
on this problem we also started from scratch (Gel- 
man and Meng, 1994) because we were not aware of 
thermodynamic integration or Ogata's method. The 
lack of communication is particularly unfortunate in 
this case, because many of us have missed perhaps 
some most effective methods for high-dimensional 
integrations, in view of their routine and success- 
ful use in physics. A main purpose of this paper 
is to bring to the attention of statisticians some of 
these powerful methods, and at the same time to 
explore more flexible and statistical formulations 
aiming at potential further improvements as well 
as more general applicability. In particular, the for- 
mulation given in Section 2.1 allows arbitrary con- 
struction of a path, even in distribution spaces, as 
we explore in Section 4.3. 

2.3 	Path Sampling Estimates Using Numerical 
Integration over 8 

An alternative to using (9) for estimating A is 
to numerically evaluate the integral over 8, which 
essentially amounts to replacing p(8) in (9) by in- 
verses of spacings. For example, as in Ogata (1989), 
one can use the trapezoidal rule when 8 is univari- 
ate. Specifically, we first order the unique values of 
the simulation draws Bi so that Oil) < Biz) < 0(3)< 
. . , excluding any duplicates (such as occur if 6 is 
updated using the Metropolis algorithm). For each 
newly labeled 8(j), we then compute u(j)as the av- 
erage of the values of U(wi, Oi) for all simulation 
draws i for which Oi = O(jy Suppose we want to es- 
timate the log density ratio A(a, b) = log[z(b)/z(a)] 
for 0 5 a < b 5 1. Let j ,  and jb be the indexes 
such that Oij,) 5 a < Oij,,+l) < . . . < O(jb_ l )  < 
b 5 Oi jb) .  Applying the trapezoidal rule, we estimate 
A(a, b) by 

where U, and Ub are obtained via interpolation 
or extrapolation, wherever necessary. Similarly, one 
can apply Simpson's rule. 

Estimating A using (15) is particularly useful 
when 8 is evaluated on a fixed grid or when p(8) 
is not known. The latter happens, for example, 
when the draws of (w, 8) are made jointly via a 
Metropolis-Hastings algorithm (Hastings, 1970) 
using our ability to evaluate q(wO), which we 
now view as an unnormalized density on the joint 
space (w, 8). In this case, p(8) is proportional to 
Jq(wO)p(dw), which is the unknown normaliz-
ing constant z(8) that we want to estimate. In 
such cases, (9) is not applicable but (15) is. See 
Section 5.1 for more discussion of this issue. 

In the case that z(8) is interpreted as a (unnor- 
malized) marginal density, a similar method can 
be applied to estimate its corresponding cumula- 
tive distribution function (cdf). We first estimate, 
for any 0 < a 5 1, the unnormalized cdf G(a) = 
1,"z(0) d8 by 
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where 60 = 0 and A(., .) is defined by (15). We then 
estimate the cdf by 

For multivariate 6, just as in (lo), there is no 
unique way of performing the numerical integra- 
tions; we can apply (15) with many different choices 
of path, and we can even consider combining (e.g., by 
weighted averages) estimators from different paths 
(see Section 4). Here, we present a simple method, 
based on averaging over one component of 6 a t  a 
time, that turns out to be effective in our exam- 
ple of Section 5.2. For simplicity, we describe the 
method when 6 is two-dimensional and evaluated on 
a rectangular grid of values (61, 6;), i = 1 , .. . ,ml, 
j = 1,. . . , m2. We first estimate the following func- 
tions on the grid: 

where (o:, 6;) can be any fixed point on the grid. For 
each 6i, the function gl(O1, 62J) can be estimated as 
a function of 61 using the path sampling estimate 
(15), averaging along O1. Similarly, g2(61, 02) can be 
estimated by path sampling along 02, for each 6;. 
These estimates can be combined using the follow- 
ing identity: 

log ~ ( 6 1 ,  62) - log z(o;, 6:) 

(18) = gl(01,oz) + g2(01,02) 

- gl(6;, 62) for any 6;. 

Averaging over all values of 6; yields 

+ constant. 

Of course, the order of O1 and O2 can be reversed 
in the above expression, giving an  alternative esti- 
mate; we find in the example of Section 5.2 that the 
order of integration can make a practical difference. 
Section 4 provides a theoretical investigation of the 
choices of paths. 

3. A METHODOLOGICAL EVOLUTION 

3.1 Direct Importance Sampling Methods 

Two different importance sampling schemes 
are commonly used for computing normalizing 
constants. The first approach uses draws from a 
trial density @(w) that is completely known (e.g., 

an analytic approximation of the target density 
p(w) = q(w)/z). The importance sampling estima- 
tor of z is based on the identity 

and the corresponding Monte Carlo estimator is 

where wl, . . . , on are draws from F(U). For exam- 
ple, Dempster, Selwyn and Weeks (1983) use this 
method to check an  analytic approximation of z for 
a logistic regression likelihood. As usual with im- 
portance sampling, this method is effective only if 
@ is a fairly good approximation to p .  For complex 
models, such as those encountered in free-energy 
estimations, finding an  acceptable importance sam- 
pling density is often out of the question. In fact, 
even with various variance-reduction techniques 
(e.g., using control variates), importance sampling 
does not provide usable answers for these complex 
problems-otherwise, the more advanced methods 
would not be so popular. 

The second kind of importance sampling method 
uses draws from densities that themselves are only 
known in unnormalized forms, and thus (20) can- 
not be applied directly. This is typically the case 
with iterative simulation (e.g., the Metropolis al- 
gorithm) where one can produce draws from p , ( ~ )  
while only knowing q,(w) = z,p,(w), with z, being 
the unknown quantity of interest. This is the situa- 
tion we address in this paper. In such a case, various 
methods are based on special cases of the following 
identity studied in detail by Meng and Wong (1996): 

where E,  denotes the expectation with respect to 
pt(w) (t  = 0, I ) ,  a ( o )  is an  arbitrary function satis- 
fying 

and O, is the support of p,(o),  and we assume 
p(Oo n 01) > 0. For example, taking a = qo1 in 
(21) leads to the commonly used identity (e.g., Ott, 
1979; Geyer and Thompson, 1992; Green, 1992): 

(23) -
21 

assuming alcno, 
z0 

and taking a = [qoql]-l leads to a generalization of 
the "harmonic rule" of Newton and Raftery (1994). 
When zl = 1, that is, when ql(w) = pl(w), (23) 
leads to the so-called reciprocal importance sam- 
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pling method (see Gelfand and Dey, 1994, and Di- 
Ciccio et al., 1997). 

3.2 	Acceptance Ratio Method 
and Bridge Sampling 

While (21) is trivial to verify, it was the key 
identity underlying the powerful acceptance ra-
tio method of Bennett (1976), who motivated (21) 
by considering a Metropolis algorithm that al-
lows moves between po and pl. Here we recast 
his derivation under the more general Metropolis- 
Hastings algorithm in order to reveal an explicit 
relationship between the a function in (21) and the 
corresponding proposal, or jumping distribution, 
J(.l.), for the Metropolis-Hastings algorithm. 

We start by considering a Metropolis-Hastings al- 
gorithm on the joint space of (w, t), where t = 0 
or 1, with target density p(w, t) oc q,(o). Clearly, 
p(olt) = pt(w), and marginally 

which is the ratio in which we are interested. Now 
consider all moves where w stays the same but t 
changes (i.e., we are switching from one density 
to the other with the same argument w). By the 
detailed balance requirement of the Metropolis- 
Hastings algorithm, we have 

where the transition kernel T ( . . )  is given by (when 
u # v) 

It follows then, by integrating (or summing) both 
sides of (25) with respect to p(dw), 

which is the same as (21)) in view of (27), when we 
let 

a(w) = min 

(29) 

The derivation of Bennett (1976) corresponds to 
choosing J ( ( o ,  l)l(w, 0)) = J ( ( o ,  O)l(w, 1)) = 1, 
that is, always proposing to switch. The probability 
that a proposal is accepted is then the same as the 
transition kernel (see (26)), and thus the right-hand 
side of (28) is the ratio of the (marginal) accep- 
tance probabilities-hence the name acceptance 
ratio given by Bennett. For general J (and thus a ,  
which corresponds to Bennett's weight function W), 
Meng and Wong (1996) suggested the name bridge 
sampling, a term that we explain in Section 3.3. 
Note that although one could implement the above 
switching algorithm and then use the empirical 
proportions to estimate r via (24), it is not nec-
essary and in fact typically not desirable to do so 
because one can generally estimate r more accu- 
rately by using (28) and averaging the acceptance 
probabilities rather than the acceptance rates-this 
is a case of "Rao-Blackwellization" (as in Gelfand 
and Smith, 1990). 

Given draws (woi, i = 1 , .  . . , n o )  from po(w), 
draws ( a l i ,  i = 1, . . . , nl) from pl(w) and a choice 
of a ,  the sample version of (21) is 

Whereas ?, is a consistent estimator of r as long 
as the sample averages in (30) converge to their 
corresponding population means, its variance obvi- 
ously varies with a and how the draws are made. 
The question of optimal choice of a ,  however, is dif- 
ficult to answer in general due to the correlations 
among the draws. A case where the answer is eas- 
ily obtained is when we have independent draws 
from both po and p,; although this assumption 
is typically violated in practice, it permits useful 
theoretical explorations and in fact the optimal es- 
timator obtained under this assumption performs 
rather well in general (see Bennett, 1976; Meng 
and Schilling, 1996). 

Specifically, under the independence assumption, 
the optimal a in the sense of minimizing the asymp- 
totic variance of log(?,) (Bennett, 1976) or equiva- 
lently the asymptotic relative variance of f, (Meng 
and Wong, 1996) is given by 

where st = nt/(no+ nl), t = 0,1, are assumed to 
be asymptotically bounded away from 0 and 1. The 
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corresponding asymptotic minimal error is 

Since the optimal a,,, is not directly usable as i t  
depends on the unknown ratio r ,  Meng and Wong 
(1996) construct an  iterative estimator, 

where lmi = ql(wmi)/qO(wmi),m = 0,1,  are cal- 
culated before the iteration. They show that each 
iterate in (33), ?(,+'I, t 2 0, provides a consistent es- 
timator of r ,  and that the unique limit Fop, achieves 
the asymptotic minimal error given in (32). They 
also study noniterative choices of a such as a = 1 
and a = (qoql)-1/2. The empirical results presented 
in Meng and Schilling (1996) show that these esti- 
mators can substantially (e.g., by a factor of 5 to 30) 
reduce the relative mean-squared errors compared 
to estimators based on (the same amount of) draws 
from only one density (e.g., po), such as when using 
(23). Note that Bennett (1976) suggested a graphi- 
cal method for obtaining Pop,, and Geyer (1994) pro- 
posed an  interesting "profile-likelihood derivation 
for Popt. 

3.3 Connecting Bridge and Path Sampling 
to Importance Sampling 

The fundamental identity (21) underlying bridge 
sampling can also be motivated easily from impor- 
tance sampling, which is familiar to most statistical 
readers. To see this, define 

where ql12(w) is an  arbitrary unnormalized density 
having support Ro n R1 (thus, condition (22) is satis- 
fied). We use the subscript "112" to indicate that we 
intend to use a density that  is "between" qo and ql, 
in the sense of being overlapped by both of them. 
Substituting this a into (21) yields 

with the corresponding estimator 

based on no draws woi from po and nl  draws wli 
from pl.  That is, instead of applying (23) to directly 
estimate zl/zo, we apply it to first estimate zl,,/zO 

and zl,,/z1 and then take the ratio to cancel zll?. 
The gain of efficiency arises because with a sensi- 
ble choice of the "bridge" density pl12, there is less 
nonoverlap between p, ( t  = 0 , l )  and pl12 than that 
between po  and p l .  That is, pl12 serves as a bridge 
between po  and pl ,  hence the name bridge sam- 
pling. In terms of ql12, we see from (31) and (34) 
that the best bridge density is the (weighted) har- 
monic mean of po and pl:  

and, interestingly, its normalizing constant deter- 
mines the (asymptotic) minimal error given in (32). 
See Meng and Wong (1996) for a discussion of the 
relationship between bridge sampling and umbrella 
sampling, another method developed in computa- 
tional physics (Torrie and Valleau, 1977), which has 
been termed ratio importance sampling by Chen 
and Shao (1997a, b) in the statistical literature. Also 
see Neal (1993, page 98) for a nice graphical repre- 
sentation of (35). 

The idea of creating a bridge can obviously be 
pushed further. It is possible that the two densi- 
ties qo(w) and ql(w) are so far separated that, even 
with the optimal bridge density q;$, the estimator 
(36) is too variable to use in practice (or even does 
not exist if p1 and po  are completely separated). In 
such cases, it is useful to construct a finite series 
of L - 1intermediate densities, from which we can 
make draws. For simplicity of later derivations, we 
label the corresponding unnormalized densities as 
q(w 01), 1 = 0, 1,. . . ,L, including the two endpoints. 
For each pair of consecutive functions q(wlO1) and 
q(w 101+,), 1 = 0, . . . ,L -1, we label the intermediate 
unnormalized density by q(w 01+112), which will be 
computed but not sampled from. With these 2L + 1 
(unnormalized) densities, we can apply identity (35) 
in a telescoping fashion: 

As a generalization of (35), this is bridge Sam-
pling with 2L - 1 spans. (Meng and Wong, 1996, 
also present multiple-bridge identities for estimat- 
ing more than one ratio of normalizing constants 
simultaneously; also see Geyer, 1994, for a "profile- 
likelihood" approach for estimating several ratios 
simultaneously.) Using intermediate systems (dis- 
tributions) to implement importance sampling is 
also a well-known idea in computational physics 
(e.g., Neal, 1993, Section 6.2; Ceperley, 1995). 
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Given (37), one is tempted to study the limit- 
ing case when L -+ a,that is, an infinite num- 
ber of bridges. This can be easily done by consider- 
ing the indexes O1 as corresponding to a parameter 
0 E [0, 11, indexing a parametric family {q(w O), 0 5 
0 5 11, with 6, = a /L for any a E [0, L]. With 
this setup, taking logarithms of both sides of (37) 
yields 

L 

(38) 	 log 2 = x 
Zo 1=1 

where the functions G1 are defined by 

It is easy to verify that, for any I ,  G1(0) = 0 and 
G;(O) = Eel[U(w, 01)], using the notation of Section 
2.1, under the regularity condition that the support 
of p(w 6 )  does not depend on 6. Thus, when L + oo, 
by the Taylor expansion of the right-hand side of 
(38), we have 

log -21 = lim -1 xL EB,_,[U(W4-1)I+Eol[U(~,el)] 
2.0 L+oo 	 L 1=1 2 

which is exactly the basic identity (7) underlying 
path sampling. 

The foregoing derivation may be also helpful in 
studying the trade-off of implementation efficiency 
versus Monte Carlo efficiency in adopting multi- 
bridge sampling and path sampling, an open issue 
of practical interest. 

4. A THEORETICAL INVESTIGATION 
OF PATH SAMPLING 

4.1 Optimal Prior Density in One Dimension 

The arbitrariness of the prior density p(6) in (9) 
allows us to search for optimal estimators in the 
sense of achieving minimal Monte Carlo variances. 
Due to the difficulty of establishing general results 
under arbitrary sampling schemes, we shall assume 
independent draws for theoretical explorations and 
guidelines (but not for real implementations, as pre- 
sented in Section 5 ) .  

If (wi, Bi), i = 1,.. . ,n, in (9) are n indepen-
dent draws from the joint distribution p(w, 6) = 

p(w lB)p(O), then the Monte Carlo variance of i is 

Assume for now that p(w 0) is given. Then we seek 
the the marginal (or prior) density p(6) that min- 
imizes (39), which is equivalent to minimizing the 
first term in (39). 

By the Cauchy-Schwarz inequality, 

The right-hand side above does not depend on p(B), 
and the equality holds when 

It follows that p(B) of (40) is the optimal prior den- 
sity, and the optimal variance of is 

Interestingly, when z(6) is independent of 6, in 
which case A = 0, the optimal density given in 
(40) is exactly the Jeffreys prior density (based 
on p(o0))  restricted to 0 E [0, 11. In general, (40) 
can be viewed as a generalized local Jeffreys prior 
density based on the unnormalized density q(w 16) 
(the expectation E, is with respect to the normal- 
ized density p(wO)), and it is proper whenever 
1; J E , [ u ~ ( ~ ,B)] d6 < fa.One can also view 
(40) as a "variance-stabilizing" transformation via 
the equation p(6(t))6(t) = 1 between the path 
function and the prior density, although in the cur- 
rent setting the term "second-moment-stabilizing" 
transformation would be more appropriate because 
E,[U(w, B)] is generally not zero. The second-
moment-stabilizing property can be seen by notic- 
ing that with the optimal prior (40), the second 
moment of each term of (9) is free of 6. This makes 
sense: the optimal procedure should balance the 
second sampling moment of U(w, O)/p(O) at differ- 
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ent locations of 6, since we intend to minimize the 
average of them. 

The variance given in (39) is not appropriate for 
the estimator A(0,l) given by (15), because of the 
use of an estimated p(O). The derivations of the 
asymptotic variances for (15) and (17) are quite in- 
volved even under the independence assumption 
due the presence of (linear and nonlinear) functions 
of order statistics, and thus we do not discuss them 
here. 

4.2 Optimal Path in Many Dimensions 

Generalization of the above result to multivari- 
ate 0 is immediate. For any given path, the optimal 
density for O over that path is the generalized local 
Jeffreys prior density on that path. This does not, 
however, answer the question of which path is op- 
timal in the sense of yielding minimal Monte Carlo 
variance of (11)among all possible paths. The an- 
swer to this question is a problem in the calculus of 
variations. Specifically, the variance of (ll),under 
independent sampling, is 

where gij(0) = E8[Ui(w, O)Uj(o, O)]. The path 
function O(t) that minimizes the first term on the 
right-hand side of (42) is the solution of the fol- 
lowing Euler-Lagrange equations (e.g., Atkinson 
and Mitchell, 1981) with the boundary condition 
O(t) = O,, for t = 0, 1: 

where ~ ( t )  denotes the second derivative with re- 
spect to t, and [ij, k] is the Christoffel symbol of the 
first kind: 

1 dgik(O) dgjk(8) dgij(0)
[ij, k] = - [-+--- I2 d o j  dBi doh , 

Similar calculus of variations problems arise in 
the literature on finding the Rao distance between 
two densities (e.g., Rao, 1945, 1949; Atkinson and 
Mitchell, 1981; Mitchell, 1992). The Rao distance 
and the minimal variance of (11)are naturally re- 

lated because the accuracy of the path sampling es- 
timator depends crucially on the distance between 
two unnormalized densities, qo( w ) and ql(o), and 
the Rao distance provides the appropriate measure. 
The Rao distance is constructed by considering the 
variance of the score function projected to a partic- 
ular path, and thus the only difference between the 
Rao distance and the current calculation is that we 
are dealing with unnormalized densities. For exam- 
ple, (43) differs from (2.7) of Atkinson and Mitchell 
(1981) only by using log q(w 0 )  instead of log p(w 18) 
in defining the U functions inside gij. In fact, in the 
next section we show that the Rao distance in distri- 
bution space is directly related to the optimal path 
in distribution space. 

As explored in the literature on the Rao dis- 
tance, solving (43) is typically difficult. Atkinson 
and Mitchell (1981) suggested two alternative ways 
of expressing solutions via Hamilton's equations 
and Hamilton-Jacobi equations (e.g., Courant and 
Hilbert, 1961) and provided a differential geometry 
argument for finding the Rao distance between two 
normal densities. Despite these efforts, the gen- 
eral problem remains difficult. Section 4.4 provides 
a theoretical example for the normal distribution, 
where (43) has an analytic (but nontrivial) solution. 

4.3 Optimal Path in Distribution Space 

In the previous section, the family of distributions 
p(w8) is given. A different problem is to find an 
optimal path in the space of integrable nonnegative 
functions that connects the two unnormalized den- 
sity functions, qo(w) and ql(w). That is, we seek 
to optimize over all nonnegative functions q(w 1 0), 
with 0 a scalar parameter having the range [0, I], 
subject to the boundary conditions, q(w 0 )  = cqo(w) 
and q(oll)  = cql(w), where c is an arbitrary posi- 
tive constant. Without loss of generality we can as- 
sume O has a uniform distribution over [O,l] be- 
cause of the "absorption" transformation discussed 
at the end of Section 2.1. In practice, it might be 
necessary to define a family of functions because 
qO(w) and ql(w) are not part of a common paramet- 
ric family. Or, the two distributions might have a 
common parametric form, but a more efficient path 
may be possible by leaving the parametric form and 
moving through general distribution space. Possible 
general constructions include the geometric path (5) 
suggested in physics and the scaling path proposed 
by Ogata (1990, 1994) as an example of possible 
paths in the general distribution space of the form 
q(w1O) = qo(o)he(w): 

41(Oo)(44) 	 scaling path, q(o 8 )  = q O ( w ) - - -
qo(Ow) ' 
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When using this path to estimate A, we need to ad- 
just for a known bias, log(qo(0)/ql(O)).In our the- 
oretical example in Section 4.4, the geometric path 
and scaling path lead to identical Monte Carlo er- 
ror, which compares favorably to that from optimal 
bridge sampling but can be improved substantially 
within the path sampling framework. It is of great 
practical interest to find general simple paths with 
good properties. 

Finding the optimal path in the whole distribu- 
tion space turns out to be an easier mathematical 
problem than the optimization problem described in 
the previous section. We start by writing the path 
density as q(O 10) = p ( o 1 0 ) z (0 )and expressing 

To minimize the left-hand side of (45) over q(wl0) 
we can separately minimize the two terms on the 
right-hand side, both under the appropriate bound- 
ary conditions. For the first term on the right-hand 
side, the following simple result, a consequence of 
the Cauchy-Schwarz inequality, provides the an-
swer. 

LEMMA1. If z (0 )  is a positive function on 0 E 

[O, 11 such that log z (1 )  - log z (0 )  = A, then 

with the equality holding if and only if z ( 0 )  equals 

almost surely with respect to the Lebesgue measure 
on [ O ,  I ] .  

This result implies that any q ( w 0 )  that yields 
z (0 )  = J q ( o  j 0 ) p ( d w )different from (46) cannot be 
optimal in the distributional space because ij(w 0 )  = 
q(w 0)[zop,( t , ) /z(0)]  dominates q(o l0 )  (here we are 
discussing theoretical optimality, not the implemen- 
tation feasibility). For example, the geometric path 
(5) is suboptimal in general because, for that path, 
~ ( e )= J q : - e ( ~ ) q ~ ( o ) p ( d o )< Z:-'Z! for 0 < 0 < 1. 

The second term on the right-hand side of (45) is 
simply J: I(O)d0, where I ( 0 )  is the Fisher informa- 
tion for p(ol0) .  Thus minimizing J t l ( 0 )  dt ,  is the 
same as finding the Rao geodesic distance in the 
distribution space, a problem that can be solved 

by a differential geometry approach, as reviewed 
in Burbea (1989); also see Kass and Vos (1997). It 
turns out that, somewhat unexpectedly, the prob- 
lem can also be solved via the Cauchy-Schwarz in- 
equality, as we show in the Appendix. The result 
is (of course) identical to the result on the Rao dis- 
tance in distribution space, though our expressions 
are more convenient for the path sampling applica- 
tion. 

LEMMA2. Let I ( 0 )  be the Fisher information for 
p(o10), where p(wl0) = P O ( ~ )  =and ~ ( o l l )  PI(^) 
are given. Let 

(47) 	 aH = arctan [j 4  H % ; ~ ~ , ) p l ) 1 7  

where H ( P o ,  P I )  = [ J ( J p l ( w )- j p o ( ~ > > ~ ~ ( d ~ > I ~ / ~  
is the Hellinger distance between po and pl. Then 

and the equality i n  (48) holds if and only i f  

almost surely with respect to the product measure 
formed by p and the Lebesgue measure on [0 ,  11. 

Applying the lemma with (45) and (46), we see 
that the optimal q(w 10) = p(w 0 ) z ( t , )  in the distri- 
butional space is given by 

The corresponding minimal variance is given by 

which is a simple function of H ( p o ,  p,). This intrin- 
sic connection with the Hellinger distance also ap- 
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pears in the bridge sampling context, as Meng and 
Wong (1996) show that the optimal bridge-sampling 
error given in (32) is bounded below and above by 
simple functions of H(po,  pl)  when so = sl. Unlike 
bridge sampling where the optimal error is achieved 
by the iterative solution found with (33), however, 
it is unclear whether the optimal error in (51) is 
achievable (asymptotically) in practice since the op- 
timal solution given in (50) assumes the knowledge 
of the unknown normalizing constants (and the abil- 
ity to make independent draws from (50)). Using an 
adaptive method (e.g., iteratively estimating A )  may 
lead to an increase in variance. In fact, we doubt 
that (51) is achievable as it is bounded above by 
.rr2/n even if po and pl  are infinitely apart. An in-
teresting and empirically relevant problem is to fig- 
ure out the achievable minimal error and how it 
varies with H(po, pl) (or some other distance mea- 
sures). This is an important issue because an un- 
achievable theoretical optimal error could misguide 
the choices of methods (e.g., contrast the theoretical 
comparisons in Chen and Shao, 1997a, with the em- 
pirical comparisons in Chen and Shao, 199713, when 
the actual computational time needed by the ratio 
importance sampling method is taken into account). 

Our interests in exploring these theoretical re- 
sults lie in finding useful insights and practical 
guidelines about the potential and limits of path 
sampling. As we shall demonstrate in Section 4.4, 
where we solve (43) for a family of normal distribu- 
tions, an optimal path can reduce the Monte Carlo 
variance by orders of magnitude when compared to 
some "natural" nonoptimal choices, a gain that is 
especially important when the two densities are far 
apart. We emphasize, however, it is not necessary 
to find an optimal path in order to gain substantial 
reduction in variance; for example, in the normal 
example, very simple paths reduce the variance by 
orders of magnitude compared to previous meth- 
ods. The empirical implementations presented in 
Section 5 also demonstrate the superiority of path 
sampling with simple choices of paths. 

4.4 A Theoretical Illustration 

To illustrate theoretically the potential of path 
sampling for reducing Monte Carlo variances, we 
adopt the following example, which was used by 
Meng and Wong (1996) for illustrating bridge sam- 
pling. The example is of "toy" nature, but the find- 
ings are not and in fact somewhat surprised us. Let 
qO(0)= exp(-w2/2) and ql(w) = exp(-(w -D)2/2), 
where D > 0, and thus the true A being "estimated" 
is zero. For the purpose of path sampling, we con- 
sider po and pl  as two points in the family of un- 

normalized normal densities: 

with O = (p, a ) ,  do = ( 0 , l )  and O1 = (D , l ) .  
In order to make (nearly) fair comparisons, we 

assume that (i) with importance sampling, we make 
n draws from N(0, I), (ii) with bridge sampling, 
we make n/2 (assume n is even) draws from each 
of N ( 0 , l )  and N(D, 1) and (iii) with path sam-
pling, we first draw ti, i = 1,. . . ,n, uniformly 
from [0,11; then for each ti we make one draw w 
from N(p(ti), u2(ti)), where O(t) = (p(t), u(t)) is a 
given path. All draws are independent within each 
scheme. In addition, since importance sampling 
and bridge sampling estimate the ratio r whereas 
path sampling estimates the log-ratio A, we con-
vert the estimates of r to the scale of A by letting 
i = log f .  Under this conversion, the variance of 
is asymptotically the same as the squared relative 
error of r^ (i.e., E ( i  - r)2/r2). Under such a setting, 
Table 1 compares six estimators of A, where the 
computations of J n ~ ( i  - are exact for the path 
sampling estimators and correct to terms of O(nP1) 
for the others. 

In Table 1, estimator (I) is the importance sam- 
pling estimator using (23), estimators (11) and (111) 
are bridge sampling using (35) with qlI2 = a 
and q1,2 = + pjl)-l, respectively, and the cor- 
responding variance computations are from Meng 

TABLE1 

Comparison of theoretical Monte Carlo errors of importance, 

bridge and path sampling estimators for two normal densities 


spaced D standard deviations apart 


Method J ~ E ( A- h)2 

(I) Importance sampling ex^(^^) - 1l1I2 

(11) Bridge sampling with 

geometric bridge 2 


(111) Bridge sampling with 	 112 
(optimal) harmonic 2 D (%)- I]bridge 

(IV) 	Path sampling with 1
geometric (and 
scaling) path 

(V) 	 Path sampling with D 

optimal path in 

,u-space 


(VI) Path sampling with 
optimal path in 1/TZ 

(,u, a)-space 


Note: In (1111, p(D) = (I/=) ~~(~xP[-x~/(~D~)~/c~s~(x/~))d x ,  
with the property P(D) 5 1and l i m ~ + ,  p(D) = 1. 
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and Wong (1996). Estimator (IV) is the path Sam- 
pling estimator using the geometric path (5), which 
in this case leads to the identical estimator as that 
from the scaling path (44). Estimator (V) is the op- 
timal univariate path sampling estimator based on 
(7) by considering a to be fixed a t  1 and letting p 
vary in [0, Dl. I t  is easy to verify that, in the cur- 
rent example, the (generalized) local Jeffreys prior 
density defined by (40) is uniform, so the optimal 
path function is given by p(t)  = Dt. Estimator (VI) 
is the optimal multivariate path sampling estima- 
tor based on (10) when both p and a are allowed to 
very freely in their two-dimensional space; the form 
of the optimal path will be discussed shortly. 

Figure 1 plots the six expressions in Table 1 as 
functions of D E [O, 101, where the dotted line plots 
4aH(see (47)) with pl)  = 2(1-exp(-D2/8)), 
which is the lower bound from (51). As we discussed 
in Section 4.3, we doubt this bound can be achieved 
in reality, though we can easily improve estimator 
(VI) by using the optimal normalizing constants, 
given by (46), for the densities in the path. This 
entails using a-I exp{-(w - p)2/(2a2)) in place of 
(52), and the resulting Monte Carlo error is obtained 
by replacing the values "12" with "8" in row (VI) of 
Table 1; the result is lower for all values of D but 
still is not optimal in distribution space. 

The optimal path in (p,  a)-space, denoted by 
0(t) = (p(t), a(t))  (with t E [0, I]), turns out to 
be quite interesting and informative. Figure 2a, b 
plots p(t) and a ( t )  with D = 5 as the boldfaced 
segments; the general expressions for p(t) and 
a( t )  and their derivations are given in the Ap- 

FIG. 1. Relative Monte Carlo errors for various simulation-based 
estimates of l og ( z l / zo ) ,  comparing N ( 0 , l )  to N ( D ,  1 )  densities, 
using ( I )  importance sampling, (11) bridge sampling with geomet- 
ric bridge, (111) bridge sampling with optimal bridge, ( I V )  path 
sampling with geometric (or scaling) path, ( V )  optimal path sum- 
pling i n  p-space and ( V I )  optimal path sampling in ( p ,  c~)-space. 
The dotted line is the lower bound given by (51). 

pendix. This amounts to a half-ellipsoid curve in 
(p ,  a)-space: 

as displayed, in boldface, in Figure 2c with D = 5. 
The optimal path thus increases the variances of 
the normal densities in the middle, which makes 
sense as we want the middle densities to have large 
overlaps with the two endpoint densities. However, 
the variance of the intermediate densities are not 
allowed to be arbitrarily large because that would 
introduce too much sampling variability at  each 
given value of a. The optimal path is a result of 
such a trade-off. This can be seen more clearly 
from Figure 2d, which displays the normalized nor- 
mal densities corresponding to q(wlp(t), a( t ) )  for 
t = 0,0.1,0.2,. . . ,1, with the two end densities, 
N ( 0 , l )  and N(5, I), shown as boldfaced lines. 

5. PRACTICAL IMPLEMENTATION 
AND EXAMPLES 

5.1 Issues in Implementing Path Sampling 

To implement path sampling, we need draws 
(w, 0) from a joint distribution that can be written 
as p(w ,0) = q(w j0)/c(0). The marginal distribution 
of 0 in these draws is 

We have the freedom to specify p(0) or c(O), but not 
both (or else z(0) would already be known). We em- 
phasize that, depending on the nature of c(O), p(0) 
can be completely unrelated to z(0), which we want 
to compute, or can be proportional or even identical 
to z(0). 

We distinguish between two kinds of implemen- 
tations of path sampling. In the first kind, which 
is the subject of most of the preceding discussion, 
we specify p(0), with the particular form chosen 
typically for reasons of convenience and perceived 
optimality. The simplest method of obtaining simu- 
lation draws is direct sampling, in which we draw 
(w, 0) by first drawing 0 from the known p(0) (or 
choosing 0 systematically over a grid, as in Ogata, 
1989, and in our example of Section 5.2), then draw- 
ing w from q(wl0). The step of sampling 0 is easy 
when we have the freedom to specify p(0). Draw- 
ing w given 0 is usually more difficult, however: in 
many problems for which we would like to apply 
path sampling, there is no easy way to directly Sam- 
ple w. Instead, the preferred method is some form 
of iterative simulation, such as the Metropolis algo- 
rithm. To implement path sampling using iterative 
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FIG.2. Optimal path from N ( 0 , l )  to N ( 5 ,  1 )  in ( p ,  u)-space: (a)parameterization of p ( t ) ;  (b) parameterization of u ( t ) ;  (c)  optimal 
path; (d ) normalized densities along the optimal path. 

simulation, we can proceed directly by using nested 
loops: for each simulated (or chosen) 0, run an iter- 
ative simulation algorithm (until approximate con- 
vergence). The result is a large number of draws 
w for each 0, but the estimator (9) is still appli- 
cable. The nested simulation approach may be at- 
tractive in a parallel computing environment. The 
nested-loop method has a flavor of the more elab- 
orate Metropolis-coupled Markov chain method of 
Geyer (1991). 

In the second kind of implementation, we specify 
c(0) (up to a multiplicative constant). This means 
we can write the joint density of (w, 0), up to a 
constant, and so can draw from this density, com- 
bining the simulations of w and 0 in a single loop 
of iterative simulation. The most natural approach 

here is to alternately update w and 0 in a Gibbs or 
Metropolis-type algorithm. This is essentially a spe- 
cial case of simulated tempering (see Marinari and 
Parisi, 1992, and Geyer and Thompson, 1995) with 
0 being viewed as the temperature variable, which 
is also similar to the multicanonical algorithms pro- 
posed in the statistical physics literature (e.g., Berg 
and Neuhaus, 1991; Berg and Celik, 1992); see Neal 
(1993, page 94) and Geyer and Thompson (1995) for 
more discussion. 

Once the draws are made, we can apply (15) (in 
conjunction with (19) when 0 is multivariate) to es- 
timate z(0) as a function of 0, as discussed in Sec- 
tion 2.3. (Interestingly, we can still directly estimate 
relative values of z(0) using (15), without having 
to make any adjustment for c(O).) A special case of 
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this kind of implementation is when drawing from a 
joint density given an unnormalized density q(w, 0), 
which means we have set c(0) E constant (and thus 
p(0) oc z(0)); we illustrate this implementation with 
an example in Section 5.3. 

When using the single-loop method, a new prob- 
lem can arise when z(0) is not to be used as a 
marginal density. The difficulty is that z(0) can vary 
over several orders of magnitude in the region of 0 
of interest-this is not much a problem when z(0) 
is used as a (unnormalized) marginal density if only 
regions of relatively high marginal mass are of in- 
terest. Simply sampling (w, 0) from the joint dis- 
tribution proportional to q(wj0) (i.e., setting c(0) -
constant) would leave very few draws of 0 in re- 
gions of low marginal density and thus very little 
ability to compute z(0) in those regions using path 
sampling or any other method. (For example, to es- 
timate z(b)/z(a), both (9) and (15) require draws of 
0 in the interval [a, b].) Fortunately, in single-loop 
sampling we have the ability to choose c(0) to reduce 
the variance of our estimators. Since we cannot, 
in general, easily compute the optimal p(0)-the 
generalized Jeffreys prior density-we aim for the 
simpler goal of a uniform p(0) [i.e., the goal is c(0) 
proportional to z(O)I, which at least avoids the prob- 
lem that some regions have far fewer draws than 
others. Several noniterative approaches are avail- 
able for creating an approximation to z(0), includ- 
ing Laplace's method (e.g., DiCiccio et al., 1997), 
the method of coding for conditional distributions 
(Besag, 1974) and various numerical methods (e.g., 
Evans and Swartz, 1995). The approximation here is 
used as c(0) for making draws, not as our final esti- 
mate of z(0), so the inaccuracy in the approximation 
does not bias our estimates from path sampling. 

In cases where a reasonable approximation to 
z(0) is not immediately available, we can update 
the function c(0) iteratively. We start with some 
initial guess, say, c(0) = 1.We then run the simu- 
lation of (w, 0) using the Metropolis-Hastings 
algorithm. Occasionally, say, every few hundred it- 
erations, we stop and estimate the function z(0), 
either using path sampling (15) or some other den- 
sity estimate of p(0) = z(O)/c(0) based directly on 
the simulated values of 0. In either case, we update 
c(0) to equal the current estimate of z(0) and then 
continue the iteration. In the limit, under suitable 
mixing conditions, c + z, and so p(0) converges to 
uniformity. This iterative scheme is similar to the 
iterative method proposed in Geyer and Thompson 
(1995) for adjusting a pseudoprior needed for imple- 
menting simulated tempering. We emphasize that 
because we are using the estimator (15), which does 
not require p(0) to be computed, the convergence of 

c(0) is not actually required for the path-sampling 
estimators to be valid. This is reminiscent of the it- 
erative sequence (33) for the optimal single-bridge 
estimator, where each iterate provides a valid esti- 
mate of r,  and the iteration is needed only for the 
purpose of optimality. 

One nice feature of the above iterative procedure 
is that the empirical distribution of the simulated 0 
values converges to a known distribution-uniform 
on [0, 11. We can thus monitor the convergence of 
the simulations by comparing to this known dis- 
tribution, which is far easier than the usual task 
of monitoring convergence to an unknown target 
distribution. In general, one can construct checks 
on the convergence of an iterative simulation as 
a by-product of path sampling. For example, when 
c(8) = 1, we can compare the estimate of F(a)  in 
(17) to the empirical distribution of the simulated 
values of 0 (see Section 5.3); a discordance between 
these two distributions (as measured by some cri- 
terion of practical concern, such as a comparison of 
the 95% central posterior intervals) indicates a lack 
of convergence in the simulation (or an error in the 
implementation of the sampler or the path sampling 
estimate). Similar procedures are available with ar- 
bitrary chosen (known) c(0). We can use such pro- 
cedures to check the convergence of any parameter 
in the model (i.e., any parameter can take the role 
of 0 with the others taking the role of w in the anal- 
ysis) by merely changing the derivative in U and 
recomputing the path sampling estimate. 

5.2 Example 1: Censored Data in Spatial Statistics 

The problem of high-dimensional integration com- 
monly arises with missing or censored data. It is of- 
ten the case that, given the uncensored data w, the 
likelihood function L(01w) = p(w lo), is easy to com- 
pute. On the other hand, the likelihood based on 
the censored data y cannot be calculated directly. 
To fix ideas, we assume that w = (wl, .  . . ,wd) is 
a vector of real numbers, and the censored data 
y = (y l , . . . ,yd) are given by y j  = max(wj, 0) for 
j = 1,. . . ,d. The likelihood based on the censored 
data is then 

integrating over all the censored components. Treat- 
ing p(yl0) as the normalizing constant of p(oly,  0) 
with the complete-data likelihood p(ol0) as the un- 
normalized density, we are in the setting of (1). 

For a particular example, we consider a station- 
ary model in spatial statistics described by Stein 
(1992). In this example, each y j  is observed at  a 



location x j  in two-dimensional space. The vector of 
uncensored data w is modeled by a joint normal dis- 
tribution, in which each component w j  has mean m 
and variance c, and the correlation between any two 
components, w, and w,, is exp(-lxi - x jl). Figure 1 
of Stein (1992) presents a set of simulated data on 
a 6 x 6 grid evenly spread over the square [O, 112, 
in which 17 of the 36 components y j  equal 0. The 
goal is to compute the likelihood of the parameter 
vector 6 = (m, log c). Were it not for the censored 
data, the likelihood would be trivial to compute from 
the joint normal density; however, because of the 
spatial dependence among the 36 observations, the 
17-dimensional integral (54) cannot be calculated 
analytically. 

Stein (1992) used importance sampling to com- 
pute the relative values of the marginal likelihood 
p(yl6) on a 21 x 21 grid in the space of 6. At each 
point 6 on the grid, Stein used a decomposition of a 
truncated multivariate normal distribution to con- 
struct an approximation h,(w) to p(w y, d), with 
known normalizing constant. He sampled 1000 
draws of w at each point of 6 and estimated p(y 16) 
by importance sampling. A crucial step that makes 
Stein's method work is that he used the same 1000 
pseudorandom numbers for all draws at each 6, 
which was feasible because Stein sampled from 
the approximate densities h using an inverse-cdf 
approach. This introduces desirable positive depen- 
dence between the importance sampling estimates 
at the different points on the grid of 6, which, as 
Stein noted, greatly reduces the Monte Carlo error 
of the resulting ratio estimator. 

Here we replicate Stein's results using path Sam- 
pling with nested loops, which is computationally 
straightforward thanks to the simplicity of Gibbs 
sampler in this case. For each value of 6 = (m, log c) 
in the 21 x 21 grid, we use the Gibbs sampler to sim- 
ulate from the conditional distribution of the uncen- 
sored values, p(w y, 6). We monitored the conver- 
gence of parallel runs of the Gibbs sampler using 
the method of Gelman and Rubin (1992) and found 
that the simulations had reached approximate con- 
vergence after 100 iterations. We discard the first 
half of each simulation (i.e., we use 50 draws at each 
value of 6). We then use (15) in conjunction with 
(19)to estimate the function log[p(y 1 6)/p( y 6,)] on 
the 21 x 21 grid of (m, log c), where 6, is the max- 
imum likelihood estimate. Figure 3a gives the con- 
tour plot of the estimated negative log-likelihood 
ratio when we integrate log c first in applying (19). 
Figure 3b shows the corresponding plot when we in- 
tegrate m first. The effects of the two different paths 
are quite visible in this case, as Figure 3b gives a 
much smoother answer and is almost identical to 
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Integrating log c, then m 

lntegrating m, then log c 
9 .,-

FIG.3. Estimated negative loglikelihood for spatial statistics ex- 
ample (replication of Figure 3 of Stein,  1992) using path sam-
pling, with a 21 x 21 grid and only 100 draws of w at each point. 
The two plots show the estimates based on two different paths. 

the plot given in Figure 3 of Stein (1992). The path 
sampling method used here does not involve con- 
structing approximate densities and does not need 
to use the same pseudorandom numbers at different 
points of 6. 

5.3 	Example 2: Heteroscedastic Regression 
Models for Election Forecasting 

5.3.1 Statistical model and substantive back-
ground. Consider the heteroscedastic regression 
model, 

where r is a vector of weights, and 6 E [O, 11 is 
a model parameter. Boscardin and Gelman (1996) 
use this model for forecasting U.S. Presidential elec- 
tions, with units i representing states and election 
years, yi the Democratic Party's share of the vote in 
the state in that year, X a matrix of predictors and 
r i  proportional to the number of voters in the state 
in that year. The predictors X used in the regres- 
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sion are chosen based on existing regression models 
used in political science. 

The values 8 = 0 and 1 represent two extreme 
models that have been considered, implicitly or 
explicitly, in political science. Setting 8 = 0 cor- 
responds to equal residual variances for the 50 
states, which is generally assumed in forecasting 
and regression models of elections in political sci- 
ence research, perhaps for convenience as much as 
any other reason. Setting 0 = 1, so that variance 
is inversely proportional to the number of voters, 
has theoretical appeal as a generalization of the 
binomial model, which is implicit in many game- 
theoretic models of voting. One of the major trends 
in recent research in political science is to unify 
empirical and theoretical analyses; here, the value 
of 8 is an issue that needs to be resolved, for rea- 
sons both applied (obtaining efficient forecasts and 
regression estimates) and theoretical (understand- 
ing the variability of voters in the aggregate). See 
Gelman, King and Boscardin (1998) for a discussion 
of these issues, along with many references from 
political science and economics on these models. 

At this point, statistical practice suggests several 
different ways of using the data to assess the infor- 
mation of the data about the parameter 8. Classical 
approaches include (a) using significance tests to ac- 
cept or reject the null hypothesis 8 = 0 against the 
alternative, 8 = 1(or vice-versa); and (b) obtaining 
an approximately unbiased point estimate of 8, con- 
sidering it as a nonlinear estimation problem with 
nuisance parameters. Bayesian approaches include 
(c) choosing between 8 = 0 and 0 = 1, using the 
Bayes factor to assess the relative evidence in favor 
of the two possibilities; and (d) including 8 as a con- 
tinuous parameter in the model (taking the range 
[0,11) and computing its posterior distribution. 

Of these four approaches, (a) and (c) involve 
nearly identical computations, since both are based 
on the distribution of the likelihood ratio un-
der the two candidate models. In the context of 
simulation-based inference, approach (c) would be 
more natural, and it would involve the computation 
of a ratio of marginal densities, which, as discussed 
in Section 1,is equivalent to a ratio of normalizing 
constants. This computation could be done using 
any of the methods described in this paper; to the 
extent that the likelihoods under the two models 
(8 = 0 and 8 = 1)are far apart (which will generally 
be the case as the number of data points increases), 
it would be advisable to consider path sampling. A 
natural choice of path is (55) with 8 varying from 0 
to 1. 

However, in this application, we prefer to consider 
8 to be a continuous parameter from the start, be- 

cause we wish to consider the possibilities of models 
that fall between the two extremes 8 = 0 and 8 = 1: 
that is, perhaps there is some truth in both of the 
existing approaches. (A theoretical argument for al- 
lowing 0 to vary is that its appropriate value might 
very well depend on the set of explanatory vari- 
ables X used in the model, so that, e.g., the game- 
theoretic descriptions might be more or less accu- 
rate depending on what information is assumed to 
be known.) Now that we are allowing 0 to be uncer- 
tain on a continuous range, the classical estimation 
approach has some serious problems, most notably 
that the likelihood can be extremely flat (parame- 
ters of the variance model, such as 8 in this example, 
can often be poorly identified in data sets of mod- 
erate size) so that no point estimate is an accurate 
summary. Along with this is the possibility that the 
point estimate could be outside [0,11 just due to high 
variability or, if the estimate is constrained, that it 
could be on the boundary. For example, it is possible 
to have a point estimate at 8 = 0 even though 8 = 1 
is also well-supported by the data. These problems 
get more serious in the presence of nuisance param- 
eters (e.g., when p contains random effects compo- 
nents). For all these reasons, we prefer a Bayesian 
approach of summarizing the information about 8 
by a posterior distribution (or, to use non-Bayesian 
terminology, a marginal likelihood, since we shall 
use the uniform prior distribution, p(8) = 1).As 
discussed in Section 1, determining the marginal 
posterior density of 8 is mathematically equivalent 
to computing a normalizing constant parameterized 
by 0 E [0, 11.Because we are constraining 8 E [0, 11, 
it is also important to examine the behavior of the 
likelihood near the boundary to see if there is evi- 
dence that 0 < 0 or 0 > l. 

We consider two methods of computing the poste- 
rior density, or marginal likelihood, or normalizing 
constant, as a function of 8: (i) the usual approach 
of Bayesian simulation, which is to consider 8 as 
a parameter in the model and then summarize its 
posterior distribution by the empirical distribution 
of its simulation draws, as was done by Boscardin 
and Gelman (1996); and (ii) path sampling. In fact, 
we shall use the simulation draws from (i) to im- 
plement path sampling and then compare the esti- 
mated marginal posterior distribution for 0 under 
path sampling to the direct estimates from the sim- 
ulation draws. 

5.3.2 Path sampling for the nonhierarchical 
model. To check the performance of path Sam-
pling, we first consider the simple nonhierarchical 
model, which assigns a uniform prior distribution to 
( p ,log a, 8). As discussed in Boscardin and Gelman 
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FIG. 4. Estimates of the density function and cdf of the heteroscedasticity parameter 0 for the election forecasting example with non- 
hierarchical model: ( a )dashed line is exact density, dotted line is estimated density from path sampling and histogram is from 1000 iid 
simulation draws; (b) dashed line is exact cdf, dotted line (almost exactly on top of dashed line) is estimated cdf from path sampling and 
solid line is empirical cdf from simulation draws. 

(1996), the (unnormalized) marginal posterior den- 
sity for 6 in this model can be written analytically, 
and posterior draws for the vector of parameters 
can be obtained directly by first drawing 6 from 
a discrete approximation to its numerically calcu- 
lated marginal posterior distribution, then drawing 
(p,  a)from their no rma l - in~e r se -~~  posterior distri- 
bution conditional on the drawn 6. For the election 
example, this was done using 1000 independent 
draws of 6 and 2 draws of (p ,  a )  for each draw 
of 6. In our general notation, w = (P, a ) ,  which 
is 20-dimensional because /3 has 19 components. 
To compute the path sampling estimate of p(Oly), 
we must first determine the function U(w, 6); the 
differentiation is easy and yields 

We use the simulation draws, which have the 
nested-loop form, to compute the path sampling 
estimate of p(6ly). Figure 4a shows the results, 
comparing the exact density (smooth line), path 
sampling estimate (slightly jagged line) and the 
histogram from the 1000 simulation draws. The 
path sampling estimate is (of course) worse than 
the exact density but compares much more favor- 
ably to the histogram estimate. Another comparison 
is afforded by Figure 4b, which shows the corre-
sponding cdf's. Here, the jagged line is the empirical 
cdf of the 1000 draws, and the smooth line repre- 
sents both the path sampling estimate using (17) 
and the exact cdf-the differences are barely vis- 
ible! Obviously, in this case, one can simply use 
the exact formula, but it is informative and encour- 
aging to be able to confirm that path sampling is 
capable of producing such an accurate approxima- 

tion to a 20-dimensional integration indexed by an 
entire curve with only 2000 draws in total. 

5.3.3 Path sampling for the hierarchical model. 
We now move to a more realistic, and thus more 
complicated, model fitted by Boscardin and Gel- 
man (1996) in which the marginal density for 6 
cannot be computed analytically. In this model, 50 
additional components of /3 are added (and thus 
we are now dealing with a 70-dimensional integra- 
tion), along with a hierarchical regression model 
and additional variance components. For this ex-
panded model, the marginal posterior density of 
6 cannot be computed exactly, and posterior sim- 
ulations are obtained using the Gibbs sampler 
and the Metropolis algorithm, alternating between 
Metropolis jumps for 6 and Gibbs draws for the re- 
maining parameters. Approximately overdispersed 
starting points for the algorithm are obtained by a 
t4 approximation to the posterior distribution. The 
Gibbs sampler draws are performed using linear re- 
gression operations and simulations of normal and 
X 2  random variables, and the Metropolis steps use 
a univariate normal jumping kernel with a scale 
set to 2.38 times the estimated standard deviation 
of 6 from the initial approximation (motivated by 
Gelman, Roberts and Gilks, 1996). 

For the election example, 10 sequences, each of 
length 500, were sufficient for approximate conver- 
gence of the simulations as monitored using the 
methods of Gelman and Rubin (1992). To compute 
the path sampling estimate of p ( 0  y), we again need 
the function U ,  which actually has the same form 
(56) as before, since the added hierarchical part 
of the model does not involve the parameter 6. In 
this case, the simulation draws have the single-loop 
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FIG. 5. Estimates o f  the density function and cdf of the heteroscedasticity parameter 0 for the election forecasting example with hier- 
archical model: (a) dotted line is estimated density from path sampling and histogram is from 1250 simulation draws from Metropolis 
algorithm; (b) smooth line is estimated cdf from path sampling, and jagged line is empirical cdf from simulation draws. 

form, meaning that we can only learn about p(8l y)  
for the range of 8's that were obtained in the sim- 
ulation. Figure 5a shows the estimated marginal 
posterior density from path sampling and the his- 
togram of simulation draws, and Figure 5b shows 
the corresponding estimated cdf's. The path Sam- 
pling estimates are far smoother. Based on the ev- 
idence given in Figure 4a, b we can be quite con- 
fident that the path sampling estimates are very 
close to the truth, especially for the cdf. For both 
these models, the smoothness of the path sampling 
estimates is an intrinsic property of the estimation 
procedure-despite their appearance, no smoothing 
was used in creating the estimates. 

6. SUMMARY AND FURTHER RESEARCH 

This paper attempts to bring to the attention 
of statistical researchers some useful methods for 
computing normalizing constants for complex, high- 
dimensional probability models, or more generally 
computing high-dimensional integrations with com- 
plicated integrands. Both bridge and path sampling 
are rooted in popular methods in theoretical physics, 
namely, the acceptance ratio method and thermo- 
dynamic integration. Due to extremely challenging 
and important computational problems in physics 
and chemistry, some of which are far from being 
resolved (e.g., minimum energy configurations of 
protein molecules), there is a huge literature in the- 
oretical and computational physics and chemistry 
on creative methods for high-dimensional integra- 
tion and optimization. For an excellent, though not 
necessarily "statistician friendly," recent review of a 
good number of these powerful methods, see Ceper- 
ley's (1995) long review article on path integrals 
in the theory of condensed helium. In particular, 

the methods discussed in Section V of Ceperley 
(1995) are potentially very useful for implementing 
path sampling in general-indeed, the phrase "path 
sampling" is used there to describe sampling meth- 
ods for simulating path integrals for the so-called 
thermal density matrix. 

Given its great success in theoretical physics 
for dealing with complex integrations, as well as 
Ogata's (1990, 1994) successful applications to Bay- 
esian computations, we believe that path sampling 
can be generally useful in statistical computa-
tions for dealing with complex integrations. The 
method is not only capable of producing remark- 
ably accurate results but is also quite straight- 
forward, in the class of methods that are use-
ful for high-dimensional complex integrations. As 
Frenkel (1986, page 169) states in his review chap- 
ter on free-energy estimation: "Thermodynamic 
integration (TI) is undoubtedly the method most 
widely used to compute absolute free energies and 
free-energy differences. The reason is that, al-
though it may be more time consuming than some 
of the sophisticated methods described above, it 
is straightforward, accurate and does not run into 
special problems at high densities or for large sys- 
tem sizes." We hope our simple (though not trivial) 
empirical illustrations, as well as the theoretical 
example, have helped to convey these messages 
to statistical researchers; the quote also makes it 
clear that thermodynamic integration (and hence 
path sampling) does not dominate other methods. 
Furthermore, we hope our derivation of how path 
sampling relates to importance sampling via bridge 
sampling will help general statistical readers to un- 
derstand the method intuitively and thus be able 
to apply it with more confidence. In a statistical 
context, path sampling also gives an alternative 
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method of estimating marginal distributions and 
offers an effective check on the convergence of 
Monte Carlo simulations. 

Our general formulation and investigation also 
reveals that further research is needed in order to 
explore fully the potential of path sampling. For 
example, the construction of efficient yet simple 
general paths is of great importance for routine ap-
plication of path sampling. Our theoretical results 
(e.g., the general suboptimality of the geometric 
path and, for the normal example, the optimal path 
that curves through the space of (p, a ) )  show that 
the best paths are not always obvious. The question 
of achievable optimal error is not only of theoreti-
cal interest but also of practical relevance if we can 
construct an easily implementable iterative pro-
cedure, just as with bridge sampling, to compute 
the optimal estimate. Such questions are inher-
ently statistical, and thus we statisticians should 
be able to contribute substantially to the study of 
efficient implementation of path sampling, espe-
cially in view of the theoretical relations between 
optimal paths and the Jeffreys prior and the Rao 
and Hellinger distances. With path sampling, as 
with Markov chain Monte Carlo methods-another 
statistical tool that originated in computational 
physics-there is the potential not only to benefit 
from a powerful method but also to make it more 
efficient and applicable, thus broadening the range 
of statistical models that we can use routinely. 

APPENDIX 

A.l An Elementary Proof of Lemma 2 

PROOF.Let g(8) be a differentiable positive func-
tion on [O,1] such that g(0) = g(1) = 1, and let 
h(w18) = p(wlO)g(8). Then, by Fubini's theorem, 
we can verify that 

By the Cauchy-Schwarz inequality, the first term 
on the right-hand side of (57) is bounded below by 
4H2(p0,pl)/ J: g(8) dB with the bound achieved if 
and only if 

a.s. ( p  x Lebesgue on [0, I]), 

where b(w) is a positive function to be determined. 
Solving (58) for p(wj8) = h(wlO)/g(O) with the 
given boundary condition yields 

where G(8) = J: g(6) d t .  The freedom in choosing 
g(8) allows us to ensure that p(wI8) of (59) is a 
proper density for any 8 E [O, 11, a requirement that 
leads to a differential equation for G(8): 

Solving (60) for g(8) = G1(8) with the boundary 
condition g(0) = g(1) = 1yields 

The rest of the proof follows by simple algebraic ma-
nipulation. 

A.2 Derivation of the Optimal Path in (p,@)-Space 
for the Normal Example 

Here we derive the optimal path in the normal 
family example of Section 4.4 in the general case 
of any endpoints go = (po,go) and O1 = (pl, a'); 
without loss of any generality, we assume p1 L po. 
We start by noting that, with the normal family (52), 
the variance formula (42) becomes 

The corresponding Euler-Lagrange equations (43) 
for the optimal path can be simplified into 

where co is a constant to be determined by the 
boundary conditions: p(t) = pt ,  a(t)  = at ,  t = 0 , l .  
This differential equation can be solved using a dif-
ferential geometric argument developed in Atkinson 
and Mitchell (1981) or directly as follows. 

We first substitute (62) into (63) and obtain 

We then let u = a( t )  and express u = u(a) via t = 
t-'(a), which yields 
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Combining (65) with (64) gives 

which implies 

where cl is a constant to be determined. 
When co # 0, (67) leads to 

da
t = [  

JC1+ - ( ~ ; / 3 ) ~ 4  

where c2 is another constant to be determined. It 
follows that 

Finally, combining (68) with (62) yields 

where the constant c3 is determined, along with co, 
c1 and c2, by the boundary conditions. The solution 
is then given by 

p(t)  = R tanh[+o(l - t) + + C, 

where 

= - log + Pt - for t = 0,1.
2 R - p t + C  

This implies a path in (P, a)-space of the form 

(72) ( p  - + 3a2  = R ~ ,  

which reduces to (53) when a. = al = 1, po = 0 
and pl = D. The case of co = 0 corresponds to the 
special case po= pl, in which case the solution is 

p(t) 3 po, a ( t )  = aiai-t for 0 5 t 5 1. 

The solution (70) also induces the optimal prior 
densities on the optimal path; for p,  it is 

1 1 
P(P) = 

(73) R(41-  40)  1- [(P- C)/R12' 

and for a, 
9 1 

where 

[ max(a0 a ) ,  otherwise. 

The density of a has an asymptote a t  am, because 
b(t) = 0 a t  t = am,. (In our example, a:, = 
1+ D2/12.) The optimal error associated with the 
optimal path can be easily obtained, using the fact 
that, on the path, the integrand inside (61) is free 
o f t  due to the "second-moment-stabilizing" transfor- 
mation (see Section 4.1). The optimal error is given, 
in general, by 

where 4,, t = 0,1 ,  are given by (71). In our example, 
i t  is simplified to 

because po= 0, pl = D and a 0  = a1= 1. 
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