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Explaining the Perfect Sampler 
George CASELLA, Michael LAVINE, and Christian P. ROBERT 

In 1996, Propp and Wilson introduced coupling from the past 
(CFTP), an algorithm for generating a sample from the exact 
stationary distribution of a Markov chain. In 1998, Fill pro- 

posed sO-called~efect These algO-.min~liizg 
rithms have enormous potential in Markov Chain Monte Carlo 
(MCMC) problems because they eliminate the need to monitor 
convergence and mixing of the chain. This article provides a 
brief introduction to the algorithms, with an emphasis on under- 
standing rather than technical detail. 

KEY WORDS: Coupling from the past; Fill's algorithm; 
Markov chain Monte Carlo; Stochastic processes. 

1. SETTING 

A Markov chain is a sequence of random variables {Xt)that 
can be thought of as evolving over time, and where the distri- 
bution of depends on Xi, but not on Xt-l; XtP2; . . . . 
When used in Markov chain Monte Carlo (MCMC) algorithms, 
Markov chains are usually constructed from a Markov traizsitioiz 
kernel K, a conditional probability density on a state space X 
such that Xt+1 lXt K(Xt;.). Interest is usually in the sta- 
tionary distribiitioiz of the chain, the distribution T that satisfies 

~ ( z .B)da(x)= T(B) 

for any measurable subset B of X. 

Thus, if Xt a ,  then Xt+l T. In a common application T 

is the posterior distribution from a Bayesian analysis and K is 
constructed to have stationary distribution T. 

Here is an example that we follow throughout the article. 

Example: Beta-Binomial. Following Casella and George 
(1992), and for some suitable parameters n, a ,  and /3, let 

Beta(cu,/3) and X 10 Bin(n,Q),  leading to the joint 
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density 

a ( z  8) GY (:) 8'+"-' (1- Q)"-"+~- ' .  

-and the conditional density Qlz Beta(a + z,a+ 

We can construct a Markov chain-in fact, a Gibbs sampler- 

having as its stationary distribution by using the following 
transition rule for .Bt !Xt+l. Qt+ ): 

1. choose 8t+l Beta(cu + xt. /3 +n - xt), and 
2. choose Xt+l Bin(n. 

This transition rule has transition kernel 

K((xt,Qt); (zt+l; Q t + l ) )  = f((2t+l,Qt+l)l(zt;Q t ) )  

For future reference we note that the subchain . . . ;X i ,  
Xt+1;. . . is a Markov chain with Xt+ll2t BetaBin(n,cu + 
2 t .  P + n - xi) and transition kernel 

Theorems about stationary distributions and ergodicity ap- 
ply when the Markov chain satisfies the three properties of ir- 
reducibility, reversibility, and aperiodicity, defined in the Ap- 
pendix. See Robert and Casella (1999, chap. 4) for a brief 
description or Meyn and Tweedie (1993) and Resnick (1992) 
among others for book-length treatments. These properties are 
assumed true for the rest of this article. 

The stationav distribiition of the Markov chain is also a linz- 
iting distribution: Xt converges in distribution to X T .  For 
MCMC purposes two useful consequences of our assumptions 
are that 1/M ~t:,h(XJ)+E,[h(X)] (sometimes called the 
ergodic theorem) and that a central limit theorem holds. 

It is typical in practice to have MCMC algorithms begin from 
an arbitrarily chosen state at time t = 0, say, and run for a long 
time T ,  say, in the hope that XTis a draw approximately from a .  
One typically discards Xo;. . . ; XTP1and estimates E, [h(X)] 

T+i\.i-1 
as 1/M C,=, h(Xj).A serious practical problem is de- 
termining the "burn-in" time T ;  see Jones and Hobert (2001). 
A second practical problem is determining the correlation be- -
tween and x ~ + ~ ,which is used to calculate the variance of 
the estimate. Perfect sampling avoids both problems because it 
produces independent draws having distribution T precisely. 
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Indeed, the major drawback with using MCMC methods is 
that their validity is only asymptotic: if we run the sampler kernel 
until the end of time, we are bound to explore the entire distribu- 
tion of interest; but, since computing and storage resources are 
not infinite, we are bound to stop the MCMC sampler at some 
point. The influence of this stopping time on the distribution of 
the chain is not harmless and in some cases may induce serious 
biases (Roberts and Rosenthal1998). Perfect sampling alleviates 
this difficulty by producing, in a finite number of steps, exactly 
the same chain as one running an infinite number of steps, by 
simply replacing the starting time with -oc and cx,with 0. And, 
at no additional cost, it also removes the dependence on the start- 
ing value! In other words, the burn-in time becomes infinite, the 
chain is in the stationary distribution at time 0, and we produce 
a sample from the exact stationary distribution. 

2. COALESCENCE 

The first step in obtaining a perfect sample is to find a way to 
make X t  independent of the starting value. One way to do this 
is to work with coupled parallel chains. 

To illustrate this idea, suppose that the state space X is finite 
with k states, and we start a Markov chain in each state at time 
t = 0. These are parallel chains. Parallel chains can be coupled 
through a transitiorz rule dI and random numbers Ut . A transition 
rule determines Xt+1as a function of Xt and Ut+l. Note that the 
same dI and same . . . . Ut. Ut+l,  . . . are used for each chain. A 
common and convenient choice is to let Ut+l Uniform(O.1) 
and take Xt+l = d(x t .  .ut+l) = F';iIlzt (u i+l ) ,  the inverse- 
cdf function of Xt+ l  Ixt determined by the kernel K and a linear 
ordering on X. For illustration we return to the Beta-Binomial 
example. 

Example: Beta-binomial, continued. Consider the sub- 
chain {Xt : t > 0) from the previous example, and let n = 2, 
cu = 2 and /3 = 4. The state space is X = (0; 1;2). The transi- 
tion probabilities are given by the transition matrix 

and the cdf matrix 

in which pij  = Pr [Xt+ l  = j - lIXt = i - 11 and cij = 

P r  [Xt+l  < j - 1X t  = i - 11. The entries of C are the break 
points at which the behavior of the chain changes. Thus, we 
can simulate Ut+l - Uniform(0,l)  and make the transitions 
illustrated by Figure 1. 

Figure 1 shows that coupled chains will all go to the same 
state, or coalesce if there is ever a time t such that either Ut < 
,278, .583 < Ut < ,722, or Ut > ,917. Once coupled chains 
coalesce at time t ,they remain coalesced at all times greater than 
t .And because the Ut's are mutually independent coalescence is 
guaranteed to happen eventually. Let X s , j  = {Xf '3) t2s  denote 

a Markov chain that begins in state j at time s. Coalescence is 
the event that for some t ,x,""= = . . . = x:". The next x,"'~ 
theorem gives some general results about coalescence. 

Theorem 1. Suppose we have k coupled Markov chains, 
X s , l 3  Xs .2 ,  . . . . % Xs.', where 

1. X S , j  starts in state j at time s (so one chain starts in 
each state of X); 
2. updating is performed according to X;fl = 

dI(X,"13, Ut+l), where the Ut's are mutually independent. 

Then 

(a). The time T to coalescence is a random variable that 

depends only on Ul ; U2, . . .. 

(b). The random variable XT,  the common value at coa- 

lescence, is independent of any starting values. 


Proof: Part (a) is immediate by construction,.and part (b) 
follows since XT is a function only of U1.. . . , UT and not of 
the j in X,">J. 

Conclusion (b) of Theorem 1 says that T is a time at which the 
initial state of the chain has "worn off." One might therefore hope 
that XTis a draw from the stationary distribution T. This hope is 
false. It is true that if T*is ajixed time, and XT* is independent 
of Xi,< then XT* T . Unfortunately, T is a random time and 
in general, XT # T, as the following example illustrates. 

Example: Two-state. Consider the Markov chain with state 
space (1;2) and transition kernel Il(l.1)= K ( 1 , 2 )  = . 5 ;  
K (2; 1)= 1; K ( 2 ;  2) = 0. The stationary distribution is ~ ( 1 )= 

213; ~ ( 2 )  = 113. A little thought shows that parallel chains can 
coalesce only in XT = 1and therefore XT # T .  

3. PROPP AND WILSON 

Propp and Wilson (1996) explained how to take advantage of 
coalescence while sampling the chain at a fixed time, thereby 
producing a random variable having distribution T, exactly. 
Their algorithm is called coupling froin the past (CFTP), and 
is based on the idea that if a chain were started at time t = -cx: 
in any state X-,, it would be in equilibrium by time t = 0, so 
Xowould be a draw from T. This would happen since the chain 
would have run for an infinite length of time. 

To implelnent this idea in an algorithm, we use the coalescence 
strategy. We first find a time -T such that Xo  r x,~'"o~s 
not depend on ~ 1 ; ' ~(coalescence occurs between time -T and 
time O), and then we determine X o  by starting chains from all 
states at time t = -T and following them to time t = 0. 

CFTP is an algorithm for finding -T and Xo  and goes as 
follows. 

1. Start chains XP1>l;X-l12 , , x-llkat time t. . . . .  = -1 
from every state of X .  Generate Uo. 

2. Update each chain to time t = 0 by applying the transition 
rule = ( j (x_t1j ;  UO). If the chains have coalesced at 
time t = 0, then T = -1 and the common value X O  is a draw 
from T. 



Figure 1. All possible transitions for the Beta-Binomial(2,2,4) example. 

3. Otherwise, move back to time t = -2, start chains 
X-2 > . . . .X-2,k ,  generate U-I, and update each chain us- 
ing x1:13 = Q ( ~ I i , 3 .  = j .  UO). If UPl)  and xi2,j @(XI: 
the chains have coalesced at time t = 0,then T = -2 and the 
common value Xois a draw from T .  

4. Otherwise, move back to time t = -3 and continue. The chains have still not coalesced so we go to time t = -3. 
Suppose U-2 t (.278, ,417). The next picture shows the result 

It is crucial, in Step 3, to use the same Uo from Step 1. Specif- of updating all chains. 
ically, we start chains at time t = -2 from every state; draw 
U-1; use U-1 to update all the chains to time t = -1; use the 
Uo from step (1) to update all the chains to time t = 0;check 
for coalescence; and either accept T = -2 and X o  if the chains 
have coalesced or go back to time t = -3 if they have not. The 
algorithm continues backing through time until coalescence oc- 
curs. All chains have coalesced into X o  = 1. We accept Xo  as a 

draw from T .  Note that even though the chains have coalesced 
at t = -1, we do not accept X-1 = 0as a draw from T .  

Theorenz 2. The CFTP algorithm returns a random variable In CFTP, T and Xo  are dependent random variables. There- 
distributed exactly according to the stationary distribution of the fore, a user who gets impatient or whose computer crashes and 
Markov chain. who therefore restarts runs when T gets too large will generate 

Proof: See the Appendix. biased samples. Another algorithm, due to Fill (1998), generates 
samples from T in a way that is independent of the number of 

We use the Beta-Binomial example for illustration. steps. 

Exanzple: Beta-Binomial, continued. Begin at time t = -1 
and draw Uo. Suppose Uo E (333 ,  ,917). The next picture 4. FILL'S ALGORITHM 
shows the result of updating all chains. 

A simple version of Fill's algorithm (Fill) is: 
2 7 2  

1. Arbitrarily choose a time T > 0and state XT = z.  
2. G e n e r a t e X T - 1 x ~ , X T - 2 x ~ - 1, . . . , XOIzl. 

t = - l  t = o  [ U ~ ~ X I ; X ~ ] ,3. Generate [ U I X O . X I ] ,  . . . , [UTIXT-~;XT].  
4. Begin chains XOll, . . . ,XOl%n all states at time 0 and use 

the common U1, . . . , UT to update all chains. 
The chains have not coalesced, so we go to time t = -2 and 5 .  If the chains have coalesced by time T (and are in state z 

draw U-I. Suppose U-1 t (.278.417). The next picture shows at time T),  then accept xo as a draw from T .  

the result of updating all chains. 6. Otherwise begin again, possibly with a new T and z.  
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Time to Coalescence 

I I I I I I I I I 

0 2 4 6 8 10 12 14 16 

X-T 

Figure 2. Time to coalescence for 50 runs of Fill's algorithm, for each value of XT.  

We note that the U1, . . . ,UT used for the coalescing chains are 
generated in such a way to ensure that x + z; that is, x;" = z. 
So, for example, generate U1 to be uniform on the set {u : xl  = 

cJ(xo; u)) ,  U2 to be uniform on the set ( 1 ~: x2 = d(x l ;u))  and 
so on. See the example for a further illustration. 

There are two ways to prove that Fill is correct. We present 
one proof here and the second proof in the appendix. Let CT (z) 
be the event that all chains have coalesced and are in state z at 
time T; that is, x$~= z for all j .  

Firstproof: Fill delivers a value only if it accepts Xo = x, so 
we need to prove Pr[Xo= ~ ( x ) .zaccept] = This probability 
is 

P ~ [ z+ z ] P r [ C T ( ~ ) l z+ Z]
Pr  [Xo = zaccept] = 

C, ,  Pr[z + xl] Pr[CT(z) z 1  + z] ' 

Now because the coalescence event entails each x1 + z, we 
have for every x1 

Pr  [CT (z) and XI + z]
Pr  [CT (z) x1 + z] = 

Pr[xl + z] 

- p r c T z l  , (1) 
Pr[zl  + z] 

and writing Pr[xl + z] = KT(xl ,  z) the probability becomes 

liT(z; x) P ~ [ C T ( Z ) ] / K ~  (x. z)
Pr[Xo = xlaccept] = C,/ K T  (z; 5') Pr[CT (z)] /KT (XI, 2) 

= T(x)/T(z),and thus, 

Pr  [XO= xlaccept] = ( I = T(x),x,/T(x1)/7+) 

We follow the Beta-binomial (2,2,4) example through the 
steps in Fill. 

Example: Beta-Binomial, continued. 

1. We arbitrarily choose T = 3 and XT = 2. 
2. Our chain is reversible, so [X21x3 = 21 = [X3 X 2  = 

21 = BetaBin(2.4;4). The probabilities are given on page 300. 
We generate X2. Suppose it turns out to equal 1. Similarly, 
X1X2 = 1 -- BetaBili(2,3; 5); suppose we get XI  = 0; 
Xo1x1= 2 -- BetaBin(2,4; 4); suppose we get Xo = 1.The 
next picture shows the transitions we have generated. 

t=O t = l  t = 2  t = 3  

3.  Xo = 1, XI  = 0, X2 = 1 and XS = 2 imply 
Ul U(0; ,417); U2 U(.583; ,917); and U3 -- U(.833; 1). 
(See Figure 1.) Suppose we generate Ui t (.278_ 417). U2 t 
(.833; ,917) and U3 > ,917. 

4. Begin chains in states 0, 1, and 2. 
5.  The next picture follows the chains through time t = 3. 

From the detailed balance condition (see the Appendix) 6. The chains coalesce in Xg = 2; SO we accept Xo = 1as a 
T ( z ) K ~ ( z . x )= wehaveKT(z ;x) /KT(x;z )  d r a w f r o m ~ .~ ( x ) K ~ ( x . z )  



Fill depends on an arbitrary choice of T and XT.  TOget some 
feeling for how big T needs to be and whether the choice of XT 
is important, we ran Fill on a Beta-binomial(l6, 2 ,4 )  example. 
For each of XT = 0, 2 ,  . . . . 16, we ran Fill in a loop with T = 

1,3, . . . successively until the algorithm returned a value. The 
whole simulation was repeated 50 times. Figure 2 is a boxplot, 
sorted by XT,  of the T for which coalescence was achieved. The 
horizontal axis is the value of XT which we fixed in advance. 
The vertical axis is the value of T for which coalescence occured. 
The figure shows that coalescence occured much more quickly 
when we chose either XT = 0or XT = 16 than any other value 
of XT.  

5. DISCUSSION 

A potentially troublesome point is detecting whether coa-
lescence has occurred. In general, starting and keeping track of 
chains from every state is computationally infeasible. In (par-
tially) ordered state spaces with a monotone transition rule it is 
only necessary to keep track of chains started from the maxi-
mal and minimal members. A monotone transition rule is one 
in which Xt 2 & 3 Xt+1 = 4 ( X t . u t + l )  2 = 

d(&,ut+1). If we use an inverse-cdf function q5 (with an appro-
priate linear order) and the kernel K is stochastically monotone, 
then the transition rule will be monotone. 

This is the case in our example, where a chain started from 
state 1 is sandwiched between chains started from states 0 and 
2. Therefore it is only necessary to keep track of chains started 
from 0 and 2 to determine whether coalescence has occurred. In 
fact, if there exist maximal and minimal elements, coalescence 
is detectable even with a continuous state space. Nonmonotone 
transition rules or state spaces without minimal and maximal el-
ements require more sophisticated methods. See Fillet al. (1999) 
or Green and Murdoch (1999) for details and extensions. 

In describing CFTP we set T successively equal to -1, -2, 
. . . . In fact, any decreasing sequence would do as well. Propp 
and Wilson (1996) argued that T = -1. -2, 4 ,-8. . . . is near 
optimal. In Fill, if Xo  is rejected, or if many realizations are 
needed, it may be better to choose new values of T and z for 
the next proposal. Figure 2 shows that some combinations of 
(T.z) are more likely to lead to coalescence than others. There 
is no general theory at present to guide the choice of (T,z) .  In 
practice the results of early iterations may guide the choice of 
(T,z) in later iterations. 

In his original algorithm described here, when running the 
k chains for coalescence, Fill used constrained uniform variables 
Ul . . . . , UT conditional on Xo.. . . .XT,  generating [U11x0,z l ] ,  
[U2x l ,  z2 ] ,  . . . , [UTIzTP1,zT] .  This ensures that the chain 
starting in z will end up in z. This is practical as long as it 
is not too difficult to sample from the conditional distribution of 
the Uz's given the XZ7s.  

An alternative to the algorithm described in Fill is to gener-
ate the U,'s unconditionally. (Typically U, - U(0, I) .)  Using 
these U,'s, check whether zo 4 z. If yes, then also check for 
CT(z) and either accept or reject Xo accordingly. Otherwise, 
discard the Uz's and generate another set until finding one such 

that xo 4 z.Ultimately we will accept zo with probability 
P r  [CT( 2 )1x0 + z], as required. However, the implementation 
of such an alternative is typically impractical in real applications. 

Some practical applications of Markov chains iterate be-
tween a discrete X and a parameter (3 that might be either dis-
crete or continuous. In such cases we can obtain perfect samples 
from thejoint distribution of both X and 0. In our Beta-Binomial 
example, once we have a perfect sample of X we can obtain a 
perfect sample of 0 by sampling from [QIX].For a more in-
teresting example, consider modeling the data Y as a mixture 
of Normal distributions. The model is usually extended to in-
clude indicator variables X ,  which are not observed but which 
indicate which Y's come from the same mixture components. 
Conditional on X ,  the model is a straightforward collection of 
Normals. Let B denote all unknown parameters other than X .  
The posterior is typically analyzed through a Gibbs sampler 
that iterates between [XI81 and [BIX]. The iterates of X form 
a subchain on a finite state space and are amenable to perfect 
sampling. Given a perfect sample of X ,  one can simulate from 
[BIX]to obtain a perfect sample of 8. 

This remark extends to other latent variable models, but one 
must keep in mind that the size of the finite parameter space of X 
in the mixture example is kn ,  which rapidly gets unmanageable 
unless monotonicity features can be exhibited, as in Hobert, 
Robert, and Titterington (1999). 

To remove the difficulty with continuous state space chains, 
another promising direction relies on slice sampling. This tech-
nique is a special case of Gibbs sampling (see Robert and 
Casella 1999, sect. 7.1.2) and takes advantage of the fact that 
the marginal (in X )  of the uniform distribution on {(z,u):  u < 
~ ( x ) )is ~ ( z ) .The idea, detailed by Mira, Mgller, and Roberts 
(1999), is that, if XA is a variable generated from the uniform 
distribution on {x; ~ ( 2 )> E T ( X ~ ) ) ,it can also be taken as a 
variable generated from the uniform distribution on {x; ~ ( z )> 
E T ( z ~ ) )for all z17ssuch that E T ( Z ~ )< E T ( X ~ )  5 ~ ( 2 6 )by a 
simple accept-reject argument. Therefore, assuming a bounded 
state space X, if one starts with X; generated uniformly on X, 
a finite sequence XA, . . . ,X&can be used instead of the contin-
uum of possible starting values, with z: being generated from a 
uniform distribution on {x: ~ ( x )> ~ ( z : - and T being such 
that T(x&)> E sup ~ ( 2 ) .Moreover, slice sampling exhibits nat-
ural monotonicity structures which can be exploited to further 
reduce the number of chains. The practical difficulty of this ap-
proach is that uniform distributions on {z;~ ( x )> t ~ ( x ~ ) )may 
be hard to simulate, as shown by Casella, Mengersen, Robert, 
and Titterington (1999) in the setup of mixtures. 

Perfect sampling is currently an active area of research. 
David Wilson maintains a Web site of papers on perfect sampling 
at http://dimacs.rutgers.edu:80/~dbwilson/exact.html.The in-
terested reader can find links to articles ranging from introduc-
tory to the latest research. 

APPENDIX 

A. l  A Markov Chain Glossary 

We will work with discrete state space Markov chains. The 
following definitions can be extended to continuous state spaces 
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as long as the usual measurability complications are carefully 
dealt with. 

A Markov chain XI,X 2 , . . . , is irreducible if the chain can 
move freely throughout the state space; that is, for any two states 
x and z', there exists an n such that Pr[X, = x ' X o  = x] > 
0. Moreover, as the chains we are considering are all positive, 
that is, the stationary distribution is a probability distribution, 
irreducibility also implies that the chain is recurrent. A recurrent 
chain is one in which the average number of visits to an arbitrary 
state is infinite. 

A state x has period d if P(X,+t = zlXt = x)  = 0 if n is 
not divisible by d, d being the largest integer with this property. 
For example, if a chain starts ( t  = 0) in a state with period 3, the 
chain can only return to that state at times t = 3 ,6 ,9 , .. .. If a 
state has period d = 1,it is aperiodic. In an irreducible Markov 
chain, all states have the same period. If that period is d = 1, 
the Markov chain is aperiodic. 

We then have the following theorems. 

Theorem A. I :  Convergence to the stational-y distribution. If 
the countable state space Markov chain XI,X2! . . . , is positive, 
recurrent, and aperiodic with stationary distribution T ,then from 
every initial state 

X n 4 X ~ 7 r .  

A positive, recurrent and aperiodic Markov chain is often 
called ergodic, a name also given to the following theorem, a 
cousin of the Law of Large Numbers. 

Tlzeorenz A.2: Convergence of sums. If the countable state 
space Markov chain XI,X2 .  . . . , is ergodic with stationary dis- 
tribution T, then from every initial state 

-
1 C h ( x i )  E,h(X)+ 

72 Z=I 

provided E , l h ( X )  < oc. 

Adding the property of reversibility will get us a central limit 
theorem. If we reverse the direction of time for a stationary, 
ergodic Markov chain, the reversed process is also a Markov 
chain (see Ross 1985, sec. 4.7), but does not necessarily have 
the same transition probabilities. The reversed chain does have 
the same transition probabilities and is said to be reversible if 

~ ( g ) E ( ( y , x ) = ~ ( x ) K ( z ! y )forall z !y .  

This condition is also known as detailed balance, and insures that 
the transition probabilities are the same whether we go forward 
or backward along the chain. 

Theorem A.3: Central limit theorem. If the countable state 
space Markov chain X1 !X2,. . . . is ergodic and reversible with 
stationary distribution T, then from every initial state 

A.2 Proof of Theorem 2 

Let C ( X )  denote the probability law of the random variable 
X and C ( X )  + T denote convergence in probability. The proof 
is based on establishing the following three facts: 

1. The CFTP algorithm will finish in finite time and produce 
a value; call it Xo.  

2. For each j ,  c (x ,~ .~ )  4 T as t 4 cxj. 

3. For each j,xit'' XOas t 4 oc. 

It then follows that Xo - 71 

Fact I .  We adapt the proof presented by Thonnes (1999). 
By irreducibility, for each j we can find !V, such that 

~ ( x 2 . Lx) > 0. for all x E X 

setN = max{nrl,AT,, , , , ,AT, ). then follows that each 
x,"'.' has positive probability of being in any state, and that 
for some > 

p(X;".l = X;",2 -- . . = x r  N .k ) > & .  

Now run the CFTP algorithm in blocks of size N as follows. 

(i). Starting at time N ,  run the k coupled chains to time 0. 
If they have not coalesced 

(ii). Starting at time -2N, run the k coupled chains to time 0. 
If they have not coalesced. 

Define Ci to be the event 

iA7.1 - iN.2 - - iN.k 
XZ(i-l)N-XI(i-l)n-- . . -XI(i-lll\r> 

that is, the event that k parallel chains started at t = i ! V  will 
have coalesced by t = -(i - 1 ) N .  From the preceding argu- 
ment we have that P(Ci)> E .  Moreover, the Ci are indepen- 
dent because coalescence in ( - iN ,  ( i- 1 ) N )  only depends on 
U-zlv, UPzN- 1 . . . , U-(z-l)N (which are independent of all of 
the other Ui's). 

Finally, we observe that 

I 

P(no coalescence after I iterations) P(c,)]5 n[l-

showing that the probability of coalescence is 1.We can, in fact, 
draw the stronger conclusion that the coalescence time is almost 
surely finite by noting that 

30

CP(Ci)= GC * P(Ci infinitely often) = 1, 
i=l 

from the Borel-Cantelli Lemma. 

Fact 2. We next show that for j = l , 2 ,  . . . ,k ,  

C ( x i t . j )  4 7r as t 4 x. 



But C ( x o t') = C ( X ~') because they are both the distribution 
of a Markov chain that starts in state j and progresses through 
t time steps. And C ( X ; " )  + T because T is the stationary 
distribution. 

Fact 3. Fact 1 says there exists an N such that coalescence 
occurs between time -N and time 0. Therefore, for all t > N ,  
xoPt"= X o ,  which implies Fact 3. 

A.3 Alternate Proof of Fill 

We can view Fill as a rejection algorithm: generate and pro- 
pose X o  = x;  then accept x as a draw from T if C T ( z )has 
occurred. The proposal distribution is the T-step transition den- 
sity K T ( z . .). Fill is a valid rejection algorithm if we accept 
X o  = z with probability 

rr(2i where 112 sup 4.) 
,\I K T ( z ,x) K T ( z , x ) '  

From detailed balance we can write r ( x ) / K T ( z . z )  = 

x ( z ) / K T(2 ,Z )  and, since Pr[CT(z )]< KT( X I ,  z )  for any X I  

we have the bound 

So we accept X o  = x with probability h a ,which is 
quite difficult to compute. However, 

where we have again used detailed balance. But now, from (I) ,  
we have that P I L C T ( Z ) l  = Pr[CT( z )x + z ] ,exactly the event 

K ( 2  z )
that Fill simulates. 

Finally, note that the algorithm is more efficient if the accep- 
tance probability 1/11is as large as possible, so choosing z to be 

the state that maximizes Pr[CT ( z ) ] / x ( z )  is a good choice. This, 
also, will be a difficult calculation, but in running the algorithm, 
these probabilities can be estimated. 

[Receiveci Jurze 2000. Rel)ised MNI%./~ 2001.1 
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