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1. Introduction

A Bayesian approach to model selection proceeds as follows.
Suppose that the data y are considered to have been generated
by a model m, one of a set M of competing models. Each model
specifies the distribution of Y, f ( y | m,βm) apart from an un-
known parameter vector βm ∈ Bm , where Bm is the set of all
possible values for the coefficients of model m. If f (m) is the
prior probability of model m, then the posterior probability is
given by

f (m | y) = f (m) f ( y | m)∑
m∈M f (m) f ( y | m)

, m ∈ M (1)

where f ( y | m) is the marginal likelihood calculated using
f ( y | m) = ∫

f ( y | m,βm) f (βm | m)dβm and f (βm | m) is the
conditional prior distribution of βm , the model parameters for
model m.

This integral is only analytically tractable in certain restricted
examples. A further problem is that the size of the set of pos-
sible models M may be so great that calculation or approxima-
tion of f ( y | m) for all m ∈ M becomes infeasible. Therefore
MCMC methods which generate observations from the joint pos-
terior distribution f (m,βm | y) of (m,βm) have recently become
popular for estimating f (m | y) and f (βm | m, y). The natural

parameter space for (m,βm) is

B =
⋃

m∈M

{m} × Bm .

We focus on a straightforward independence sampler, and on
the methods of Green (‘reversible jump’ 1995) and Carlin and
Chib (1995), and describe a connection between them.

We also consider ‘variable selection’ problems where the
models under consideration can be naturally represented by a
set of binary indicator variables so that M ⊆ {0, 1}p, where p is
the total possible number of variables. We introduce a modifica-
tion of Carlin and Chib’s method for variable selection problems,
which can be more efficient in certain examples.

2. MCMC model selection methods

2.1. Independence sampler

The most straightforward MCMC approach from generating
from the posterior distribution f (m,βm | y) over B is a stan-
dard Metropolis–Hastings approach. Given the current value
of (m,βm), a proposal (m ′,β′

m ′ ) is generated from some pro-
posal distribution over B. If the proposal distribution has den-
sity q(m ′,β′

m ′ | m,βm) with respect to the natural measure on B,
then the proposal is accepted as the next observation of the chain
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with the usual Metropolis–Hastings acceptance probability

α = min

(
1,

f ( y | m′,β′
m′ ) f (β′

m′ | m′) f (m′)q(m,βm | m′,β′
m′ )

f ( y | m,βm ) f (βm | m) f (m)q(m′,β′
m′ | m,βm )

)
. (2)

In practice, the proposal is constructed (like the prior) as a pro-
posal for model m ′, followed by a proposal for model parameters
β′

m ′ | m ′, so q(m ′,β′
m ′ | m,βm) = q(m ′ | m,βm)q(β′

m ′ | m ′, m,

βm). This approach is considered by Gruet and Robert (1997)
for mixture models.

The independence sampler (Tierney 1994) is a special case
of this approach, which is straightforward to implement. For
the independence sampler, the proposal can be represented as
q(m ′,β′

m ′ ) and is not allowed to depend on the current val-
ues (m,βm). This approach is used by Clyde and Desimone–
Sasinowska (1998). The independence sampler works best if
the proposal q is a reasonable approximation to the target pos-
terior distribution f . In the current context, this is clearly going
to be difficult to achieve, as we require not just a reasonable
approximation to f (m | y) but, perhaps more importantly, a rea-
sonable approximation to f (βm | m, y) for every m. If |M |, the
number of models is small, it may be possible to construct an
approximation to each f (βm | m, y) based on a pilot MCMC
run within the model. When there are many models, an alter-
native approach will be required. This is discussed further in
Section 4.

2.2. Reversible jump

Generally, the independence sampler is unlikely to represent
the best strategy (Roberts 1996). Therefore, it seems sensible
to allow the proposal (m ′,β′

m ′ ) to depend on the current values
(m,βm). However, for parameter spaces such as B, it is desirable
to allow this in the most flexible way possible. In particular, the
natural way to allow the parameters β′

m ′ of a proposed model to
depend on the parameters βm of the current model, may suggest
a proposal distribution with sample space of lower dimension
than Bm ′ . For example, where model m ′ is nested in m then we
may want to propose β′

m ′ as a deterministic function of βm .
The standard Metropolis–Hastings acceptance probability (2)

cannot be applied to this kind of proposal, over a sample
space of reduced dimension. However, Green (1995) devel-
oped reversible jump MCMC for exactly this situation. The
reversible jump approach for generating from f (m,βm | y) is
based on creating a Markov chain which can ‘jump’ between
models with parameter spaces of different dimension in a flexi-
ble way, while retaining detailed balance which ensures the cor-
rect limiting distribution provided the chain is irreducible and
aperiodic.

Suppose that the current state of the Markov chain is (m,βm),
where βm has dimension d(βm), then one version of the proce-
dure is as follows:

• Propose a new model m ′ with probability j(m, m ′).
• Generate u (which can be of lower dimension than βm ′ ) from

a specified proposal density q(u |βm, m, m ′).

• Set (β′
m ′ , u′) = gm,m ′ (βm, u) where gm,m ′ is a specified inver-

tible function. Hence d(βm) + d(u) = d(βm ′ ) + d(u′). Note
that gm,m ′ = g−1

m,m ′ .
• Accept the proposed move to model m ′ with probability

α = min

(
1,

f ( y | m′,β′
m′ ) f (β′

m′ | m′) f (m′) j(m′, m)q(u′ |βm , m′, m)

f ( y | m,βm ) f (βm | m) f (m) j(m, m′)q(u |βm′ , m, m′)

×
∣∣∣∣ ∂g(βm , u)

∂(βm , u)

∣∣∣∣
)

. (3)

There are many variations of simpler versions of reversible
jump that can be applied in specific model determination
problems. In particular, if all parameters of the proposed
model are generated directly from a proposal distribution, then
(β′

m ′ , u′) = (u,βm) with d(βm) = d(u′) and d(βm ′ ) = d(u), and
the jacobian term in (3) is one. The acceptance probabilities in
(2) and (3) are equivalent, and we have an independence sam-
pler. Therefore the independence sampler is a special case of
reversible jump. With the same proposals, but where the func-
tion (β′

m ′ , u′) = gm,m ′ (u,βm) is not the identity then we have a
more general Metropolis-Hastings algorithm where β′

m ′ is al-
lowed to depend on βm . If m ′ = m, then the move is a standard
Metropolis-Hastings step.

However, the real flexibility of the reversible jump formula-
tion is that it allows us to use proposal distributions of lower
dimension than d(β′

m ′ ). For example, if model m is nested in m ′

then, as suggested above, there may be an extremely natural pro-
posal distribution and transformation function gm,m ′ (may be the
identity function) such that d(u′) = 0 and β′

m ′ = gm,m ′ (βm, u).
Therefore, when the reverse move is proposed, the model
parameters are proposed deterministically. See, for example,
Dellaportas and Forster (1999).

2.3. Carlin and Chib’s method

Carlin and Chib (1995) proposed using a Gibbs sampler to gen-
erate from the posterior distribution f (m,βm | y). In order to
do this, it is required to consider a Markov chain of realisations
of (m,βk : k ∈ M), and extract the marginal sample of (m,βm).
The parameter space for (m,βk : k ∈ M) is M × ∏

m ∈ M Bm .
Therefore, a prior distribution for (m,βk : k ∈ M) is no longer
completely specified by f (m) and f (βm | m), so Carlin and
Chib proposed the use of pseudopriors or linking densities
f (βk | m �= k), k ∈ M .

The full posterior conditional distributions are

f (βk | y, {βl : l �= k}, m) ∝
{

f ( y |βm, m) f (βm | m) k = m

f (βk | k �= m) k �= m
(4)

and

f (m | {βk : k ∈ M}, y) = Am∑
k∈M Ak

(5)

where

Am = f ( y |βm, m)
∏
l∈M

[ f (βl | m)] f (m).
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When k = m,βk are generated from the conditional poste-
rior distribution f (βm | y, m) and when k �= m from the corre-
sponding pseudoprior, f (βk | m). For k �= m this approach in-
volves generating directly from the pseudopriors, and therefore
is optimised when each pseudoprior density f (βk | m) is close
to the corresponding conditional posterior density f (βk | k, y).
This may be achieved by a common pseudoprior density
f (βk | m) for all m ∈ M\{k}, which we denote by f (βk | k �= m).
The model indicator m is generated as a discrete random
variable.

The main drawback of this method is the unavoidable specifi-
cation of, and generation from, many pseudoprior distributions.
Carlin and Chib (1995) point out that, as the pseudopriors do not
enter the marginal posterior distributions f (m,βm) of interest,
they should be chosen to make the method efficient. However,
generation from |M |−1 pseudopriors at every cycle of the Gibbs
sampler is still required, and this is computationally demanding.
Green and O’Hagan (1998) show that it is not necessary to gen-
erate from the pseudopriors for the chain to have the correct
limiting distribution, but that this modification is unlikely to be
efficient.

2.4. ‘Metropolised’ Carlin and Chib

The Gibbs sampler proposed by Carlin and Chib (1995) requires
the calculation of all Ak in the denominator of (5). An alterna-
tive approach is a hybrid Gibbs/Metropolis strategy, where the
‘model selection’ step is not based on the full conditional, but
on a proposal for a move to model m ′, followed by acceptance or
rejection of this proposal. If the current state is model m and we
propose model m ′ with probability j(m, m ′), then the acceptance
probability is given by

α = min
(
1,

Am′ j(m′,m)
Am j(m,m′)

)

= min

(
1,

f ( y |βm′ , m′) f (βm′ | m′) f (βm | m′) f (m′) j(m′, m)

f ( y |βm , m) f (βm | m) f (βm′ | m) f (m) j(m, m′)

)
(6)

as all other pseudopriors cancel.
Note that when we are in model m and we propose model

m ′, we require only values of βm and βm ′ to calculate α in (6).
Furthermore, we are assuming that model m ′ is proposed with
probability j(m, m ′), independently of the values of any model
parameters. Therefore if we reverse the order of sampling from
j and the full conditional distributions for βk in (4), there is no
need to sample from any pseudopriors other than that for m ′.
The method now consists of the following steps:

• Propose a new model m ′ with probability j(m, m ′).
• Generate βm from the posterior f (βm | y, m).
• Generate βm ′ from the pseudoprior f (βm ′ | m �= m ′).
• Accept the proposed move to model m ′ with probability α

given by (6).

It is straightforward to see that by a simple modification
(‘Metropolising’ the model selection step), the model selec-
tion step of Carlin and Chib’s method becomes equivalent to an

independence sampler. The pseudopriors become proposals in
the independence sampler, and only one pseudoprior is used
at each iteration. This independence sampler is combined with
a Gibbs sampler which updates the parameters of the current
model at each iteration, although this is not strictly necessary.
We use this hybrid approach in the examples of Section 5.

More generally, Besag (1997) and Godsill (1998) show that
Metropolis–Hastings algorithms in the product space M ×∏

m∈M Bm can be thought of as equivalent algorithms in B, with
acceptance probabilities of the form (2). All these approaches
are less flexible than general reversible jump, as they all require a
proposal distribution of full dimension d(β′

m ′ ) when model m ′ is
proposed. Reversible jump on the other hand allows the model
parameters of the proposed model to depend on the parame-
ters of the current model in a totally general way through the
function gm ′,m . In particular, the dimension of the proposal dis-
tribution may be much less than the dimension of the proposed
model.

For a simple illustration of this, consider example 3.1 of
Carlin and Chib (1995) where there are two possible mod-
els, the non-nested regression models Yi ∼ N (α + βxi , σ

2), i =
1, . . . , n(m = 1) and Yi ∼ N (γ + δzi , τ

2), i = 1, . . . , n(m = 2).
When it is proposed to change model (from m = 1 to m = 2 say)
the independence sampler requires a proposal for (γ, δ, τ ) in-
dependent of the current values of (α, β, σ ). (Carlin and Chib’s
approach requires an equivalent pseudoprior). A reversible jump
strategy can make use of these current values in a deterministic
way, and a plausible proposal is




γ

δ

τ


 =




1 − a
b 0

0 1
b 0

0 0 1







α

β

σ


 (7)

where a and b are the least squares estimates of a linear regres-
sion of z on x .

When a move from m = 2 to m = 1 is made, (α, β, σ ) are
proposed through the inverse of (7). As both these proposals are
purely deterministic, the proposal densities q disappear from the
numerator and denominator of (3). From (7) it can be seen that
the Jacobian is 1/b for a move from m = 1 to m = 2 and b for
the reverse move.

In addition to the proposed model change outlined above,
a Gibbs sampler step to update the parameters of the current
model was used at each iteration. For the data analysed by Carlin
and Chib (1995), this reversible jump chain proved to be quite
mobile. More than one in three proposed model switches were
accepted. No pilot runs or ‘training’ were required.

2.5. Using posterior distributions as proposals

Suppose that, for each m, the posterior density f (βm | m, y)
is available, including the normalising constant which is
the marginal likelihood f ( y | m). If this distribution is used
as a pseudoprior then the acceptance probability in (6) is
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given by

α = min

(
1,

f ( y | m′,β′
m′ ) f (β′

m′ | m′) f (m′) j(m′, m) f (βm | m, y)

f ( y | m,βm ) f (βm | m) f (m) j(m, m′) f (β′
m′ | m′, y)

)

= min

(
1, Bm′m

f (m′) j(m′, m)

f (m) j(m, m′)

)

where Bm ′m is the Bayes factor of model m ′ against model m. In
practice, we cannot usually calculate Bm ′m . In the special case
where models are decomposable graphical models, Madigan and
York (1995) used exactly this approach, which they called MC 3.
Here there is no need to generate the model parameters βm as
part of the Markov chain. These can be generated separately
from the known posterior distributions f (βm | m, y) if required.

3. Variable selection

Many statistical models may be represented naturally as (s,γ) ∈
S × {0, 1}p, where the indicator vector γ represents which of
the p possible sets of covariates are present in the model and s
represents other structural properties of the model. For example,
for a generalised linear model s may describe the distribution,
link function and variance function, and the linear predictor may
be written as

η =
p∑

i=1

γi Xiβi (8)

where Xi is the design matrix and βi the parameter vector re-
lated to the i th term. In the following, we restrict consideration
to variable selection aspects assuming that s is known, or dealt
with in another way and therefore we substitute γ for model in-
dicator m. For example, we can apply reversible jump to variable
selection by substituting γ for m in (3).

Note that in some cases, it is sensible to set f (γi |γ\i ) = f (γi )
(where the subscript \i denotes all elements of a vector except
the i th), whereas in other cases (e.g. hierarchical or graphical
log-linear models) it is required that f (γi |γ\i ) depends on γ\i ;
see Chipman (1996).

3.1. Gibbs variable selection

Here we introduce a modification of Carlin and Chib’s Gibbs
sampler which is appropriate for variable selection, and can be
implemented in Gibbs sampler software such as BUGS. Further-
more, it does not require unnecessary generation from pseudo-
priors.

We specify the prior for (γ,β) as f (γ,β) = f (γ) f (β |γ).
If we consider a partition of β into (βγ,β\γ) correspond-
ing to those components of β which are included (γi = 1) or
not included (γi = 0) in the model, then the prior f (β |γ)
may be partitioned into model prior f (βγ |γ) and pseudoprior
f (β\γ |βγ,γ).

The full conditional posterior distributions are given by

f (βγ |β\γ,γ, y) ∝ f ( y |β,γ) f (βγ |γ) f (β\γ |βγ,γ) (9)

f (β\γ |βγ,γ, y) ∝ f (β\γ |βγ,γ) (10)

and

f (γi = 1 |γ\i ,β, y)

f (γi = 0 |γ\i ,β, y)

= f ( y |β, γi = 1,γ\i )

f ( y |β, γi = 0,γ\i )

f (β | γi = 1,γ\i )

f (β | γi = 0,γ\i )

f (γi = 1,γ\i )

f (γi = 0,γ\i )

(11)

Note that (9) seems less natural than (4) as f (βγ |β\γ,γ, y)
may depend on β\γ . One way of avoiding this is to assume
prior conditional independence of βi terms given γ, in which
case f (β\γ |βγ,γ) can be omitted from (9). This is a restrictive
assumption but may be realistic when priors are intended to be
non-informative, particularly if the columns of different Xi in (8)
are orthogonal to each other. Then, each prior for βi |γ consists
of a mixture of two densities. The first, f (βi | γi = 1,γ\i ), is
the true prior for the parameter whereas the second, f (βi | γi =
0,γ\i ), is a pseudoprior.

Expression (11) is similar to equivalent expressions in other
proposed variable selection methods. George and McCulloch
(1993) propose a ‘Stochastic Search Variable Selection’ strategy
which assumes the maximal model throughout, but constrains
βi parameters to be close to zero when γi = 0. In this situation,
f ( y |β,γ) is independent of γ and so the first ratio on the right
hand side of (11) can be omitted. Kuo and Mallick (1998) pro-
pose a similar approach to the above but use a prior distribution
for (γ,β) with β independent of γ. Then, the second term on
the right hand side of (11) can be omitted.

Carlin and Chib’s method involves a single model indicator
parameter. Therefore at each iteration of the Gibbs sampler, all
parameters of all models are generated from either posterior
distribution or pseudoprior, and the model selection step allows
a simultaneous change of all γi s. For Gibbs variable selection,
an observation of γ is generated following generation of all βk

from posterior distributions or pseudopriors. This procedure will
generally involve generating from p conditional distributions
for βk , a much smaller burden than required for Carlin and
Chib’s method. Furthermore, it would seem to be more efficient
to generate pairs of (βk, γk) successively, possibly by a random
scan, so that more local moves in model space are attempted.

Clearly, moves between models m(γ) and m ′(γ ′) may also be
based on a Metropolis step, as was suggested in Section 2.4.
Then the pseudopriors may be thought of as part of the proposal
density for parameters which are present in one model but not in
the other. This highlights a drawback with the variable selection
approaches discussed in this section, namely that parameters
which are ‘common’ to both models remain unchanged, and
therefore the procedure will not be efficient unless posterior
distributions for such parameters are similar under both models.

4. Choice of proposal distributions

For all of the MCMC methods we have described above,
efficient performance depends on good choice of proposal
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(or pseudoprior) distributions. The importance of this depends
on the extent to which the moves between models can be con-
sidered to be ‘local’. A local move may be characterised as one
where we might hope to make use of the current parameter values
to propose plausible values for the parameters of the proposed
model. Typically, a local proposal will involve generating from
a distribution of dimension lower than the resulting proposed
parameter vector. One area where it may be possible to utilise
local moves is a variable selection approach where the proposed
value of γ differs from the current value in a single component.
A term is either added to or deleted from the current model.
In this situation, one option is to retain the parameter values
for those terms which are present in both the current and pro-
posed models. Gibbs variable selection outlined in Section 3.1
adopts this approach as do Dellaportas and Forster (1999) in
their application of reversible jump to loglinear models. The
proposal (pseudoprior) distribution for an additional model pa-
rameter may be normal with mean and variance estimated using
a pilot chain for the saturated model, where all parameters are
present. Such an approach is more likely to be successful where
the predictors are orthogonal to one another, and model param-
eters have a similar interpretation across model. In situations
where this is not the case, then the reversible jump approach
may be adapted to deal with this. For example, when a term is
removed from a model, the presence of the function g allows the
parameters of the proposed model to depend deterministically
on those of the current model in a flexible way. See Section 6
and the example in Section 2.4 for details.

An alternative is to propose more global moves, where the re-
lationship between the parameters of the models is less obvious,
and it is more difficult to generate parameters for the proposed
model which depend on the current parameter values in any sen-
sible way. In these situations the kind of proposals utilised by the
independence sampler and the equivalent Metropolised Carlin
and Chib approach, may allow for more ‘global’ moves, which
traverse B more quickly. However, this is heavily dependent on
being able to generate sensible values for all the parameters of
any model proposed. Carlin and Chib (1995) propose a pilot
chain for each model to identify a mean and variance for a nor-
mal proposal. This is expensive when M is large.

One possible strategy, where appropriate, is to generate pa-
rameter values using a normal distribution centred at the max-
imum likelihood estimate for βm with variance equal to the
asymptotic variance of the mle. This potentially requires an ex-
pensive maximisation at for each proposed model. An alterna-
tive, for a generalised linear model with link function h, variance
function v and scale parameter φ is to approximate the distri-
bution of z, the vector with components h(yi ), i = 1, . . . , n,
by a normal distribution. Then, the posterior distribution of
βm may be approximated by a normal distribution with mean
(XT

m W Xm)−1 XT
m Wz and variance (XT

m W Xm)−1 where Xm is
the design or data matrix for model m, and W is a diagonal ma-
trix with components {v(µ̂i )h′(µ̂i )2φ̂i }−1, i = 1, . . . , n. Here
µ̂i may be the saturated model estimate (= yi ) or any other ap-
propriate estimate. Although this approximation is quite crude,

it may still suffice as a proposal distribution. No maximisation
is required, although matrix inversion may still prove expensive.

The general reversible jump procedure allows any level of
compromise between the local and global extremes discussed
above. See, for example, Richardson and Green (1997), and
accompanying discussion.

5. Illustrated examples

5.1. A logistic regression example

To illustrate the different MCMC model choice methods, we
consider a dataset analysed by Healy (1988). The data, presented
in Table 1, reflect the relationship between survival, condition
of the patient (more or less severe) and the treatment received
(antitoxin medication or not). Suppose that we wish to compare
the 5 possible logistic regression models with response variable
the number of survivals and explanatory factors the patient con-
dition and the received treatment. The full model is given by

Y jl ∼ Bin(n jl , p jl),

log

(
p jl

1 − p jl

)
= µ + a j + bl + (ab) jl , j, l = 1, 2

where Y jl , n jl and p jl are the number of survivals, the total num-
ber of patients and the probability of survival under level j of
severity and treatment l; µ, a j , bl and (ab) jl are the model pa-
rameters corresponding to the constant term, level j of severity,
treatment l, and interaction of severity j and treatment l.

We consider the Gibbs variable selection introduced in
Section 3.1, Kuo and Mallick’s method, local reversible jump
as implemented by Dellaportas and Forster (1999), and the
Metropolised version of Carlin and Chib’s method (the indepen-
dence sampler for model jumps) presented in Section 2.4. For
the latter, we used two different forms of proposal density, the
multivariate normal density suggested in Section 4 with µ̂i in the
variance replaced by the observed proportions, and φi = 1/ni ;
and a proposal where the model parameters have independent
N (β̄i , σ̄

2
i ) densities, where β̄i and σ̄ 2

i were estimated from a pi-
lot run of 500 iterations in the full model, after discarding the
first 100 as burn-in iterations. The resulting values of β̄i and σ̄i

were (−0.47, −0.87, 0.56, −0.17) and (0.27, 0.27, 0.28, 0.27)
for i = 0, . . . , 3 respectively. The same normal distributions
for βi are used as proposals the local reversible jump and as
pseudopriors for Gibbs variable selection.

A rough guideline for our comparisons is the approximation
to the Bayes factor Bm1m0 of model m1 against model m0 based

Table 1. Logistic regression example dataset

Antitoxin Death Survivals

More Severe Yes 15 6
No 22 4

Less Severe Yes 5 15
No 7 5
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on BIC,

−2 log Bm1m0 � −2 log

(
f ( y | β̂m1

, m1)

f ( y | β̂m0
, m0)

)

+ (d(βm1
) − d(βm0

)) log n (12)

where β̂m denotes the maximum likelihood estimator under
model m and n = ∑

i j ni j for the logistic regression example;
see Raftery (1996) for details.

Assuming the usual sum-to-zero constraints, the parameter
vector for the full model is given by β = (β0, β1, β2, β3) =
(µ, a2, b2, (ab)22). We use the same N (0, σ 2

βi
) prior distribution,

where relevant, for each βi , i = 0, . . . , 3, under all five models.
Following the ideas of Dellaportas and Forster (1999) we choose
σ 2

βi
= 8 as a prior variance which gives a diffuse but proper prior.

All the Markov chains were initiated at the full model with
starting points βi = 0 for all i = 0, . . . , 3. For the reversible
jump and Metropolised Carlin and Chib methods we propose a
‘neighbouring’ model which differs from the current model by
one term, so j(m, m) = 0. Within each model, updating of the
parameters βi was performed via Gibbs sampling steps as de-
scribed in Dellaportas and Smith (1993). Finally, each Markov
chain ran for 21,000 iterations and the output summaries are
based on ergodic averages taken over the final 20,000 iterations.
All of the MCMC approaches took a similar length of time

Table 2. Posterior model probabilities for logistic regression example with approximate standard errors for the most probable models

Model Deviance AP GVS KM RJ MCC(I) MCC(M)

µ 18.656 0.004 0.004 0.008 0.005 0.004 0.005
µ + a j 4.748 0.460 0.492 0.484 0.489 0.490 0.494

Standard error 0.015 0.045 0.033 0.033 0.026
µ + bl 12.171 0.011 0.010 0.009 0.011 0.011 0.012
µ + a j + bl 0.368 0.462 0.440 0.450 0.442 0.441 0.435

Standard error 0.014 0.041 0.027 0.027 0.020
µ + a j + bl + (ab) jl 0.000 0.063 0.053 0.050 0.053 0.054 0.054

AP: Approximate probabilities based on BIC, GVS: Gibbs variable selection, KM: Kuo and Mallick’s Gibbs sampler, RJ: Reversible jump
as implemented by Dellaportas and Forster (1999), MCC(I): Metropolised Carlin and Chib with Independent Pilot Run Proposals, MCC(M):
Metropolised Carlin and Chib with Multivariate Proposals.

Table 3. Simulated datasets details (n is the sample size, p is the number of variables considered excluding the constant term, design structure 1:
X0 = 1, Xi ∼ N(0, 1), i = 1, . . . , p and design structure 2: X0 = 1, Xi ∼ N(0, 1), i = 1,. . . ,10 and Xi ∼ N(0.3 X1+ 0.5 X2+ 0.7 X3 + 0.9 X4 +
1.1 X5 , 1), i = 11,. . . , 15

Design Generated model Backward/forward MCMC
Dataset n p structure η σ selected model best model

1 50 15 1 X4 + X5 2.50 X4 + X5 + X12 X4 + X5

2 50 15 2
∑5

i=1 Xi 2.50
∑5

i=1 Xi + Xa
12 X14

3 50 15 1 0 2.50 Empty Empty
4 50 15 2 0 2.50 X3 + X12 X3

5 100 50 1 0 1.00 X19 Empty
6 100 30 1 0.5X1 0.87 X1 X1

aThis model was selected only by backward procedure. Forward procedure selected model X14.

(around 40 seconds on a PC Pentium 100), and gave similar
results, with the combined probability of the two most proba-
ble models at least 0.93. The full results are given in Table 2.
Figures 1 and 2 show the evolution of the ergodic probability for
the model with the highest posterior probabilities. The MCMC
batch standard error when the generated samples were divided
in thirty batches is also displayed for in Table 2, for the two most
probable models. The differences between the posterior model
probabilities calculated by the five methods can comfortably be
attributed to this Monte Carlo error. For this example, Gibbs
variable selection performs well, particularly given its ease of
implementation.

5.2. Simulated regression examples

To evaluate the performance of the methods, we use a series of
simulated linear regression examples, as presented by Raftery,
Madigan and Hoeting (1997). The regression model can be writ-
ten as Y ∼ Nn(η, σ 2 I) with η given by (8).

For all examples we use independent N(0, 100) priors for
the regression coefficients and gamma(10−4, 10−4) for σ−2. The
data generation details are given in Table 3. For all variable
selection procedures we also included the constant term (noted
as X0) as a possible regressor.

We consider the same MCMC methods as in example one;
Gibbs variable selection, Kuo and Mallick’s method, the local
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Fig. 1. Ergodic posterior model probability of model A for logistic regression example (GVS: Gibbs variable selection, KM: Kuo and Mallick’s
Gibbs sampler, RJ: Reversible jump as implemented by Dellaportas and Forster (1999), MCC(I): Metropolised Carlin and Chib with independent
proposals, MCC(M): Metropolised Carlin and Chib with multivariate proposals)

Fig. 2. Ergodic posterior model probability of model A+ B for logistic regression example (GVS: Gibbs variable selection, KM: Kuo and Mallick’s
Gibbs sampler, RJ: Reversible jump as implemented by Dellaportas and Forster (1999), MCC(I): Metropolised Carlin and Chib with independent
proposals, MCC(M): Metropolised Carlin and Chib with multivariate proposals)
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Table 4. Batch standard deviations of highest posterior model proba-
bility for simulated regression datasets (GVS: Gibbs variable selection,
KM: Kuo and Mallick’s Gibbs sampler, RJ: Reversible jump as im-
plemented by Dellaportas and Forster (1999), MCC(I): Metropolised
Carlin and Chib with independent proposals, MCC(M): Metropolised
Carlin and Chib with multivariate proposals)

Dataset

1 2 3 4 5 6

GVS 0.017 0.077 0.024 0.016 0.041 0.027
KM 0.039 0.059 0.032 0.037 0.089 0.059
RJ 0.042 0.102 0.032 0.028 0.062 0.062
MCC(I) 0.044 – 0.043 0.026 0.143 0.078
MCC(M) 0.048 0.042 0.044 0.029 0.103 0.090

reversible jump as implemented by Dellaportas and Forster
(1999), and the Metropolised Carlin and Chib (independence
sampler) using both independent and multivariate proposal den-
sities. The proposal distributions needed for the implemen-
tation of Gibbs variable selection, reversible jump and the
Metropolised Carlin and Chib method were constructed from
the sample mean and standard deviation of an initial Gibbs sam-
ple of size 500 for the full model, with initial values of zero. The
multivariate proposal for Metropolised Carlin and Chib was of
the form

f (βm | m �= m ′) ∼ N
((

XT
m Xm

)−1
XT

m y,
(
XT

m Xm

)−1
σ̂ 2

)
(13)

where σ̂ 2 is the current value for the residual variance. Note that
this is the proposal suggested in Section 4, applied for normal
regression models.

To compare the performance of all methods we divided the
sample output taken at fixed time intervals (5, 15 and 10 minutes
for datasets 1–4, 5 and 6 respectively) into 30 equal batches
and reported in Table 4 the batch standard error of the highest
posterior model probability. The evolution of the corresponding
ergodic posterior probabilities is displayed in Fig. 3. Again, the
differences between the posterior model probabilities calculated
by the five methods is well within Monte Carlo error.

As would be expected, all methods gave similar results after a
reasonably long run. Generally, Gibbs variable selection seems
to have lower batch standard error which indicates greater effi-
ciency. Metropolised Carlin and Chib, although potentially more
efficient per iteration loses out in comparison, due to the time
taken at each iteration to propose a complete set of new parame-
ter values. Kuo and Mallick’s method generally performs worse
than Gibbs variable selection but reasonably well in general.

For dataset 2, where predictors are correlated, the Metro-
polised Carlin and Chib sampler with the multivariate proposal
distribution performed better than the other methods. This is
not surprising, as coefficient values may change dramatically
across models. The Metropolised Carlin and Chib sampler with
independent proposals, based on the full model, also performed
poorly here. It did not visit the model selected by the other

methods. However, after ten million iterations this method did
eventually support the same model.

6. Discussion

Efficient MCMC investigation of posterior distributions is
highly dependent on good choice of transition distribution. This
seems particularly true in the presence of model uncertainty.
There is a natural trade-off between local transitions and more
global transitions which potentially allow one to explore the dis-
tribution of interest more quickly, but may be much harder to
implement efficiently.

In this paper, we have focussed on a number of MCMC ap-
proaches which have been proposed for investigating model un-
certainty. These range from highly local approaches which re-
strict transitions to ‘neighbouring’ models, to completely global
approaches where any transition is, in principle, possible. We be-
lieve that simple local approaches can be successful and the illus-
trative examples presented in this paper bear this out. The local
version of reversible jump (as implemented by Dellaportas and
Forster 1999) and Gibbs variable selection are effective when pa-
rameters have a similar interpretation across models, and hence
marginal posterior densities do not change greatly.

On the other hand, the Metropolised version of Carlin and
Chib’s Gibbs sampler, equivalent to the independence sampler
for model jumps, is more effective in cases where interpreta-
tion of model parameter changes between models. Ideally, this
involves the construction of proposal or pseudoprior densities
that are good approximations of the target posterior distribution
for each model. This is an extra computational burden, which
becomes larger as the number of possible models increases.
However, the same algorithm with model parameters proposed
independently of one another requires only the same amount
of ‘training’ as Gibbs variable selection or our local version of
reversible jump, and the examples illustrate that this method can
also be effective.

One possible strategy for generalised linear models, is to
examine the approximate posterior correlation matrix of the
model parameters under the full model. If all correlations are
low then we can directly use either simple local reversible jump
or Gibbs variable selection, with independent proposals (pseu-
dopriors) with parameters taken from a pilot run of the full
model. If high correlations exist then a more global method
such as Metropolised Carlin and Chib (independence sampler)
with multivariate proposal densities may be preferred. An al-
ternative, in the presence of high posterior correlations is to
consider a more sophisticated reversible jump sampler. For ex-
ample, when moving to a nested model m ′ of lower dimension,
a possible proposal is

βm ′ = (
XT

m W Xm ′
)−1

XT
m ′ W Xmβm .

Then, when considering a transition from m ′ to m, the pro-
posed βm must be one for which the above equation holds.
This approach is local in the sense that it involves a minimal
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Fig. 3. Ergodic highest posterior model probabilities for simulated datasets (GVS: Gibbs variable selection, KM: Kuo and Mallick’s Gibbs
sampler, RJ: Reversible jump as implemented by Dellaportas and Forster (1999), MCC(I): Metropolised Carlin and Chib with independent
proposals, MCC(M): Metropolised Carlin and Chib with multivariate proposals)

change to the linear predictor (an object whose interpretation is
model-independent) even if the parameters for terms which are
present in both models may change greatly.
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