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Annealing Markov Chain Monte Carlo With
Applications to Ancestral Inference

Charles J. GEYER and Elizabeth A. THOMPSON*

Markov chain Monte Carlo (MCMC; the Metropolis-Hastings algorithm) has been used for many statistical problems, including
Bayesian inference, likelihood inference, and tests of significance. Though the method generally works well, doubts about convergence
often remain. Here we propose MCMC methods distantly related to simulated annealing. Our samplers mix rapidly enough to be
usable for problems in which other methods would require eons of computing time. They simulate realizations from a sequence of
distributions, allowing the distribution being simulated to vary randomly over time. If the sequence of distributions is well chosen,
then the sampler will mix well and produce accurate answers for all the distributions. Even when there is only one distribution of
interest, these annealing-like samplers may be the only known way to get a rapidly mixing sampler. These methods are essential for
attacking very hard problems, which arise in areas such as statistical genetics. We illustrate the methods with an application that is
much harder than any problem previously done by MCMC, involving ancestral inference on a very large genealogy (7 generations,
2,024 individuals). The problem is to find, conditional on data on living individuals, the probabilities of each individual having been
a carrier of cystic fibrosis. Exact calculation of these conditional probabilities is infeasible. Moreover, a Gibbs sampler for the problem
would not mix in a reasonable time, even on the fastest imaginable computers. Our annealing-like samplers have mixing times of a
few hours. We also give examples of samplers for the “witch’s hat” distribution and the conditional Strauss process.

KEY WORDS: Cystic fibrosis; Gibbs sampler; Metropolis algorithm; Pedigree analysis; Simulated tempering; Stochastic approx-

imation.

1. INTRODUCTION

Markov chain Monte Carlo (MCMC) in the form of the
Metropolis—Hastings algorithm ( Hastings 1970; Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller 1953) and its
special case the Gibbs sampler (Geman and Geman 1984)
has been used in recent years to attack a wide variety of
intractable statistical problems. (See, for example, Besag and
Green 1993, Geyer 1992, Geyer and Thompson 1992, Smith
and Roberts 1993, Tierney 1994, and the accompanying dis-
cussions and references.) MCMC simulates realizations from
probability distributions whose densities are known up to a
normalizing factor. If 4(x) is a nonnegative integrable func-
tion on the sample space, then the Metropolis—Hastings al-
gorithm simulates a Markov chain whose equilibrium
distribution is proportional to A(x) using only evalua-
tions of A(x).

If the chain is irreducible, then time averages over the
chain converge to expectations with respect to the stationary
distribution as the Monte Carlo sample size goes to infinity;
but if the chain is slowly mixing, then it may take astronomi-
cally large sample sizes to get accurate estimates. Slow mixing
typically occurs in problems where the sample space has high
dimension. For samplers that update one variable at a time,
like the Gibbs sampler, the mixing time can be exponential
in the number of variables. Thus, to do MCMC on high-
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dimensional problems, it is necessary to make a radical
change in the sampling scheme, getting away from updating
one variable at a time. The first such method was the Swend-
sen—-Wang (1987) algorithm for the Ising model and related
models of statistical physics. A number of similar algorithms
have been devised since (Besag and Green 1993; Wang and
Swendsen 1990) and are grouped under the name “cluster
algorithms.” Although these algorithms are highly effective,
they seem to apply only to problems where all variables are
conditionally positively correlated given the rest.

A much more general algorithm was proposed by Geyer
(1991a) under the name “Metropolis-coupled MCMC”
(MCMCMC). An improvement of MCMCMC by changing
from parallel simulation of distributions at different tem-
peratures to random temperatures led us to the algorithm
that we called “pseudo-Bayes™ in the first version of this
article. We later found that the key idea had been indepen-
dently proposed by Marinari and Parisi (1992) under the
name “‘simulated tempering.” We have adopted their term
even though our algorithm differs from theirs in some details
and adds a number of ideas needed to make it work on a
wide variety of problems. This article explains our version
of simulated tempering and provides examples of its use.

Both MCMCMC and simulated tempering are based on
an analogy with simulated annealing (Kirkpatrick, Gelatt,
and Vecchi 1983). Simulated annealing is an algorithm for
optimization rather than Monte Carlo, but it provides the
useful metaphor of starting with “heated” versions of the
problem and slowly cooling down to the problem of interest.
Because an MCMC algorithm is a Markov chain with sta-
tionary transition probabilities, neither MCMCMC or sim-
ulated tempering “cools” like simulated annealing, but both
use a one-parameter family of probability distributions in-
dexed by a parameter called “temperature,” ranging from
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the distribution of interest as the “coldest” temperature to
a “hottest” distribution that is much easier to simulate.

There have been other proposals in the statistics literature
for speeding up the mixing of MCMC samplers, such as using
the classical variance reduction methods of ordinary
independent-sample Monte Carlo, like importance sampling
and antithetic variates (see Besag and Green 1993 and Tier-
ney, in press, and the references cited therein), but those
methods only reduce the mixing time by a constant factor
and would not change the exponential growth of mixing time
with dimension. There have also been other proposals in the
statistical physics literature. Berg and Neuhaus (1991), fol-
lowing earlier work by Berg and other authors, proposed
simulating a “multicanonical ensemble” as the stationary
distribution of the sampler and reweighting the multicanon-
ical ensemble to the distribution of interest by the importance
sampling formula. This is similar to work by Torrie and
Valleau (1977), who called their importance sampling
scheme “umbrella sampling,” except that Torrie and Valleau
did not present their method as a way of doing intractable
high-dimensional problems but rather as one for obtaining
stable estimates of expectations with respect to a wide range
of distributions in the same spirit as the method of “re-
weighting mixtures” of Geyer (1991b). Frantz, Freeman,
and Doll (1990) proposed a method called “J-walking” that
is not an exact MCMC scheme, because it does not run a
Markov chain with a specified stationary distribution, but
rather only an approximation thereof. If it were corrected
so0 as to be exact, then it would be MCMCMC.

We provide three examples of our simulated tempering
method. The “witch’s hat” distribution provides an illustra-
tion of how simulated tempering works when Gibbs sampling
fails. A more realistic example is the Strauss process, where
the method is used for importance sampling in the spirit of
Torrie and Valleau (1977) and Geyer (1991b). The third
example is from pedigree analysis. We analyze large 2,024-
member and 5,277-member pedigrees for which simulated
tempering seems to be the only known feasible sampling
algorithm. Although our methods were developed to do high-
dimensional problems like those in pedigree analysis, they
can be applied to any situation in which MCMC is used. In
easier problems, these annealing-like samplers go a long way
toward alleviating concerns about convergence.

2. ALGORITHMS

Both MCMCMC and simulated tempering simulate a se-
quence of m distributions specified by unnormalized densities
hi(x),i=1, ..., mon the same sample space, where the
index i is called “temperature.” We call A,(x) the “cold”
distribution and 4,,(x) the “hot” distribution. Sometimes,
as in Section 4, all m distributions are of interest, but usually
only the cold distribution is of interest, and the rest are used
only to increase the mixing.

Simulated annealing uses a specific form of “heating” a
problem that is sometimes called “powering up.” If #(x) is
the unnormalized density for the distribution of interest, then
h(x)'/® for 8 > 1 are the “heated”” unnormalized densities,
including perhaps 8 = oo, which gives A#(x) = 1. This form
comes from statistical physics, where the distribution of a
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thermodynamic equilibrium has an unnormalized density
of the form e V™)/kT where U(x) is the energy function of
the system, T is the absolute temperature, and k is the Boltz-
mann constant. Such a distribution, called a Gibbs distri-
bution, gives the Gibbs sampler its name. It is a special case
of powering up with 4(x) = e"Y® and 8 = kT. Powering
up heating is natural for a Gibbs distribution. Marinari and
Parisi (1992) used it for their example, the random-field
Ising model, and we use it for the conditional Strauss process
example, both Gibbs distributions. But powering up is not
an essential part of simulated tempering or MCMCMC. In
the “witch’s hat” example in Section 3, powering up is use-
less, but a different form of heating works well.

2.1 Simulated Tempering

For now, suppose that the 4; (x) have been specified; guid-
ance for choosing them is given later. Also suppose that there
is available for each i a method for updating x that has #; (x)
as a stationary distribution; a Gibbs or Metropolis update
for h;(x), for example. The state of a simulated tempering
sampler is the pair (x, i), where x takes values in the common
state space of all the 4;(x) and the temperature i is now
random. The stationary distribution of the sampler is pro-
portional to A; (x)w(i), where (1), ..., m(m) are auxiliary
numbers that must be chosen in advance. We call 7 the
pseudoprior because h; (x) (i) looks like the product of like-
lihood and prior, i being the parameter and x the data, and
because it determines the distribution of temperatures.

The specification of one iteration of the “Hastings version”
of the simulated tempering algorithm is as follows:

1. Update x using a Metropolis—Hastings or Gibbs update
for A; .

2. Setj =i+ 1 according to probabilities g; ;, where g, »
= Gmm-r=land g ;4 = g—y = 3 if 1 <i<m.

3. Calculate the Hastings ratio,

_ h(0)7() g
hi(x)w(i) di.j ’

and accept the transition (set i to j) or reject it according to
the Metropolis rule: accept with probability min(r, 1).

In the calculation of r in Step 3, the factor g;;/g; ; is the
Hastings (1970) modification of the Metropolis algorithm.
It compensates for the asymmetric proposals. A “Metropolis
version” of the algorithm uses the probabilities g, ; = ¢,
= Gmm—1 = Gmm = 3 in Step 2, so the factor ¢;; /g, ; in Step
3 disappears. Because half the time it does not attempt to
move from i = 1 or i = m, the Metropolis version makes
fewer transitions and is slightly inferior.

There are two built-in diagnostics. First, any pair of ad-
jacent distributions that are too far apart will be indicated
by low acceptance rates in Step 3. Second, consider the oc-
cupation numbers of the chain, the number of iterations spent
in each temperature i. If the sampler does not mix, then the
occupation numbers will be very uneven. This indicates the
need for a better pseudoprior. Simulated tempering has ad-
vantages over MCMCMC (Geyer 1991a), in that we keep
only one copy of the state x rather than m copies, so the
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chain uses less storage and also mixes better. The disadvan-
tage is that simulated tempering needs a good pseudoprior,
which must be determined by preliminary experimentation.

2.2 How Many Distributions?

The dynamics of a simulated tempering sampler are com-
plex, so it is difficult to give criteria for choosing the number
and spacing of the distributions, but some intuition can be
obtained from examining a simplified model. Consider a
random walk on the integers 1, . . ., m having transitions to
adjacent states with probability p/2 and staying at the same
point with probability 1 — p for the interior points and 1
— p/2 for the endpoints. This is a random walk with reflecting
barriers at x = 3 and x = m + % (Feller 1968) and models
a simulated tempering sampler with constant acceptance rate
p independent of the state. Various properties could be called
the mixing time of this random walk; here we consider the
expected time taken to move from one end to the other.
Using the methods of Feller (1968, chap. XIV), the expected
time togo fromx = 1tox =mism(m — 1)/p.

This suggests that acceptance rates should not be too large.
Certainly, it is a losing proposition to double the number of
distributions unless doing so multiplies the acceptance rate
by a factor of 4. When the acceptance rate is already above
25%, this is not possible. The actual sampler may behave
rather differently from the random walk model, however, so
we recommend acceptance rates in the range of 20 to 40%.
This agrees with the behavior of our pedigree examples (Sec.
5.4). It is not always possible, though, to obtain acceptance
rates this low (Sec. 3), no matter how wide the temperature
gaps are. The problem is that acceptance rates averaged over
the whole sample space may not be reflective of acceptance
rates in parts of the sample space that are important for
mixing (Sec. 3). Although average acceptance rates may not
be a sufficient guide, we have no better proposal at this time.

2.3 Adjusting the Pseudoprior and the Spacing

The stationary distribution of a simulated tempering
Markov chain is a joint distribution for the pair (X, I), where
X is a random realization of the state variable x and I is a
random realization of the “temperature” ;. The marginal
distribution of I is

Pr(l = i) oc 7(3) [ hy(x) du(x) = el (i),

where ¢(i) = f h; du is the normalizing constant for distri-
bution i. Hence, if #(i) = 1/c¢(i), then the marginal distri-
bution of I is uniform, the sampler spends 1/m of the time
sampling each distribution, and there is no temperature that
is not visited frequently. If the gaps between the distributions
are also adjusted so that the acceptance rates for jumps be-
tween #; and A, are not too large, then there will be no
bottlenecks and the sampler will rapidly move from any dis-
tribution to any other distribution. By the argument of the
preceding section, we also do not want the gaps between
distributions to be too small. We usually want an acceptance
rate between 20% and 40%.

Suppose that we have decided on a form of heating by
specifying a one-parameter family of unnormalized densities
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hy, 0 < X\ < 1, with A as the cold distribution and A, as the
hot distribution. The adjustment problem is to find a finite
set of N’s satisfying 0 = \; < A\, < + ++ < \,, = 1 such that
the simulated tempering sampler with distributions #,, has
uniform acceptance rates at a specified level when the pseu-
doprior is adjusted to be the inverse normalizing constants.
Thus we have two adjustment problems to solve: adjusting
the pseudoprior for fixed \’s, and adjusting the X\’s. In prin-
ciple one could try to solve both problems at once, but it is
simpler and easier to consider these as two separate problems
and to iterate between the two.

For adjusting the pseudoprior, we offer three methods: (a)
an iterative adjustment method, (b) an MCMCMC sampler,
and (c) stochastic approximation. For adjusting the \’s, we
offer just one method.

a. If the pseudoprior is already well enough adjusted so
that the sampler mixes, then we can estimate the nor-
malizing constants empirically up to a constant of pro-
portionality by

=15}(I=i)

é(i) ) (1)

where Pr(I = i) is the fraction of time the sampler
spends in the ith distribution, which is proportional to
the occupation numbers o(i). This serves as a method
of estimating normalizing constants and also for ad-
justing pseudopriors. For the next run, #(i)/o(i) is used
as the pseudoprior.

b. If an MCMCMC sampler using the same sequence of
distributions as the simulated tempering sampler mixes,
then a preliminary run of the MCMCMC can be used
to estimate the normalizing constants, either by direct
Monte Carlo integration (Geyer and Thompson 1992)
or by reverse logistic regression (Geyer 1991b).

c. Stochastic approximation, or the Robbins—-Munro
method (Wasan 1969), for simulated tempering starts
with any values for the pseudoprior and updates the
values as the chain progresses. At iteration k, the
amount ¢y/[m(k + ny)] is added to log =(i) for each
I not equal to the current state 7, and the amount ¢,/
(k + ng) is subtracted from log «(I). Here ¢, and ny
are positive constants chosen by the user. It is necessary
to choose a ¢y small enough and #, large enough so
that the algorithm does not make large overcorrections
early in the run; but if ¢, is too small or 7, too large,
then it will take too long for the algorithm to converge
to a useful pseudoprior.

Consider now adjustment of the \’s. Suppose that the ob-
served acceptance rates for a run were a,, . . ., a,,-; for the
m — 1 gaps between the m distributions. For 1 < i < m
— 1, we can take g, to be the average of the rates for transitions
going up and down between distributions i and i + 1. For a
Hastings sampler, we take a; to be the acceptance rate going
up plus half the rate going down, because transitions up are
proposed twice as frequently and accepted half as often, and
we correct d,,—, similarly.
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We take as a model of the acceptance rate that the rate
for transitions between 4, and h,,,, is

a; = exp(—fml b(s) ds) R
A

where b(s) is some unknown function. We estimate b(s) as
a step function that is constant on the intervals between the
>\k’

(2)

1
log —,

R W Y g

>\,~ <5< >\j‘

Then new intervals are determined with endpoints AT, A,
... that have a specified acceptance rate a according to the
model (2).

Although the model is ad hoc, it works well as long as the
adjustments are not too large. It does tend to overshoot in
its corrections, however. If the observed acceptance rates are
about 90% and one asks for 30%, it may produce A\*’s that
give acceptance rates varying from 10% to 30%. Another
iteration, collecting another sample and making another ad-
justment, will give approximately uniform acceptance rates
at the desired level.

In practice, these methods are all used in conjunction. We
usually start with a few distributions at the hot end, running
first with X’s equally and narrowly spaced. First, normalizing
constants are determined by stochastic approximation during
the run. Second, another run with stochastic approximation
turned off checks that the first run converged, and the pseu-
doprior is adjusted using (1). Third, the spacing of the A’s
is adjusted using the model (2) and the normalizing constants
or the new \’s are determined by cubic spline interpolation.
Fourth, a final run with stochastic approximation turned off
checks that the new \’s do give the desired acceptance rates;
if they do not, then the \’s are adjusted again. This completes
the cycle for the current set of distributions. More distri-
butions are then added, with the spacing of the \’s and the
normalizing constants determined by extrapolation from
those already determined. The whole cycle of adjustments
is then repeated for the augmented distribution set.

For the hardest problems we have done, we added 5 dis-
tributions in each cycle, so 8 cycles were needed for 40 dis-
tributions; the last cycle takes almost half the running time.
Having finally obtained a sampler that mixes and samples
the cold distribution, we do one fairly long run and a final
adjustment using (1) and (2). In our experience, a useful
pseudoprior can be found in an amount of time that is
roughly of the same order that spent running the sampler
once the pseudoprior has been determined. Note that a sim-
ulated tempering sampler has the correct stationary distri-
bution for any strictly positive pseudoprior. It will mix faster
if the pseudoprior approximates the inverse normalizing
constants, but high precision in the approximation is not
necessary.

2.4 Regeneration

Some Markov chains can be made to regenerate, and this
can improve estimation (Ripley 1987). This is easily done
with simulated tempering. Choose the hot distribution 4,,(x)

Journal of the American Statistical Association, September 1995

so that independent sampling is possible, and when i = m
in Step 1 of the algorithm, update x with an independent
sample from #,,. Given i = m, the next value of x does not
depend on the current value, and the future path of the chain
is independent of the past. The set of states (x, i) such that
i = m (x arbitrary) is an atom of the Markov chain, times
when i = m are regeneration times, and segments of the
sample path between regeneration times (called tours) are
stochastically independent.

Regeneration greatly simplifies estimation of Monte Carlo
error. It also eliminates “start up bias” if we start at the atom
(at temperature 7) and run until another regeneration time,
so the sample path consists of a number of complete tours.
Letr, k=0, ..., K, with 7o = 0, be the regeneration times.
The sample path is (X, I,)fort=1,..., 7, and Iy = m.
(The value of Xj is irrelevant.) By an analog of Wald’s lemma
in sequential sampling (Nummelin 1984, pp. 76, 81) the
expectation over a complete tour is unbiased:

Tk
E > gX,1)=E(gX,D)E(r),
t=rp_1+1

where Eg(X, I) is an expectation with respect to the sta-
tionary distribution and the other two expectations are with
respect to the distribution of the Markov chain.

If we are trying to determine the expectation of f/( X') under
the cold distribution E(f(X)| I = 1), then we calculate the
sums

Zo= 3 (X)Wl

t=rp-1+1

and
Tk

z

t=rp-1+1

Ny = w(l,)

fork=1,..., K, where w(I)is 1 when I = 1and 0 otherwise.
Then the Z, are iid with expectation E(f(X)w(I))E(7,),
and the N, are iid with expectation E(w(I))E(7;). Hence
by the ergodic theorem,

Zi+ -+ Z¢  E(X)w(]))
Ny + -+« + Nk E(w(D))

=E(f(X)|I=1). (3)
If the variances of Z, and N, can be shown to be finite, then
the standard error of the Monte Carlo estimate can be cal-
culated using the ratio estimator from finite population sam-
pling (Ripley 1987, pp. 158 ff.). Let ux denote the left side
of (3) and u denote the right side. Let Vj, = Z; — uNy. Then
the V} are iid mean zero random variables with finite variance
(say o%) that can be estimated by 6% = 1/K 2 &, V . Now
K Y2(V, + «++« + Vg) is asymptotically Normal(0, ¢%),
)

VK(fix — ) =

converges to Normal(0, ¢%/»?), where » is the expectation
of the N,. Thus the asymptotic variance of jix can be esti-
mated by (6%/72)/ K, where 7 is the sample mean of the Nj.
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Typically, only a small fraction of tours will visit the cold
distribution, so most of the N, will be zero. One can instead
average only over “informative tours” for which N, is non-
Zero; one obtains the same mean and variance estimates ei-
ther way, provided that K rather than K — 1 is used in com-
puting 5% .

It is not necessary that the number of tours K be fixed in
advance of the run. A simple martingale argument shows
that 74 can be any Markov stopping time; for example, the
first regeneration time after some fixed number of iterations
(Mykland, Tierney, and Yu 1992).

Before leaving this issue, we should explain a curiously
attractive error. It seems natural to look at the estimates of
probabilities Z;/ N, obtained from single batches. These vary
widely and seem to say something about the sampling vari-
ability, but they do not. Nothing is known about the distri-
bution of Z;/N,; in particular, its expectation is not the
probability of interest, because E(Z,/N,) # E(Z)/E(Ny).
The distribution of the tour lengths N; will generally have a
long tail; the few long tours contribute most of the infor-
mation. This is an unavoidable consequence of stationarity
and slow mixing of the cold chain. If each tour looks only
at a small region of the state space, then the only way the
stationary distribution can be correct is if tours that enter
the cold chain in high probability regions are much longer
than tours that enter in low probability regions. Any attempt
to shorten the tail of the distribution of tour lengths must
introduce bias. '

Regeneration using an independence hot chain is not a
necessary part of simulated tempering; it was not used by
Marinari and Parisi (1992). But there is no way to know
where it is safe to stop heating the distributions short of the
“infinitely hot” independent sampling. When the sampler
for the cold distribution alone would be very slowly mixing,
it is the regeneration that provides all the mixing. There is
no point to a simulated tempering sampler that does not
make many excursions from end to end of the temperature
range. So it is necessary to look at “tours” whether or not
the sampler is regenerating. Despite this, if one knows either
from theory or experience that a simulated tempering sam-
pler without an independence hot chain mixes well, then
regeneration should not be used, because, all other things
being equal, the fewer distributions the better. We usually
do not have such knowledge; it is safer to use regenerating
samplers. Note that one need not have an independence hot
chain to use regeneration; regeneration could be obtained
by “splitting” the hot chain (Mykland et al. 1992), but we
have not tried this. ‘

3. THE WITCH’S HAT DISTRIBUTION

The “witch’s hat” distribution in two dimensions is the
distribution on the unit disc with a density shaped like a
witch’s hat, with a broad flat brim and a high conical peak.
It was proposed by Matthews (1993) as a counterexample
to the Gibbs sampler. In higher-dimensional analogs of the
two-dimensional distribution, the mixing time of the Gibbs
sampler increases exponentially with dimension, because all
but one coordinate must be lined up with the peak before a
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Gibbs step can move from the brim to the peak, and this
has exponentially small probability.

Here we use for illustration a simplified witch’s hat distri-
bution defined as follows. Let o and 3 be real numbers with 0
< a < 1and g = 0. Define a distribution on the unit hypercube
in d dimensions [0, 1]¢ as follows. The unnormalized density
is equal to 1 + 8 on the small hypercube [0, «]¢ equal to 1
elsewhere in [0, 1]¢. We still call the part of the distribution
over the small hypercube the “peak” and the rest the “brim,”
although the density no longer looks much like a witch’s hat.
These distributions for various values of the parameters o and
B make up the simplified witch’s hat family. A hot distribution
is the uniform distribution on the unit hypercube; « = 1 or 3
= 0. For our main example, we chose d = 30 and a cold dis-
tributionwith « = § and 8 =~ 10'* chosen so the probability
of the peak was exactly 3.

A Gibbs sampler for this cold distribution has a very hard
time. The peak is an atom, so the Gibbs sampler is regen-
erating. By the renewal theorem, the mean regeneration time
is 1/ P(peak) = 3. The probability of leaving the peak in one
scan of the Gibbs sampler is 6 X 10 '3, For the average time
for tours of all lengths to be 3, the average length of tours of
length greater than one must be 3.4 X 10'2, This characterizes
the mixing of the Gibbs sampler. It will need 10'? scans to
get close to mixing and 10 or 100 times that number to get
any accuracy in the answers.

Some form of heating is necessary, but for the witch’s hat,
powering up is useless. Raising the cold distribution to a
power still produces a distribution with two levels—the peak
and the brim—in the same positions, so powering up is the
same as decreasing 8 while leaving « fixed. This makes the
peak no easier to hit and thus gives no improvement over
ordinary Gibbs sampling. If the hot distribution has 8 = 0,
then it is a regeneration point, so regeneration methods can
be used to estimate variance. The overall acceptance rates
will be high, but almost all tours will stay in the brims of the
distributions. Over a very long run of the sampler there will
eventually be a transition from the brim to the peak of some
distribution, and then the sampler will stay in the peaks for
10'2 iterations. Until such a long tour is seen, the regeneration
estimates of variance will be completely erroneous.

Whereas the mixing time of the Gibbs sampler increases
exponentially in d, the simulated tempering sampler needs
a number of temperatures that is O(d), and the mixing time
is approximately quadratic in the number of temperatures
(sec. 2.2), so the mixing time is approximately O(d?) if one
counts iterations and O(d?) if one counts computing time,
because the time to do one iteration is order d. This depen-
dence is shown for the range d = 30 to d = 300 in Table 1.

For d = 30 we used the 22 temperatures shown in Table
2. The o’s for intermediate temperatures were chosen to be
equally spaced on the log scale, so that the area of each peak
is the same fraction (.20816) of the peak for the next higher
temperature. Thus there is a constant proportion of proposals
in the peak in attempted jumps down in temperature. The
3’s were chosen so that the probability of the peak was equal
to a. Because the hot distribution permits independent sam-
pling, the sampler is regenerating. For this example we used
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Table 1. Dependence of Computing Time on Dimension

d m time Niter s tours tour len.
30 22 79.3 1,001,437 .0297 470 2,130.7
60 43 646.2 4,011,400 .0329 408 9,831.8
90 64 2,140.8 9,008,459 .0319 398 22,634.3
120 85 5,123.2 16,011,375 .0338 391 40,949.8
150 106 9,603.1 25,043,995 .0308 389 64,380.4
180 127 17,013.0 36,099,890 .0341 371 97,304.3
210 148 27,412.2 49,040,398 .0368 342 143,393.0
240 169 40,028.7 64,293,751 .0338 350 183,696.4
270 190 56,723.3 81,292,047 .0334 342 237,696.0
300 211 77,828.1 100,357,250 .0336 363 276,466.3

NOTE. d is dimension (number of variables), m is the number of distributions, time is running time in seconds done on a
workstation about five times faster than those used for the rest of the computations, n,,, is the number of iterations (set proportional
to d2), s is the standard error of the estimator of the probability of the peak of the cold distribution, tours is the number of tours,
and tour len. is the average length of a tour defined here to go from a regeneration until the next time the hot distribution is hit

after hitting the cold distribution.

a pseudoprior that was exactly equal to the inverse normal-
izing constants 1/(1 + Ba?).

The simulated tempering sampler was run to the first re-
generation point after 1,000,000 iterations, which was iter-
ation 1,000,110. This took 5 minutes and 42 seconds on a
workstation that does about 1.5 million floating point op-
erations per second. There were 42,556 tours of which all
but 5,567 were of length 1 (regenerations on consecutive
iterations). The distribution of the regeneration times was
skewed (of course) but not extremely long tailed. The longest
tour (11,556 iterations) made up only 1% of the total iter-
ations. The largest 17 tours made up 10%, the largest 165
made up 50%, and the largest 773 made up 90%. The sim-
ulated tempering sampler gets one significant figure accuracy
in about 10° scans. The exact results are given in Table 2.

Acceptance rates for jumps of the simulated tempering
sampler are shown in Table 3. These acceptance rates are

_Table 2. Results for the Simplified Witch’s Hat Distribution (d = 30)

Actual Estimated
o B8 I error error
.333 1.03 x 10" .335 .001 .031
.351 2.32 x 10" .354 .003 .031
.370 5.24 X 10" 373 .003 .031
.390 1.19 X 102 .382 -.008 .030
411 2.70 x 10" .403 -.008 .030
.433 6.14 X 10" 424 —.009 .029
.456 1.41 x 10" 441 -.016 .028
.481 3.23 X 10° .458 -.023 .027
.507 7.45 X 108 .486 -.021 .026
534 1.73 X 108 .510 —.023 .024
.562 4.04 X 107 541 -.021 .022
.593 9.52 x 108 .570 -.023 .021
.624 2.27 X 108 .607 -.018 .019
.658 5.46 X 108 642 -.016 .017
.693 1.34 X 10° 676 -.017 .015
731 3.33 X 10* .715 —.016 .013
.770 8.55 x 108 .759 —-.011 .010
.811 2.28 X 108 .810 —.002 .007
.855 6.46 X 10? .855 0 .005
.901 1.99 X 10? .903 .002 .003
.949 6.98 X 10’ .948 —.001 .001
1.000 0 1.000 0 0

NOTE: The cold distribution is the top row and the hot distribution the bottom; « and g are the
parameters of the witch’s hat distribution, y is the probability of the peak, which is equal to o for
the g values chosen here, i is the estimate of x obtained by averaging over the samples. The
*‘actual error” is the difference between j and 1 = a. The “‘estimated error’ is the standard error
of ii estimated using the ratio estimator.

much larger than the recommendations in Section 2.2 at the
cold end, but they cannot be made as small as 20% to 40%.
Going down between temperatures 2 and 1, for example,
the probability at stationarity of being on the brim before
the jump is 1 — a = .65. When on the brim, the probability
of a proposal on the brim is nearly 1, giving a contribution
to the overall acceptance rate of 65% for jumps down in
temperature at points on the brim of both distributions. The
probability of being in the peak before the jump is .35, and
the probability of a proposal in the peak is 20.8%. Most such
proposals are accepted, giving a contribution to the overall
acceptance rate of 7.3% for jumps down in temperature at
points in the peak of both distributions. So although there
is an overall acceptance rate of 72%, only 7% of that is in-
volved in simulating the peak of the cold distribution.

4. LIKELIHOOD INFERENCE FOR THE
STRAUSS PROCESS

The Strauss process (Strauss 1975) is the simplest non-
Poisson Markov spatial point process. Here we deal with the

Table 3. Acceptance Rates for the Samples for the
Simplified Witch’s Hat Distribution

Temperature gap Going up Going down
1t02 718 .720
2t03 .702 .707
3to4 .704 .690
4t05 .684 .676
5t06 .665 .659
6to7 .652 .637
7t08 .643 627
8t09 .615 .615
9to 10 .596 .594

10 to 11 575 .570
111012 .554 .546
12t0 13 .518 519
13to 14 .495 .496
14 to 15 .468 .467
15t0 16 .433 431
16 to 17 .402 .400
17 t0 18 .363 .363
18to 19 322 .322
19 to 20 .280 .286
20 to 21 .261 .263
211022 .262 .260
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Figure 1. Scatterplot of the Canonical Statistics Versus Distribution
Number for the Strauss Process. The x-coordinates are integer valued,
but jittered. Every 100th iteration from a run of 405,677 iterations is plotted.

conditional Strauss process, which has realizations consisting
of a fixed number of points in a bounded region. Let 7(x)
denote the number of pairs of points (called neighbor pairs)
separated by less than some fixed number 7. A conditional
Strauss process is any distribution in the exponential family
with unnormalized densities 4y x) = ¢"®? with respect to
the “binomial process” under which the » points are uni-
formly distributed. Our example has 50 points in the unit
torus and r = .2.

The first sampler for the conditional Strauss process was
a Gibbs sampler (Ripley 1979). A Metropolis sampler de-
scribed by Geyer and Moller (1994) is much more efficient
and, unlike the Gibbs sampler, can be used for both the
unconditional and conditional processes. Even the Metrop-
olis algorithm is inefficient for a process with strong depen-
dence (i.e., large positive #). A simulated tempering sampler
is better.

The special case # = 0 is the binomial process, which can
be sampled independently and is a regeneration point. As
increases so does the expected number of neighbor pairs,
and for large 6 all of the points are in one small clump and
the value of #(x) is very near its maximum (%) = 1,225 with
very high probability. Preliminary runs showed that this oc-
curs for 6 > .16, so we adjusted a sampler to have nine dis-
tributions, § = 0, .0869, .1143, .1240, .1267, .1296, .1348,
.1448, .16, with approximately equal acceptance rates ranging
between 65% and 77%. The results are shown in Fig-
ure 1.

We ran for 405,677 iterations, making 46,166 tours be-
tween regenerations, with 90 tours hitting the cold chain.
The running time was 2 hours and 23 minutes on a work-
station that does about 1.5 million floating point operations
per second. This one sample describes this conditional Strauss
process for all values of # between 0 and .16. In particular
the mapping between the canonical parameter § and the

915

mean value parameter 7(6) = Ey¢(X) can be determined by
importance reweighting the sample. Let X, I, denote the
samples, which have unnormalized stationary density
hy, (x)7(i), and let

N h(x)
W D) = G (D)
Then
. (8) = 2 ket t(Xi) ol X, Ik)-—>7(0), n—co (4)

2 k=1 wo( X, Ii)

for each 6, and 7,(6) is the natural Monte Carlo approxi-
mation of 7(#). This curve is shown in Figure 2. Maximum
likelihood estimation is now a simple matter of finding the
6 such that 7,(0) equals the observed #(x). Monte Carlo
likelihood to theory applies here just as to any other Markov
chain sampler. The novelty is in the faster mixing, which
allows Figure 2 to be computed easily (cf. Strauss 1986).

5. ANCESTRAL INFERENCE IN THE HUTTERITES
5.1 The Genetic Model

We consider the inheritance at single diallelic genetic locus.
This means that each individual has two genes, and that
there are two types of genes (alleles), denoted by A and a.
Hence each individual has one of three possible genotypes:
AA, Aa, or aa. We consider a lethal recessive disease; that
is, the AA and Aa genotypes produce individuals with normal
characteristics, but all aa individuals die before the age of
reproduction. Conversely, all individuals who have survived
to adulthood (and, in particular, any parent) must be either
genotype AA or Aa (called noncarrier or carrier). The prob-
lem of interest is to compute the probability distribution of
carrier status over the pedigree given the observed data.

1000
1

mean value parameter

400
I

200
|

0.0 0.05 0.10 0.15 0.20

canonical parameter

Figure 2. Plot of the Mean Value Parameter () Versus the Canonical
Parameter 6 for the Strauss Process. The dots are the empirical averages
for the nine distributions sampled. The line is 7,(8) given by Equation (4).
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Mendel’s laws specify the probability of an individual’s
genotype given the genotypes of the parents. If neither parent
is a carrier, then the child must be AA. If one parent is a
carrier, then the child has probability .5 of being Aa and .5
of being AA. If both parents are carriers, then the probabilities
are .25, .5, and .25 of the child being AA, Aa, or aa. Indi-
viduals whose parents are unknown (founders) are assumed
to have genes that are a random draw from the population
gene pool. Their genotype probabilities are given by

Pr(AA) = (1 - p)?,

Pr(Aa) =2p(1—-p), Pr(aa)=p? (5)

where p is the population frequency of the disease gene (as-
sumed known ). This specifies the probabilities in the model.

Tracing the ancestry of rare recessive diseases in genetic
isolates has been considered often (see, for example, Castilla
and Adams 1990, Hussels and Morton 1972, Sorsby 1963,
and Thompson and Morgan 1989). But except where an
exact probability can be computed (Thompson 1978), the
methods used are of doubtful value. On a large complex
pedigree, exact computation of posterior probabilities is in-
feasible. Although the Gibbs sampler (Geman and Geman
1984) has been used successfully to estimate probabilities
on small pedigrees, on the pedigree of our example the Gibbs
sampler does not mix, even in very long runs (M. Emond,
unpublished results). For large pedigrees, methods like the
Gibbs sampler that update one variable at a time can take
eons to get a representative sample of genotypic configura-
tions.

5.2 The Genealogy and Cystic Fibrosis

We illustrate our methods with a problem that has
stretched them to their limits: the ancestry of cystic fibrosis
(CF) genes in the Hutterite population of North America.
The structure of this large Caucasian genetic isolate has been
described by Hostetler (1974), and the CF data has been
described by Fujiwara et al. (1988). The current population
of more than 30,000 traces its entire ancestry to about 85
founders mostly living in the eighteenth century. About 450
immigrants came to North America in the late nineteenth
century, and the population expanded very rapidly thereafter.
CF is a recessive and (until recently) lethal genetic disease.
The frequency of CF genes in Caucasian populations is typ-
ically about .025; in large Caucasian populations, about 1
in 1,600 births is affected by CF, and about 1 in 20 individuals
is a carrier. This gene frequency seems plausible for the
founders of the Hutterite population, although, due to genetic
drift and founder effects, the frequency in the current pop-
ulation may be higher.

In the data set we consider, 27 couples are known to be
carriers because they are parents of diagnosed CF cases (K.
Morgan, personal communication ). These 54 known carrier
parents, together with all their direct ancestors tracing back
to the orginal founders, number 771. These founders, the
majority of whom lived before 1750, number 77. This is the
core pedigree. The data base of Hutterite individuals born
up to 1981 (T. M. Fujiwara and K. Morgan, unpublished
data) contains 24,875 individuals. Analysis of this entire
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population pedigree is feasible but would require huge
amonts of computing time. But an analysis of CF ancestry
based only on the core pedigree would be biased. The ances-
tors of current cases had many other descendants who lived
to adulthood and thus cannot have been affected by CF.

First, we restricted attention to the offspring of members
of the core pedigree. There are 1,242 such offspring who
themselves had offspring and so can be assumed to be un-
affected. Adding them and their 11 additional parents not
in the core pedigree makes a 2,024-member pedigree, which
is the subject of our main analysis. We later analyzed a larger
pedigree of 5,277 individuals, adding to the core pedigree all
the children and grandchildren of the core pedigree who
themselves had offspring (and thus can be assumed unaf-
fected).

In computing probabilities on pedigrees, it is often con-
venient to preprocess information from the periphery of the
structure (Thompson 1978), and such contributions to the
overall result can be incorporated into MCMC sampling on
the remainder (Thompson 1991). Here we replace children
with no offspring by pair potentials on their parents. Let x
be the genotype of such a child and let x,, and x; be the
genotype of the child’s parents. Then the contribution to the
probability distribution for this child is the pair potential

¢(xm, xr) = 2 Pr(data on the child| x)Pr(x]| x,,, X;).

x

The marginal probability distribution for the remaining in-
dividuals is simply the distribution for the rest times the
product of the pair potentials. For the Hutterites, this greatly
decreases the amount of work the sampler must do. In our
2,024-member pedigree, 1,209 individuals have no offspring
in this pedigree and can be replaced by pair potentials on
their parents. This leaves only 815 individuals to be sampled.
The sampler not only takes less than half the time to make
one scan but is also less sticky, because the potentials provide
part of the distribution exactly. In the 5,277-member pedi-
gree, 3,167 individuals were replaced by pair potentials,
leaving 2,110 individuals actually sampled.

5.3 Hot Distributions and Hot Priors

The regeneration method needs a “hot” distribution, #4,,,
for which independent sampling is feasible. For our pedigree
analysis problems, we used two different distributions for
independent sampling: gene-drop and all-carriers. Gene-drop
is the distribution of the genotypes when the data are ignored.
It is easily simulated by drawing the founders’ genotypes
independently from Equation (5), then going down the ped-
igree simulating offspring genotypes conditionally on their
parents’. All-carriers is the distribution that gives probability
1 to the genotypic configuration in which every individual
is a carrier, Aa. (The cases who are known to have genotype
aa are not in the 2,024-member or 5,277-member pedigrees.)
This distribution is even easier to simulate; every realization
is the same.

There is no reason not to change other aspects of the model
as well. We also experimented with individual-specific “hot
priors,” changing the prior distribution for certain founders
so that the gene-drop would make them carriers more fre-
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quently. Adjusting the hot priors so that the founders have
approximately the same carrier frequencies in both the hot
and cold distributions makes the sampler more efficient but
requires some iteration. Note that the hot priors do not alter
the cold distribution; the sampler mixes faster with good hot
priors, but it produces valid results regardless.

Either of these two hot distributions can be thought of as
resulting from altering the penetrances (Pr(data|genotype)).
The gene-drop distribution results from a uniform penetrance
over all data values for each genotype, and the all-carriers
distribution results from zero penetrance of the AA and aa
genotypes. For “warm” distributions intermediate between
hot and cold, we used penetrances that were convex com-
binations of the hot and cold (true) penetrances, A of the
hot penetrances, and 1 — X of the cold penetrances, where
0 < A < 1. When hot priors were used, the warm distributions
had similar convex combinations of the hot and cold priors.

5.4 Results

The results of our analysis of the 2,024-member pedigree
are shown in Figure 3 and the first two columns of Table 4.
Figure 3 gives a histogram of all the carrier probabilities. The
prior (unconditional ) probability of being a carrier is .049.
Of the 77 founders of the core pedigree, one is a known
carrier. Of the other 76 founders, 45 are more than two stan-
dard errors (of the Monte Carlo) from the prior mean; 12
below and 33 above. A few founders are far above the un-
conditional probability; the 13 with the highest carrier prob-
abilities (as estimated by the Monte Carlo) are shown in
Table 4. Their probabilities of being carriers range from al-
most two to more than four times the prior probability. Note
that the couples C-D, E-F, G-H, and I-J, who must have
exactly the same true carrier probabilities, have Monte Carlo

25
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Figure 3. Histogram of the Estimated Carrier Frequencies for the 76
Founders of the Core Pedigree Who Were not Known Carriers.
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Table 4. Hutterite Carrier Frequencies

2,024 members 5,277 members

Mean S.E. Mean S.E
A .204 .005 .318 .024
B 195 .015 .294 .031
C .183 .014 .088 .021
D .159 .01 .089 .023
E 140 .013 140 .019
F 134 .013 109 .015
G 133 .014 .076 .011
H 127 .012 .071 .009
| 121 .008 .164 .015
J 116 .008 .163 .016
K 1109 .011 .073 .016
L 104 .009 .063 .01
M .094 .014 .060 .007

NOTE: 2,024 members refers to the pedigree containing ancestors of affected individuals and
their first-generation offspring who themselves had offspring and are thus known to not have CF.
5,277 members refers to the pedigree containing ancestors of affected individuals and their first-
and second-generation descendents who themselves had offspring. Mean is the estimated posterior
probability of being a carrier, and S.E. is the Monte Carlo standard error of the estimate. The first
column gives arbitrary labels for the individuals. The pairs C-D, E-F, G-H, and I-J are married
couples with no other spouses.

estimates that agree to within the estimated Monte Carlo
error. The conditional expectation of the number of CF genes
in these 76 founders is 5.58 (standard error .05); the un-
conditional expectation is 3.705.

These estimates were based on a run of 11,555,470 iter-
ations (each iteration being one Gibbs scan of the 815 in-
dividuals being sampled plus an attempt to jump from one
distribution to another), during which there were 355 tours
that spent any time sampling the distribution of interest.
The total running time was 20 days, 3 hours on a workstation
that does about 2 million floating point operations per
second.

The standard errors are based on the sampling variability
of these 355 tours. The distribution of tour lengths is shown
in Figure 4. The tours range in length from 1 to 8,830 and
approximately follow Zipf’s law: 35 tours account for half
of the total length, another 38 account for half of the re-
maining half, another 37 for half of the remaining quarter,
another 34 for half of the remaining eighth, another 29 for
half of the remaining sixteenth, and so forth.

The estimation for a single individual is illustrated in Fig-
ure 5, which shows the results of the Monte Carlo for indi-
vidual “B” in Table 4, who was chosen because he or she
had higher carrier probability and also large Monte Carlo
error (being at the top of the pedigree ). The slope of the line
in the figure is the sum of all the y values of the points divided
by the sum of all the x values. So the points cluster around
the line, but not in any very obvious sense; the long tours
provide most of the information.

The operating characteristics of the sampler are shown in
Figures 6 and 7. Figure 6 shows the occupation numbers as
a function of the parameter A, indexing the distributions.
Figure 7 shows the acceptance rates, which were adjusted to
a desired acceptance rate of 40%. In neither case was the
adjustment perfect, the deviations from uniformity being
larger than the sampling variability, but the misadjustment
does not seriously degrade performance.
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and 35. This sampler appeared to run about 8% faster than

the other, but that may have been only sampling variation.

Using the information from this run, the pseudopriors Then another sampler with 26 distributions was adjusted to

and X\’s were adjusted to get uniform occupation numbers have acceptance rates of about 20%. A run of 2,008,438 it-

and acceptance rates of 30%. This sampler had 32 distri- erations showed almost uniform occupation numbers and

butions. A run of 2,255,775 iterations showed that the ad- acceptance rates all between 19% and 21%, except for three

justment was fairly successful. The occupation numbers were  of 18, 22, and 26. This sampler appeared to run about 5%

perhaps uniform to within sampling error, and the accep- faster still. Although the sampling error in the speeds of the
tance rates were all 30% or 31%, except for three of 29, 33,
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Figure 5. Scatterplot of Number of Iterations During a Tour That Indi-  tributions. The average is the average of the acceptance rate going up
vidual *'B”’ was a Carrier Against Tour Length. The line goes through the  and the acceptance rate going down. At the ends, the acceptance rates
origin and has slope equal to the estimated carrier frequency for individual ~ were adjusted to account for the uneven proposal probabilities. The “‘steps”’
“B.” are numbered from 1 to 39 going from cold to hot.
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latter two samplers is fairly large, adjusting the acceptance
rates to between 20% and 40% seems reasonable.

Results on the 5,277-member pedigree are shown in the
second two columns of Table 4. This sampler had 42 distri-
butions and ran for 12,314,658 iterations, producing 37 tours
that hit the cold distribution. The tours for this sampler are
about 10 times the length of tours for the 2,024-member
pedigree. Because of the smaller number of tours, this sam-
pler is less accurate than the one for the 2,024-member ped-
igree, but it is accurate enough to show that the two pedigrees
do have different probability distributions. Individuals A and
B are now much more likely than the others to have been
carriers, half again as likely as given the information in the
2,024-member pedigree. Presumably the answer for the full
pedigree has a still higher probability of A and B being car-
riers.

6. DISCUSSION

For the purposes of discussion, let us divide problems into
“hard” ones that need simulated tempering and “easy” ones
for which the Gibbs sampler or variable-at-a-time Metropolis
algorithms work. The main value of simulated tempering is
that it provides a method of attack for these “hard” problems.
The method is not guaranteed, because if one chooses a bad
form of “heating,” simulated tempering can fail (Sec. 3).
But no other MCMC method has guaranteed convergence
either, and simulated tempering seems to provide the best
chance of obtaining a converging sampler in hard problems.

In easy problems the function of simulated tempering is
to remove doubts about convergence of the Gibbs sampler
and other simple methods. If simulated tempering produces
the same answer as the simpler methods, then both presum-
ably are right. There has been much controversy in the lit-
erature over the convergence even of very simple examples
(Gelman and Rubin 1992; Geyer 1992). In such cases a
solution is to run simulated tempering, which seems to de-
liver the benefits that were promised for multistart methods
(Gelman and Rubin 1992). Figure 5 shows why multistart
methods will not work in hard problems. A multistart
method would produce some average over the dots in the
figure that would depend on the starting distribution and
hence be incorrect unless the starting distribution was very
near the stationary distribution.

Have we found effective hot distributions for the Hutterite
CF problem? The sampler found “modes” in which each
founder was a carrier, so it could have missed a mode only
if the mode were characterized by some more complex func-
tion of the paths of descent of the CF genes. We used two
different hot distributions. The results for the gene-drop hot
distribution have not been shown, but agreed with those dis-
cussed to within the estimated Monte Carlo error. Because
no other method that we know of mixes well enough to check
our results on this large pedigree, we cannot guarantee the
results are correct, but available evidence suggests that
they are.

[Received July 1993. Revised November 1994.]

REFERENCES

Berg, B., and Neuhaus, T. (1991), “Multicanonical Algorithms for First
Order Phase Transitions,” Physics Letters B, 267, 249-253.

919

Besag, J., and Green, P. J. (1993), “Spatial Statistics and Bayesian Com-
putation” (with discussion ), Journal of the Royal Statistical Society, Ser.
B, 55, 25-37.

Cannings, C., Thompson, E. A., and Skolnick, M. H. (1978), “Probability
Functions on Complex Pedigrees,” Advances in Applied Probability, 10,
26-61.

Castilla, E. E., and Adams, J. (1990), “Migration and Genetic Structure in
an Isolated Population in Argentina: Aicuna,” in Convergent Issues in
Genetics and Demography, eds. J. Adams, A. Hermalin, D. Lam, and P.
Smouse, New York: Oxford University Press.

Feller, W. (1968), An Introduction to Probability Theory and Its Applications,
Vol. 1 (3rd ed., rev.), New York: John Wiley.

Frantz, D. D., Freeman, D. L., and Doll, J. D. (1990), “Reducing Quasi-
Ergodic Behavior in Monte Carlo Simulations by J-Walking: Applications
to Atomic Clusters,” Journal of Chemical Physics, 93, 2769-2784.

Fujiwara, T. M., Morgan, K., Schwarz, R. H., Doherty, R. A., Miller, S. H.,
Klinger, K., Stanislovitis, P., Stuart, N., and Watkins, P. C. (1988), “Ge-
nealogical Analysis of Cystic Fibrosis and Chromosome 7q RFLP Hap-
lotypes in the Hutterite Brethren,” American Journal of Human Genetics,
44, 327-337.

Gelman, A., and Rubin, D. B. (1992), “Inference from Iterative Simulation
Using Multiple Sequences” (with discussion), Statistical Science, 7,457~
S11.

Geman, S., and Geman, D. (1984), “Stochastic Relaxation, Gibbs Distri-
butions, and the Bayesian Restoration of Images,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 6, 721-741.

Geyer, C. J. (1991a), “Markov Chain Monte Carlo Maximum Likelihood,”
in Computing Science and Statistics: Proceedings of the 23rd Symposium
on the Interface, pp. 156-163.

(1991b), “Reweighting Monte Carlo Mixtures,” Technical Report

No. 568, University of Minnesota, School of Statistics. -

(1992), “Practical Markov Chain Monte Carlo” (with discussion),
Statistical Science, 7, 437-511.

Geyer, C. J., and Moller, J. (1994), “Simulation and Likelihood Inference
for Spatial Point Processes,” Scandinavian Journal of Statistics, 21, 359~
373.

Geyer, C. J., and Thompson, E. A. (1992), “Constrained Monte Carlo
Maximum Likelihood for Dependent Data” (with discussion), Journal
of the Royal Statistical Society, Ser. B, 54, 657-699.

Hastings, W. K. (1970), “Monte Carlo Sampling Methods Using Markov
Chains and Their Applications,” Biometrika, 57, 97-109.

Hostetler, J. A. (1974), Hutterite Society, Baltimore: Johns Hopkins Uni-
versity Press.

Hussels, I. E., and Morton, N. E. (1972), “Pingelap and Mokil Atolls: Ach-
romatopsia,” American Journal of Human Genetics, 24, 304-309.

Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P. (1983), “Optimization
by Simulated Annealing,” Science, 220, 671-680.

Marinari, E., and Parisi, G. (1992), “Simulated Tempering: A New Monte
Carlo Scheme,” Europhysics Letters, 19, 451-458.

Matthews, P. (1993), “A Slowly Mixing Markov Chain With Implications
for Gibbs Sampling,” Statistics and Probability Letters, 17, 231-236.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E. (1953), “Equation of State Calculations by Fast Computing

Machines,” Journal of Chemical Physics, 21, 1087-1092.

Mykland, P., Tierney, L., and Yu, B. (1995), “Regeneration in Markov
Chain Samplers,” Journal of the American Statistical Association, 90,
233-246.

Nummelin, E. (1984 ), General Irreducible Markov Chains and Non-Negative
Operators, Cambridge, U.K.: Cambridge University Press.

Ripley, B. D. (1979), “Simulating Spatial Patterns: Dependent Samples
From a Multivariate Density,” Applied Statistics, 28, 109-112.

Ripley, B. D. (1987), Stochastic Simulation, New York: John Wiley.

Smith, A. F. M., and Roberts, G. O. (1993), “Bayesian Computation via
the Gibbs Sampler and Related Markov Chain Monte Carlo Methods”
(with discussion ), Journal of the Royal Statistical Society, Ser. B, 55, 3—-
23.

Sorsby, A. (1963), “Retinitis Pigmentosa in the Tristan da Cunha Islanders,”
Transactions of the Royal Society of Tropical Medicine and Hygiene, 57,
15-18.

Strauss, D. J. (1975), “A Model for Clustering,” Biometrika, 62, 467-475.

Strauss, D. (1986), “A General Class of Models for Interaction,” SIAM
Review, 28, 513-527.

Swendsen, R. H., and Wang, J. S. (1987), “Nonuniversal Critical Dynamics
in Monte Carlo Simulations,” Physical Review Letters, 58, 86-88.

Thompson, E. A. (1978), “Ancestral Inference II: The Founders of Tristan
da Cunha,” Annals of Human Genetics, 42, 239-253.




920 Journal of the American Statistical Association, September 1995

(1991), “Probabilities on Complex Pedigrees; the Gibbs Sampler  Torrie, G. M., and Valleau, J. P. (1977), “Nonphysical Sampling Distri-
Approach,” in Computing Science and Statistics: Proceedings of the 23rd butions in Monte Carlo Free-Energy Estimation: Umbrella Sampling,”
Symposium on the Interface, pp. 321-328. Journal of Computational Physics, 23, 187-199.

Thompson, E. A., and Morgan, K. (1989), “Recursive Descent Probabilities =~ Wang, J. S., and Swendsen, R. H. (1990), “Cluster Monte Carlo Algorithms,”
for Rare Recessive Lethals,” Annals of Human Genetics, 53, 357-374. Physica A, 167, 565-579.

Tierney, L. (1994), “Markov Chains for Exploring Posterior Distributions”  Wasan, M. T. (1969), Stochastic Approximation, Cambridge, U.K.: Cam-
(with discussion), Annals of Statistics, 22, 1701-1762. bridge University Press.




