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SUMMARY

Modern sensor technologies, especially in biomedicine, produce increasingly detailed and
informative image ensembles, many extremely complex. It will be argued that pattern theory
can supply mathematical representations of subject-matter knowledge that can be used as
a basis for algorithmic ‘understanding’ of such pictures. After a brief survey of the basic
principles of pattern theory we shall illustrate them by an application to a concrete situation:
high magnification (greater than 15000 x ) electron micrographs of cardiac muscle cells.
The aim is to build algorithms for automatic hypothesis formation concerning the number,
location, orientation and shape of mitochondria and membranes. For this we construct
a pattern theoretic model in the form of a prior probability measure on the space of
configurations describing these hypotheses. This measure is synthesized by solving
sequentially a jump-diffusion equation of generalized Langevin form. The jumps occur
for the creation-annihilation of hypotheses, corresponding to a jump from one continuum
to another in configuration (hypothesis) space. These continua (subhypotheses) are expressed
in terms of products of low dimensional Lie groups acting on the generators of a template.
We use a modified Bayes approach to obtain the hypothesis formation, also organized by
solving a generalized Langevin equation. To justify this it is shown that the resulting jump-
diffusion process is ergodic so that the solution converges to the desired probability measure.
To speed up the convergence we reduce the computation of the drift term in the stochastic
differential equation analytically to a curvilinear integral, with the random term computed
almost instantaneously. The algorithms thus obtained are implemented, both for mito-
chondria and membranes, on a 4000 processor parallel machine. Photographs of the graphics
illustrate how automatic hypothesis formation is achieved. This approach is applied to
deformable neuroanatomical atlases and tracking recognition from narrow band and high
resolution sensor arrays.

Keywords: JUMP-DIFFUSION RANDOM SAMPLING; PATTERN THEORY; SHAPE RECOGNITION

1. INFERENCE IN COMPLEX SYSTEMS

The object of statistics is information. The objective of statistics is the understanding
of information contained in data. To achieve such understanding statistics em-
ploys a variety of methods, one of the most powerful being the graphical display
of characterizing functions derived from the data. We can speculate that a reason
for this is that the visual processing in man is so formidable, not only in terms of
its computing power but especially in its ability to organize its inputs into coherent
structures. How such a logical organization is carried out is largely unknown but
it seems plausible that it relies heavily on access to memory of enormous size
compared with current computer memories: and not just memory, in some sense smart
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(active) memory. Whether or not this is so, it has served as a guiding principle in
our work.

In an emerging field, supported by little or no theory, the choice of characterizing
functions to be graphically displayed has to be done in an exploratory manner, aided
by intuition and by informal guesses. As the field matures and theory develops, the
researcher is aided in selecting functions, the functions which point to characteristic
features strengthening or modifying the theory. At a still later stage the theory may
be mathematically codified leading to automated procedures for making the inductions
from data.

As an example take statistical signal processing. Of course this discipline can be
traced back far, to Helmholtz and earlier, but here we are thinking of its history in
this century. The advent of the cathode ray tube and the oscilloscope must have been
invaluable tools for visualizing signals to understand their structure. Neurophysiological
findings do not contradict the assertion that we do some sort of Fourier analysis while
watching a waveform on the screen. The development of communication engineering
from the 1920s onwards consisted in part of formalizing the observed, more or less
noisy, signals utilizing ideas from Fourier analysis, stationary stochastic processes,
Toeplitz forms, Bayesian inference and statistical mechanics to mention a few.
Eventually this resulted in virtually automated procedures for the detection and
understanding of noisy signals.

Signal processing is one of the great success stories of statistics. It is natural to
ask why. We believe that it was because the pioneers in the field managed to construct
representations of signal ensembles, models that were realistic and at the same time
tractable both analytically and computationally (by analogue devices). Today these
models are familiar, they look simple and natural, but in a historical perspective the
phenomena must have appeared highly complex and bewildering.

But what are today’s challenges in signal, data and pattern analysis? The last decades
have witnessed a revolutionary development in the construction of sensors for capturing
pictures: computerized tomography (CT), magnetic resonance (MR) imaging, optical
sectioning, laser radars (range finders) and others. This has enabled researchers in
the natural sciences, in particular biology and medicine, to acquire detailed images
carrying vast amounts of information. The diagnostician, a user of these remarkable
technologies, inspects the pictures looking for structure, perhaps watching out for
abnormalities or unexpected behaviour. They rely on their training in anatomy,
histology, cytology, etc. to understand what they see. One complication is, for certain
modalities, that the pictures are quite noisy. Another is that they give only indirect
information. For example, in CT the raw data sinogram is almost incomprehensible
without computer processing. Or, the data may consist of two-dimensional slices
whereas the anatomy is three dimensional, and so on.

The main difficulty we believe is that the anatomies (or other structures) form highly
complex systems. Browsing through an anatomical text-book, e.g. Netter’s (1980)
beautiful atlas, one is overwhelmed by the awesome amount of information. Say that
we have the ambition of creating algorithmic tools which help the diagnosticians by
carrying out some of the time consuming labour while leaving the final decision to
their judgment. To arrive at more than ad hoc algorithms the subject-matter knowledge
must be expressed precisely and as compactly as possible. How can such empirical
knowledge be represented in mathematical form, including both structure and the
all-important variability?
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This task is orders of magnitude bigger than modelling signal ensembles. For the
latter a few parameters are needed, perhaps means and variances for Gaussian noise,
or the spectral density of a signal source, and so on. The picture ensembles that we
are now concerned with are so complex that megabytes of constants must be used
to represent typical structure and more to describe variability, at least for the more
challenging situations. These ensembles have little structure—they are the result of
evolutionary incidents. Biology is not physics.

Here pictorial patterns (which are no accident) and biomedical images have been
emphasized. Or putting the question more generally: how can knowledge in complex
systems be represented, and how can such representations be studied analytically and
exploited to give algorithmic solutions?

General pattern theory, a discipline that was initiated in the late 1960s, is intended
to provide answers to this question. It gives an algebraic framework (image algebras)
for describing patterns as structures regulated by rules, both local and global.
Probability measures are sometimes superimposed on the image algebras to account
for variability of the patterns. The resulting regular structures serve as the mathematical
basis from which inference algorithms are derived from first principles.

Pattern theory borrows ideas and methods from algebra, probability, statistics and
analysis, and is related to image processing, computer vision and pattern recognition.
It differs from pattern recognition in that the latter emphasizes the construction of
recognition algorithms whereas in pattern theory the representation of subject-matter
knowledge is the centre of attention.

1.1. Specific Example: Subcellular Shapes in Electron Micrographs

To focus discussion, Fig. 1 shows electron micrograph sections of ventricular cardiac
myocyte cells at 15000 X magnification (Miller et al., 1985). Each panel exhibits
ultrastructural variability common to all myocyte cells which are composed
predominantly of the ‘energy producing’ mitochondria (dark closed structures). There
are clearly three kinds of variability which are common to biological specimens. First
is the structural or shape variability associated with shape and scale variation. The
second is the internal constituent variability of the textures making up the shapes.
The third is the complexity variability due to the varying numbers of shapes, the
number not known a priori. The challenge for the pattern theoretic approach is the
construction of models which represent these variabilities in a mathematically precise
way.

Fig. 1. Three electron microscope images at 15 000X magnification



552 GRENANDER AND MILLER [No. 4,

The metric pattern theory accommodates the shape variability by defining organelle
templates corresponding to fixed graphs with rigid regularity forcing global con-
nectedness of the boundary. The templates are made flexible by attributing the
templates with geometric group operators—scale, rotation and translation—resulting
in rubber-band-like transformations of the rigid templates. The textural variability
and sensor noise are accounted for via likelihoods constructed from Markov random
field (MRF) models of the textured interiors. The complexity variability of arbitrary
numbers of shapes is accommodated via the construction of a sample space of scenes.
A scene consists of numbers of template shapes with their associated group trans-
formations. Choosing a scene corresponds to choosing both the parameters determining
the shapes as well as the model order (Rissanen, 1987) most representative of the data.

1.2. Sequential Inference via Random Sampling

The method of inference is Bayesian based starting from a posterior density relating
the scenes to the observed sensor data. The inference method is a random process
following jump-diffusion dynamics which draws samples from the posterior, thereby
allowing for the empirical generation of conditional expectations of the various
unknowns: means, covariances, etc. Since the model order is unknown, the posterior
is defined over a countable union of real spaces, each space a variable parameterization
of the pattern theoretic model. The motivation for introducing random sampling
algorithms following jump-diffusion dynamics is to accommodate the very different
continuous and discrete components of the object discovery process. Given a fixed
number of objects in a scene the algorithm reshapes the templates to allow for the
local variability of each shape in the data. The reshaping is performed continuously
by using Langevin stochastic differential equations (SDEs), in which the state vector
stochastically follows gradients of the posterior over shape space. The second part
of the inference samples scenes of varying object number by using discontinuous jump
moves which add objects, remove objects and fuse and split objects. The jump
intensities are determined by the posterior density, with the diffusion equation
governing the dynamics between jumps. A significant result of this work is that by
appropriate choice of the jump-diffusion transition dynamics the resulting non-
homogeneous Markov random sampler converges to the posterior implying that
empirical averages converge to their expectations.

1.3.  Paper Lay-out

With this introduction the main concepts of pattern theory are presented in
Section 2. Then in Section 3 theorems on convergence of the random sampling
algorithm are proven, with Section 4 focusing on the application to biological shapes
in electron micrographs. Section 5 gives both computational details on the single-
instruction, multiple-data (SIMD) implementation as well as experimental results,
with Section 6 concluding with applications to deformable neuroanatomical atlases
and tracking and recognition on passive sensor arrays.

2. PATTERN THEORETIC BACKGROUND

Global regularity is introduced into the representations (regular structures) via a
family L, the connection type, of finite graphs, sometimes directed, sometimes not.
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Let o, a connector, be the symbol for a graph in ¥ and n=n(o) be the number of
sites in o.

Often ¢ is fixed and possibly also known beforehand but this is not always the
case; that will complicate the inferences as will be exemplified below. At each
site, a mathematical object is placed, a generator, from some set &, the generator
space. The generators appear in many forms: they can mean geometric objects such
as vectors and surface elements, or rewriting rules in language theory or computational
modules in studies of algorithms. Whatever they are we insist that they carry bonds,
information used to communicate to their neighbours on o, and establish local
regularity rules.

For a given generator g denote its bonds by 8, 8., . . . B,, where w=w(g) is in
algebraic parlance the arity of g. The 8-values come from some bond value space
%, again of fairly general nature that will be specialized for each application.

The local regularity then takes the following form. Consider two generators g’
and g” situated at neighbouring sites in the connector ¢ so that a graph segment
connects a bond 3;. of g’ with a bond ;- of g”. For each such segment, where two
bonds meet, it is required that a bond relation p( , )

0:%B X #B —{TRUE, FALSE} ¢))
takes the value p(B;,, 8;)=TRUE. When this is true everywhere in a configuration
c=0(g(1), g2, . . ., g(n) ()

then c is said to be regular. The above formalism is intended to bring out the algebraic

structure of the resulting configuration space ¢ (%) over the regularity # ={ ¥, T, p).
Typically patterns allow natural invariances. They will be formalized through a

similarity group <& of bijective transformations acting on the generator space

5:Ge 9, SEY 3)

Often several similarity groups will be used on the same configuration space. A
similarity s can be naturally extended to ¥ (#) which receives an algebraic structure
(see Grenander (1981), chapter 3).

The configurations are mathematical abstractions, typically not observable even
in principle, with their relation to observables captured by some sensor technology
and expressed by an identification rule R. Such a rule, assumed to be an equivalence
relation, partitions () into equivalence classes denoted 7, the (pure) images, together
forming an image algebra 7, I €_7. An image is a set of configurations that appear
the same to an ideal observer. Images inherit bonds from the configurations contained
in them and can be combined (if bonds fit) and be transformed by similarities.
_# turns out to be a partial universal algebra with combinatory operations, with
congruences and homomorphisms familiar to the algebraist.

The quotient space & =_#/ % is called the pattern family, its elements the patterns
which are thought of as images modulo the invariances represented by the similarity
group %, The images are what can be observed by an ideal (with no loss of information)
observer. The actual observer, however, may only be able to see the elements of the
image algebra with loss of information due to observational noise or limited accuracy
in the sensor. Denote the operation by which a pure image 7/ appears as some object,
say I?Z, by deformations
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d: 7— 77, deg. 4)

Here &, the deformation mechanism, can be random or deterministic.

2.1. Regular Structures
The regular structures (%), #, & are rigid constructs that represent knowledge
about the ‘typical’ appearance of the phenomena under study. Often, however,
variability is as important as typical appearance. Variabilities shall be formalized by
introducing an acceptor function A( , ): 4 X 4— R* with an associate probability
density p over (%)

P(©) = TTA LB (g, Brlg]. ®)

In equation (5) the product is taken over all segments (i’, j')—(i”, j”) in the graph

o with the constant Z normalizing p to have integral 1. A reader familiar with statistical

mechanics recognizes A as exp(— E), E energy, and Z as the partition function.
The resulting probabilistic regularity is written as ' =( ¢, X, A). If the implication

tA@", 8")>0} = p(B', B") Q)

holds, then the support of the probability measure P induced by %' is contained
in Z(%). This means that almost surely all configurations will be regular. In the
opposite case we shall, with some positive probability, encounter irregular config-
urations and we speak of relaxed (as opposed to rigid) regularity.

In the first case the probability measure P induces another probability measure
on _7 through the natural map (%) — _# belonging to the identification rule R. This
allows us to ask the same questions for probabilities on the image algebra that classical
probability theory has studied and to a great extent answered on the familiar algebraic
structures Z, R and its Cartesian powers as well as other groups, vector spaces and
topological algebras. For example, can we prove analogues of the law of large numbers
or of the central limit theorem but on the regular structures that have typically only
partial combinatory operations? Or, what are the properties of Markov processes
taking values in £(#) or #?

Such problems are studied in metric pattern theory, an emerging field in an
incomplete stage of development. Many of the questions of inference in regular
structures lead naturally to issues in metric pattern theory. A reader can find a
presentation of it (at 1980) in Grenander (1981), chapter 5.

2.1.1. Fixed and multiple-graph deformable templates
Within these regular structures we choose a particular configuration, call it the
template,

"=0(g’(1), £°Q), . . ., &%n))E L(XR). M

Applying similarities s(i) € & to the generators g°(¢) yields a new configuration, the
deformed template,

c=0(g(1), &), . . ., () =0(s(0) g°(1), 5(2)&°Q), . . ., s(n) g°(n)) ®)
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which will not always be regular. Make the assumption, one which is more convenient
than necessary, that the equation sg(1)=g° for given g(1), g€ ¢ has a unique
solution in s implying that for a fixed template c® the generators g(i) are bijectively
related to the similarities. It is then natural to introduce a prior measure P on the
configuration space via a density on "

p@s(1), s(2), . . ., S(n))=%HA{S(i'), s(E")} ®

with the product over all segments (i ', i”) in the connector o. If the deformed template
configurations are required to be regular the probability must be conditioned on the
set Z(#). The result is a probability measure defined on £(%) which becomes the
basis for the priors used throughout.

In this knowledge representation the template, or sometimes templates, express
typical structure, with A describing the variability around it. In most applications
of this model the similarity group & has been a low dimensional Lie group, but
the product group &” is of high dimension.

Thus far only templates associated with fixed graphs ¢ have been defined. Now
extend the notion of deformable templates to include configurations on the family
of graphs X, with an associated family of templates {c°(0)},cx. Inference in this
greater knowledge representation involves deducing not only the n(¢) similarity group
values associated with each graph but the graph type o€ X as well. The full config-
uration space ¥ becomes the union of configuration spaces over all graphs:

%= kEJE Z(0). (10)

Such a setting is essential for the family of random graph problems such as in
computational linguistics-language understanding (see Mark et al. (1992) for example)
in which the graphs carry the semantic and syntactic information associated with the
language string. The graphs are the randomly branched trees (Harris, 1963) associated
with context-free languages (Chomsky, 1956, 1959; Grenander, 1967; Miller and
O’Sullivan, 1992). The graph type and its associated structure are fundamental to
the deduction.

This view is also fundamental to the object recognition setting in which the number
of objects are not known a priori. Graphs in X, are multiple-object scenes: the
original templates ¢ become the nodes of the scene graphs o,.,.. We illustrate via
the following example.

2.1.2. Example: membranes and mitochondria

The geometric shapes are generated via deformations of the one-dimensional
template manifolds corresponding to lines and circles. The generators are induced
by the tangent vectors of the template, directed arcs in R? linearly connected. Each
generator carries two bonds with values the end points of the directed arc segments.
The bond relation p = TRUE implies connectivity. The membranes are unclosed, and
correspond to the graph type o linear, with the mitochondrial sections closed implying
that the first and last generator are connected in the graph o cyclic.

The cell membranes are unclosed curves in the plane transformations of linear
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templates, with mitochondria closed curves which are transformations of circular

templates:
. _ (" ul) ov\(1 X,
umtm= (00 ) o) er () b
' _ meou(l)y  o(l) )\ [ —sin(wl) Xo
fondm=25[[[ "0, 0oy )4 () (2

Closure on the mitochondria corresponds to fiyic(0) =feyeiic(1)-
The continuum of similarities

s()= ( wl) vl ) € A2) =uniform scale X rotation, (u, VYER*\ {0},
—ov() u()

are mapped to n(linear) or n(cyclic) unique operators {s(k)}i_j with s(/)=s(k),
IE (k/n, (k + 1)/n), taking their action on the generators which are piecewise straight
tangent segments to the line and circle. Note that the closure constraint forces the
highest frequency discrete Fourier transform of the (u, v)-process to be 0 (see equation
(24) later).

The parameter vector x(o) associated with configuration c(o) is the set of n(o)
parameters encoding the global translation and locally applied scale and rotation.
The closure constraint on the cyclic configurations reduces the dimension by 2 implying
x(cyclic) € Z(cyclic) = R¥ i -2+2 whereas x(linear) € Z(linear) = R?"(inan+2_ Ag the
scenes are unions of multiple objects, the number (call it m) of objects not known
beforehand, the second graph family X, consists of multiple objects, m=0, 1,

. The scene graphs o=mult(m,, linear) and ¢=mult(m,, cyclic) are the
disconnected union of m, and m, linear and cyclic graphs, with the generators of
scene graphs the objects themselves. The set of scene graphs becomes

Y cene = U mult(m,, linear) x U mult(m,, cyclic). (13)
m; >0 my>0
The parameter vector x{mult(m)}€ £{mult(m)} associated with c{mult(m)}, an m-

object scene, is just the concatenation of parameters associated with each of the m
objects and is of dimension

n{mult(m)}= 3. nfo(i)},  o(i)E(linear, cyclic).
i=1

The full configuration space becomes the union of configuration spaces %=
UUE Lscene ‘%(0-) *

2.2. Search: Diffusion and Jumps
To carry out inference in these spaces it has become apparent that a powerful
method, both for analytical study and computational implementation, is SDEs of
the form

ds(f) = grad log p(s) dt + V2 dW(), (14)
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where p is the density on configuration space. Here s=(s(1), s2), . . ., s(n))€S™
and W is the Wiener process with independent and identically distributed components.
The solution of the equation is restricted to the set

M ={s|a(s(1) g°%(1), s(2) £°2), . . ., s(n) g°%n)) EL(A)}. s

The equation simulates a diffusion process on some manifold _# and s(f) moves
along some continuous trajectory. The resulting configuration process c(f) E.# can
be thought intuitively as the result of infinitesimal random transformations carried
out in the group &”.

The existence of this multiple-graph space £ motivates the introduction of a second
transformation type on the templates, extending from such continuous transformations
to discontinuous transformations. These transformations act by changing the graph
type associated with the configuration to a new graph type and a new resulting
configuration. These we term simple graph moves. The simple moves are drawn
probabilistically from a family % of changes in the connector ¢ and are applied
discontinuously, with the simple moves defining transitions through X, &: ¥ > X.
The family of graph transitions is chosen sufficiently large to act transitively in the
sense that given any pair o', ¢” €X it should be possible to find a finite chain of
transitions that leads from ¢’ to ¢”. The set % controls the jump dynamics in the
jump-diffusion processes described later.

2.3. Inference in Pattern Theory
The tasks of inference for regular structures take many forms with four mentioned
here.

(a) The least challenging task, but one that has received most attention, is image
restoration. Having observed a deformed image ¥ =dI, find a pure image I'*
approximating the true image I as well as possible in some specified sense. To
the statistician this appears as a problem in (point) estimation; to the
communication engineer a problem of filtering. From both points of view it
is a familiar task with a formidable arsenal of methods existing of potential
applicability.

If a probability measure P over the image algebra _# is available then it is interpreted
as prior probabilities in the Bayesian setting. This will be the case in the main body
of the paper, but for many pattern theoretic inferences we must do without any prior,
perhaps without any randomness whatsoever.

(b) Another task that has also generated many publications is pattern recognition.
Given an observed image 77, decide to what pattern class in & it belongs.
This can be viewed as testing statistical hypotheses or as a multiple-decision
problem. Since the formal notion of pattern is based on congruence modulo
the similarity group &, the pattern recognition task leads to invariant decision
procedures.

It is obvious that these first two tasks are closely related. When restricted to pictorial
(geometric) image ensembles they have often been studied starting from what the
neurophysiologists and psychologists know about visual systems in biology,
emphasizing the distinction between low level (local) and high level (global) vision;
this opposition will also appear later.
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(c) A more ambitious task is image understanding. Take as an example a cytologist
studying a micrograph, trying to understand what is seen in terms of the awesome
body of knowledge that is today available about various organelles and other
cell structures. Identify components, relate them to each other, make statements
about the fine structure as well as the overall appearance of the cell. Or imagine
a pathologist examining a slide, looking for deviations from the normal,
requiring knowledge not only about the normal and variations around it but
also information concerning the deviations that may occur and how likely they
are.

To paraphrase this in more theoretical terms image understanding tasks come in
two forms:

(i) internal understanding in which an observed image is explained within the
domain of normal regular structures and

(ii) external understanding where the aim is to discover abnormalities that are not
consistent with the model of normal regular structures.

Human observers do this well, although the task is time consuming and sometimes
boring. For example PAP smears in gynaecology are examined by technicians, calling
on the trained pathologist when required. Many attempts have been made to automate
the inspection, so far with limited success.

To achieve even partial automation of image understanding of such complex images
is a formidable task, that in our view requires the formalization of the subject-matter
knowledge on which the biomedical expert relies. This is vaguely reminiscent of
knowledge engineering in artificial intelligence (AI), but what we are attempting to
do differs from Al in an important aspect. Al tries to imitate general human
intelligence—we want to achieve algorithmic understanding only in a very special
universe. To achieve this limited goal we believe that knowledge representation by
regular structures offers a methodology that is sufficiently powerful and practically
attainable with current computer technology.

(d) A fourth task, essentially different from the above, is to create the regular
structures from the knowledge that is available, from data and experiments.
How shall generators and bond relations be discovered, and how should the
acceptor functions from observed images be estimated? What connection types
and similarity groups should be chosen? Some of these questions can be
answered to a partial extent. For example, if the regular structure has been
chosen except for parameters in the acceptor function then we are dealing with
an empirical Bayes problem, with standard methods available for its solution.
However, the creation of the generator space has in most cases been done
intuitively and only in isolated instances has it been possible to develop
constructive methods that can be made into algorithms.

2.4. Related Work
The ideas of pattern theory were proposed by Grenander in 1976 at a scientific
meeting in Loutraki, Greece. This was only a research programme and the analytical
developments during the next decade had few applications. From 1980 onwards
applications began to appear, at first only to image processing of local type.
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This involved priors of the Ising type, but physicists had long employed such models
to study ferromagnetism and other areas exhibiting critical behaviour. For this they
had developed simulation techniques, as in Fosdick (1963), using variations of the
Metropolis algorithm (Metropolis et al., 1953).

In 1974 appeared the pioneering paper of Besag opening the way for further
advances. Besag (1974) approached the problems from a different perspective—that
of spatial statistics—but has much in common with the topics discussed here. They
are also correlated with the ideas in the fundamental monograph Bartlett (1975) as
well as the thought-provoking paper of Whittle (1954). The earliest attempt to introduce
probabilistic couplings via graphs that we have been able to locate is Wright (1921)
in his path diagrams.

Early attempts to use the MRFs on simple regular structure for describing textures,
e.g. Horn (1977), were not encouraging. The computing resources were still quite
limited and, more importantly, the generator spaces used were too naive. Fresh insight
occurred in Geman and Geman (1984), where more structured generators were
introduced for describing edges. This study stimulated many others carried out in
a similar spirit. In Grenander (1983) other regular structures were proposed and
investigated but only using simulated data.

At about the same time it was suggested that global properties of images be explored
by pattern theoretic knowledge representations, namely the probabilistically deformed
templates. They had been suggested already in Freiberger and Grenander (1969) and
Grenander (1970, 1985) but at that time available computer power was not sufficient
for practical implementation. It took until the mid-1980s before this could be achieved:
Knoerr (1988), Grenander et al. (1990) with the latter also aiming at automatic detection
of abnormalities in the pattern, as well as Ripley (1988).

This is similar in spirit to the physically based modelling work of Terzopoulos and
Waters (1990) on computerized surface models, the boundary finding work of Staib
and Duncan (1992) and the elegant deformable CT work of Bajcsy and Kovacic (1989).

A somewhat different approach is Kendall’s (1977, 1984) shape theory, which is
also related to Bookstein (1978). Many ideas in morphometrics, and shape in general,
can be traced back to the legendary work of Thompson (1917), especially the famous
last chapter.

Developments in computer architecture have extended the practical scope of these
statistical techniques. An obvious instance of this is the advent of accessible massively
parallel SIMD machines, and more recently the promising computational methods
based on analogue devices, transistor based as in Mead (1989) or employing charge-
coupled devices as in Wyatt (1992).

The interaction between analytical advances and hardware innovations may lead
to hybrid architectures, perhaps directly coupled to the sensors by fast networks. An
important statistical spin-off from the work on MRFs was the computational methods
for obtaining maximum a posteriori estimates. This was done by simulated annealing
and analytical conditions were derived for convergence of the algorithm: Geman and
Geman (1984), Gidas (1993) and Hajek (1988). Perhaps more relevant to the analogue
and SIMD computational methods has been the work in SDE search. Early on
Grenander (1983) proposed Langevin’s equations for simulating distributions, and
more recently Gidas (1993), Geman and Hwang (1987) and Amit et a/l. (1991). In
Miller et al. (1991) and Roysam and Miller (1992) these ideas have been applied to
Gibbs distributions on discrete spaces for hypothesis testing and symbolic inference,
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with computational methods discussed for SIMD machine and analogue im-
plementation. For substantive reviews of random sampling for Bayesian inferences
see Besag and Green (1993).

Concerning the combination of jump and diffusion dynamics, to our knowledge
Feller (1936) was the first to describe the Kolmogoroff backward and forward dynamics
of Markov processes having jump and diffusion parts within a single subspace. We
have drawn heavily on results from Ethier and Kurtz (1986), p. 266, in which Markov
processes with diffusions are constructed over countable subspaces.

3. JUMP-DIFFUSION RANDOM SAMPLING OF THE POSTERIOR

Having defined the configuration space % =U,cx %(0) as the union of spaces
over which the inference is to be performed, the crucial part of the problem still
remaining is the derivation of the inference algorithm for choosing the graphs and
their associated transformations, i.e. how to carry out hypothesis formation. We are
not asking for ad hoc answers to this question but shall try to deduce the algorithm
from the regular structure expressing our prior knowledge on the configuration space.

The method of inference is to construct a single posterior distribution over ¥ and
then to sample from it via a Markov process X(¢) which satisfies jump-diffusion
dynamics. For this, model k and the real Euclidean space R"® are identified with
a particular graph ¢€ X, of dimension n(k). The full hypothesis space becomes
a countable union of Euclidean spaces & =Ug_, R"®. The posterior distribution p
is a Gibbs distribution over the collection of spaces, i.e., for all measurable o/

o

5[, o expl= He0)dx

k=0
= 16
() 7 (16)
with Gibbs density exp{— H,(x)}/Z, x€ R"®, and dx Lebesgue measure appropriate
for the space. The Markov process X(f) with sample paths which are the inferences
is said to satisfy jump-diffusion dynamics through % in the sense that

(a) on random exponential times the process jumps from one of the countably
infinite set of spaces R"®, k=0, 1, . . ., to another and
(b) between jumps it satisfies SDEs that are of dimension appropriate for that space.

The proper choice of jump and diffusion parameters make y on % invariant. From
this it follows that ergodic averages generated from the process converge to their
expectations. These results are now stated as two theorems.

Theorem 1. If the jump-diffusion process X(¢) with state space & =U;>_, R"® has
the properties that

(a) the diffusion X(¢) within any subspace R"® satisfies the stochastic differential
equation

dX() = — % V H{ X0} dt +d W, (0) 17

with X(?), V() and W,4€ER" the state, gradient and standard vector
Brownian motion respectively, with the gradient V() satisfying Lipschitz
continuity, and
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(b) the jump intensities and transition probability g(x, dy), g(x) and Q(x, dy) defined
in the standard way (Gihman and Skorohod, 1965) with g(x) = { ., g(x, dy)
and Q(x, dy) = g(x, dy)/q(x) bounded continuous functions with the jumps local
satisfying

a0 = | _a0) 00, o) @), ()

then X(¢) is a Markov process on % with invariant measure p.

(The jumps are local in the sense defined in Amit ef al. (1993), i.e. there is some
constant B such that the distance between where the jump process jumps from to
where it jumps to is less than B. This ensures that the domain of the semigroup is
C(%) the closure of C(%).)

Theorem 2. Let X(f) be the Markov process satisfying theorem 1. Assume that the
Euclidean spaces are connected under the jumps, i.e. v k, k', 3 j(k, k') finite sequence
of simple graph moves carrying the process from R"® to R"*",

Then p is the unique invariant measure of the jump-diffusion process X(¢), and
for all x€ ¥ the associated chain X(iA), A>0, converges in total variation norm to
p the invariant measure.

Proof. The proof of theorem 1 relies on the fact that the generator, or backward
Kolmogoroff operator 4 for the jump-diffusion process, characterizes the stationary
measure, i.e. p is stationary for X(f) if and only if {A f(x) u(dx)=0 for all fin a
large family, the core of A (Ethier and Kurtz (1986), p. 239, and the Echeverria
theorem, Ethier and Kurtz (1986), p.248). Now the generator is the superposition
of the diffusion and jump generators 4 =A49+ A4’ (diffusion plus jump), both
standard. This follows from Ethier and Kurtz (1986), p. 266. The core C(¥) is the
set of functions

f)= ki Lo fi(),  m>0,
=0

and f;(x) € C2(R"®) twice continuously differentiable compactly supported functions
on R"®. Applying A to such f and integrating with respect to u gives

_lz _ "WOH p(k)afid(k)) | "R fifx(k)|exp [ — Hifx(k))]
X ZA SO pldn) = 2k§0§ R i=Zl ax; 0x; " le ox? ] Z dx(ky
+ Sgl‘«(dx) q(x) Sz{f(y) S0, dy) |, 19)

with the first part the standard SDE operator and the second the jump operator. To
show that {4 f(x) u(dx)=0, integrate by parts once the second derivative term in
the first part of equation (19) and use the second condition (b) in the theorem statement.

Proving theorem 2 that the process X(iA) converges to u is a result of irreducibility
which has two parts. First the SDE within each subspace is irreducible over compact
sets (by boundedness of the drift coefficients over compact sets (Grenander and Miller,
1991)). Connectedness of the different spaces via the graph moves gives irreducibility
over the entire space (Grenander and Miller, 1991). To see that the Markov chain
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has a unique invariant measure follows from the fact that the process is irreducible
with bounded invariant measure p (theorem 1), implying that the chain is Harris
recurrent with measure p and that p is the only invariant probability measure (Revuz,
1975). Recurrence and the existence of the invariant measure p establishes the variation
norm convergence for the associated chains (Athreya and Ney, 1978). ]

The particular choice of jump dynamics which will satisfy condition (b) of theorem
1 still has to be specified. Reversibility of the graph moves will be required. For this
define 77'(k) C X to be the set of subspaces which are reachable in one graph move
from k, and (k) C T the set from which k can be reached in one move. Also
define £{.7'(k)} and {7 !(k)} to be the unions of subspaces in & associated with
k) and 7 !(k) respectively. We have used two strategies which make the
distribution x invariant.

The first has acceptance-rejection dynamics analogous to Gibbs sampling (Geman
and Geman, 1984; Gelfand and Smith, 1990) and is constructed from a set of times
w;, W,, . . . independent and exponentially distributed, with jump times #,=0, ¢; and
t, defined according to

t
ti=inf{t: S a(X.) ds> w,}.
L1

The process X(¢) satisfies the SDE between jump times, with the process moving from
one subspace to another on the #;s with transition probability measure Q(x, dy)=
q(x, dy)/q(x).

The second simulation method has jump dynamics of the acceptance-rejection
Metropolis type (Metropolis ef al., 1953; Hastings, 1970). On each candidate jump
time t,-=E§=1w, a new candidate state is drawn from the prior. The state is
deterministically accepted if the energy in the likelihood term decreases and is
probabilistically accepted with probability exponential to the negative increase in
energy.

The choices for the jump intensities corresponding to these procedures are given
as follows.

Corollary 1. Assume that the jump-diffusion process satisfies part (a) of theorem 1,
and reversibility on the graph moves 7'(k)=2"'(k).
If

q@x(k), dy(k"))=p{dy(k ")} for y(k ) ELLT(k)}, (20)
and is O otherwise, then p is a stationary measure of the process.

Corollary 2. Assume that the jump-diffusion process satisfies part (a) of theorem 1,
a reversibility condition on the graph moves 7'(k)=_2"!(k) and the energy of the
posterior distribution can be written as H(x) = L(x) + P(x) ( P is the potential associated
with the prior). Define [ f]. to denote the positive part of the function f.

If

q(x(k), dy(k ")) =exp(— [L{y(k )} - L{x(k)}].)exp[ —Ply(k')}] dy(k’)
for y(k"eZ{ 7 (k)} 21

and is O otherwise, then p is a stationary measure of the process.



1994] KNOWLEDGE IN COMPLEX SYSTEMS 563

Proof. The required continuity and boundedness properties follow from the
properties of the posterior. Part (b) of theorem 1 is proved for either corollaries by
simply integrating the jump intensities. o

4. APPLICATION TO SUBCELLULAR ORGANELLES

For specificity of description fix the number of arcs in each graph at n(cyclic)=n
and assume that all graphs are cyclic. Then the mth model is identified with m-object
scenes of dimension na{mult(m, cyclic)}=2nm. The parameter vectors are x(m)
€R?™ associated with an m-object scene mult(c(1), . . ., c(m)), and the full
configuration space %' =Ug_ ;C,Rz”'”. The posterior u(dx) having Gibbs density
exp [ — Hiy{x(k)}1/Z, x(k)€R"®, is constructed as follows.

4.1. Bayes Posterior for Electron Micrograph Shapes
4.1.1. Prior distribution
The prior distributions on the single objects lay at the heart of Bayesian inference.
To incorporate notions of curvature, the (p, 6)-parameters parameterizing the scale—
rotation groups are assumed stationary. For the cyclic curves they are also circulant,
implying the 2X 1 vectors z(k) = (u(k) = p(k) cos 0(k), v(k)=p(k)sinb(k))T have a
block circulant, Toeplitz covariance

K©O) K(1) K@) ... K(n-1)
K(n-1) K©0) K1) ... K(n-2)

K= ; ; Do ; : 22)
K1) KQ) ... ... KO

The K(j) = E{z(k)z(k +j)T} are 2 x 2 blocks. The prior is chosen to be Gaussian on
the zs. We block diagonalize K with the block DFT matrix. The rotated variables
(Z(k) = ((k), D(k))T} N where w(k) = X! u(i) W(i, k), o(k)=X o) W, k) are
used, with

mnm=%fm(ﬁ%?) (G=(-1)). @3)

Then, with Z(0) and Z(n/2) real Gaussian 2Xx 1 vectors and {Z(k)}227! complex
Gaussian 2 X 1 vectors of Goodman (1963) class all independent with covariance

ARY="S, KG) WG, k)

i=0

and Hermitian symmetry Z(n—k)=Zz*(k), the z(k) are real Gaussian with block
covariance K. If the (u, v)s are in turn uncorrelated, so that the covariance matrices
K(k) are diagonal, then A(k) is diagonal. This is not the case.

The closure constraint on the simple curves f(0)=/(1) of equation (12) is
straightforwardly incorporated into this representation since
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e R R

implies that the highest frequency discrete Fourier transform coefficient of u — jv is 0:

"i (k) - Jv(k)}expi 2”"(” )I 24)

giving #(n—1)=j o(n—1). Hermitian symmetry implies i#*(1) =j v*(1) giving

2 j02
A)= (—Jo 02>

where o2 = E{ii(1) ir*(1)}. The effect of closure is to reduce the dimension of the 2n
(u, v)-variables to 2n—2.

Remark 1. Strictly the boundaries should satisfy a global constraint: they should
be non-self-intersecting. In HANDS (Grenander ef al., 1990) the solution to this was
provided and shown that in practice this constraint can be neglected since the
probability of self-intersection is negligible for parameter values of interest.

4.1.2. Likelihood and pseudolikelihood

The underlying ideal image 7=(c(1), c(2), . . .), or truth, consists of the lists of
parameters encoding the global translations and local scales and rotations. The
measurement process senses the data I?. The conditional density p(I|I?)c
p(D) LUI?|I) relates the ideal I to the data I?, with L(Z|I) and p(I) the sensor
likelihood model and the prior on the ideal respectively.

The driving force for the shape models comes from the connection between shapes
and the pixel data as follows. The data IZ are assumed to be a superposition of
random shapes with random interiors % in the finite domain <“C R2. Each interior
is a realization from a Gibbs random field density associated with mitochondria (mito),
membrane (mem) and cytoplasm (cyt):

po(@)=9(£{:—£"(ﬂ, YCY, (25)

€ {mito, mem, cyt}. Choosing object c(j) to be model 6(j) implies that its
interior %/; has Gibbs potential Ey;, &\U; %, having potential E,,,. Assuming
that objects are independent then

)= HeXp{—Eo(J)(@c(,))} eXp{—Ecyt(V\Uj @c(j)}.

LI?|I=(c(), c(2), . . .

(26)
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In general the usual difficulty is met in computing the partition functions associated
with the random sets. We take several approaches. The first two involve the essential
specification of the random field via its conditional probabilities, thereby avoiding
the partition function. For this we have

(a) assumed independent pixel model probabilities and alternatively

(b) used Besag’s pseudolikelihood with the conditional probabilities and the
neighbourhood sizes estimated from the micrograph data using Smith and
Miller’s (1989, 1990) results on minimum description length estimation for
random fields.

In both cases, the log-probabilities are continuously interpolated to a potential E4(y)
to cover the image field & with a zero boundary added to all micrographs. Each of
the Gibbs terms in the product of equation (26) is then of the form
exp{— | 9., Eo»(») dy}. The two approaches give similar results, and we show only
those computed with pseudolikelihood in this paper.

The resulting posterior density on the parameters x(m) associated with a scene
mult(c(1), ¢(2), . . ., c(m)) in the m-object space is of the Gibbs form with potential

H,{x(m)= 3, H o Ep) d)’+Ea(J){C(J)}} .

j=1 )y

L EyO)dy. @)
()

Here E,, o€{linear, cyclic} denotes the potential of the prior on single objects. To
ensure that the posterior integrates over the multiple object spaces, a Poisson prior
on object number with mean estimated from the micrographs is added.

Remark 2. A third fully Bayesian method is being investigated which incorporates
neighbourhood dependence. Assume that there is a single texture and that the intensities
are x(/) = ¢{y(i)} where ¢ is a fixed monotonically increasing function and y(i) forms
a stochastic process with means m(i), y(i) =z(i) + m(i). The random y-field should
satisfy a partial stochastic difference equation (Lz)(i) = e(i) where e(i) is a Gaussian
white noise process N(0, 1). The difference operator L is to be non-singular with
boundary chosen so that the problem is well posed in the usual sense. The joint density
of the z-process is Gaussian with quadratic form |[Lz]|*.

Since we have two textures we assume (g, Lgqy) and (M), Lgg)) over the two
subsets of pixels which the hypothesis divides the picture. The likelihood is proportional to

exp{— %(Zl [ Loy () — Moy (D317 + 20, [ Loy (i) — Mg ()} 2)1,

with the sums extended over respective subsets of the picture.

Remark 3. In practice the posterior is modified to impose the constraint that in
electron micrographs two objects cannot be superimposed, requiring an intersection

penalty CVE:‘,j S‘.’%y)ﬂ 27 dy

4.2. Jumps and Diffusions
4.2.1. Jumps and graph moves
The family of connector graph changes % on L =UZ%_ mult(m, cyclic) will
determine which of the jump measures are non-zero, as well as the connectedness



566 GRENANDER AND MILLER [No. 4,

and reversibility. We define the graph changes 7€ % to consist of the addition of
one object at a time or deletion of one of the existing objects:

T,: mult(m) > mult(m + 1),

T,: mult(n) = mult(m — 1).

Jumps in parameter space take the form

X(m)ER?™ ™5 y(m + 1)€ R+,

x(m) € R y(m — 1) € R#m- D,

A special notation is used to denote the location in the list of the added or deleted
parameters. Define x(m) ®; y(1) to be the configuration generated from the birth of
a new object y(1)€R?" into the jth location in the list and x?(m)€ R?*"~D the jth
object removed from the list. j=1, . . ., m+1 birth changes in the graph mult(m)
are allowed and m possible death changes implying that the transition measures from
space R*" have mass on spaces R2"™*+D and R>"-D_and are singular with respect
to Lebesgue measure in each subspace:

qtx(m), dy(m+1)}= mil Go{x(m), y(m + 1), {dyY (m + 1)} dy(1)

=1

’ " (28)

qix(m), dy(m—1)}= 3} qq4{x(m), y(m —1)}6,00m{dy(m—1)}.
j=1

This choice % of graph changes implies that the jump intensity is

m+1

glx(m)}= %, §R2n golx(m), x(m) ®; YOIAY(D + 3 quix(m), X2 (m)).  (29)

j=1 j=1

4.2.2. Diffusions
There is an SDE for each of the spaces R®, R", R*", . ..

dX() = - % Y H,{X(0)}dt + AW (0), (30)

m=0, 1, ..., with X(¢), V H,{X()} and W,,,,€R*™, consisting of m sets of 2nx 1
vectors. The drifts are variations of the Gibbs posterior energy with respect to the
scale, rotation and translation parameters of each of the m objects. These are obtained
by viewing the curve family of equation (12) as single one-parameter curves f(y),
vE {u(k), v(k), (Xo, ¥0)};_,, with interior %}, C R2. The drifts are variations of the
Gibbs potential

Em-|,

T

En)dr+ | Eu()d,
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(Ein associated with interior) which reduces to a curvilinear integral along the
boundary.

Theorem 3. For curves given by equation (12) with continuous potentials E;,, and
E.,, then

OB _ [ 1; ) Bl @)~ Bl DY) G1)
Y 0

yE{uk), v(k), (X, ¥0)}ih9), with the Jacobian determinants

JU; u(m)}= - 2w {sin(27rm) % + cos(2wm) _«3{;#} 1,,,(),
(32)

J{; v(m)}=2~ { —cos(2wm) % +sin(2wm) —ag‘#l 1.0,

and J(; x)=2wdf,([)/dl, J(; yo)=—2wdf.(1)/dl, df.()/d]l= —sinQQml) u(l)—
cos(2wl) v(l), 8 f,(1)/dl=cos(2wl) u(/) — sin2xl) v(l).

Proof. The proof is geometric in nature. For small variations of the energy
E(y+¢€)— E(y) the Gibbs potentials must be computed over the areas shown in
Fig. 2(a). The integral over the area is asymptotically ¢, 610 obtained as the limit
of the sum of parallelograms whose sides are the vectors f(né, v) —f (nd, v+ €) and
Si(n+1)6, y}—f(nd, v). The area is (with sign) given by the sign theorem in
trigonometry by the Jacobian determinant. In the limit the gradient becomes the
contour integral (see Grenander and Miller (1991)). o

The curvilinear integrals are computed assuming that the number of scale-rotation
similarities are sufficiently dense that the difference in potential along the generators
(piecewise straight arcs) is constant, reducing the integral to a sum. See Grenander
and Miller (1991), theorem 5.1 and its corollary.

To {close the curves} the SDE is performed in the rotated space of the nxn
linear transformation W of equation (23) according to = Wu and v=Wyv. Closure
is enforced by setting the coefficients #(n—1)=jo(n—1) and @*(1)=j v*(1)
according to equation (24), and diffusing through the 2n —2 dimensional space of
the other (&, D)-coefficients. Their drifts are obtained by rotating the gradients with
respect to the scale-rotations from theorem 3:

f(né,7)

“f@“” )
R 4 7+e)
(@ (b)

Fig. 2. (a) Curves f(y) and f(y + ¢) with the shaded areas depicting the areas over which the integrals
must be computed for the difference in potentials for the two curves; (b) parallelogram used to
approximate the area with sides f(n8, v) —f(ns, v+¢) and f{(n+ 1)8, v}—f(ns, v)
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VaH@u, v)=(1+j)W+ V,H(u, v),

(33)
VyH(u, v)=(1+j)W+ V,H(u, v).
The 2n — 2 components in each of the m-objects of V H{X(#)}in the SDE of equation
(30) are given by the first n/2+1 real and imaginary parts of VzH and VyH,
with the last two entries d H(x,)/dx, and d H(y,)/dy,.

Theorem 4. If the SDE is as defined in equations (30), (31) and (33) and jump
measures equations (28) and (29) with the values for g, and g4 chosen analogous to
corollary 1

Quix(m), x(m) ® ; y(1)}=exp[ — H,, . {x(m) ® ; y(1)}],

(34
qafx(m), xX(m)}=exp[ — H,_,{xXN(m)}],

or analogous to corollary 2

q°x(m), x(m) & ; y(1)}= 3 exp(— [L{x(m) @ ; y(1)} — Lix(m)}] ,) exp[ — Piy(1)}],

.
(m+1)
q*{x(m), xP(m)}= ﬁexp( — [L{xP(m)}— L{x(m)}] ;)

with L the posterior with the Gaussian shape prior removed, then the jump-diffusion
satisfies theorems 1 and 2.

Proof. Clearly the Jacobian determinants (31) have bounded derivatives with respect
to the scale, rotations and translation parameters. That coupled with the assumption
that the texture potentials are bounded and differentiable implies that the drift terms
are Lipschitz (see Apostol (1974)). The jump parameters g(x) and g(x, ) are bounded
and continuous. We need only to show the second condition (b) of theorem 1 to prove
that u{dx(m)} is stationary. Our choice for g, and g, is the analogue of corollary 1
to theorem 1, but the fact that the jump measures are not absolutely continuous with
respect to the underlying Lebesgue measures forces a separate proof of condition
(b) of theorem 1. To show condition (b) of theorem 1, substitute the defined birth
and death intensities into the left- and right-hand sides of equation (18). The jump
moves do satisfy the reversibility condition .7~ !(m)=_7"(m), implying that p is a
stationary measure. It is unique since the connectedness conditions of X =
Uy _,mult(m) are satisfied, and from theorem 2 it is the unique density and the
process converges to it. 0

Remark 4. The algorithm has also been implemented for linear membranes by using
the unclosed curves. For this, gradients with respect to the similarities are obtained
by modelling the unclosed membranes as structures of constant known width 26 pixels,
piecewise linear and of variable length much greater than 8. The similarities are
constrained to have uniform scale, with length the number of generators n(linear).
Perturbing the boundary wiggles the linear structure of constant width and variable
length n(linear), with position snaking through R? and parameterized via its
midcurve f(/), /€ [0, n(linear)]. To compute the curvilinear integral around the
boundary of the membrane it is divided into two major components f;. (/) and f;- (/)
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determined by the midcurve f(/) and its normal n(/): fi+()=fU)+én(l),
fs-(D=f({)—6n(l). Then a simple formula arises for computing the variation with
respect to the midcurve parameters under the assumption that the texture potentials
are constant along the linear generators. See corollary 2 to theorem 5.1 in Grenander
and Miller (1991).

The family of graph moves % has also been enlarged to include addition and deletion
of arc generators, which is extremely important for the tracking examples shown.
Changes are also allowed which open and close segments thereby changing cyclic to
linear graphs and linear to cyclic graphs. Finally splitting and merging of cyclic objects
are allowed.

5. RESULTS

5.1. Computational Results on Single-instruction, Multiple-data Architectures

The automated inference has been implemented on the SIMD distributed array
processor (DAP) of active memory technology and the MASPAR of MasPar
Corporation, the distinctive feature being that on a single cycle all processors perform
the identical instruction operating on their own local data store. These machines are
in a line of locally connected massively parallel SIMD processors whose earliest
conception was given by Slotnick in 1962 (Gregory and McReynolds, 1963) offering
processor numbers of between 4000 and 16000. With the advent of these inexpensive
massively parallel processors it is possible to implement imaging algorithms with
computation times that are several orders of magnitude lower than that obtained with
conventional processors.

The implementation closely parallels the structure of the machine and divides into
two basic components. The first is the generation of a virtual object array in which
the local gradient computations associated with the curvilinear integrals for diffusing
each object are generated, independently of other objects in the scene. The second
are the global jump operations associated with aggregation of the pseudolikelihood
texture statistics over the object interiors.

The key to the computations is the distributed representation of the conditional
probabilities allowing for rapid fetching of the statistics. This is done by choosing
the image array to have the same topological structure as the processors themselves,
requiring the mapping of the 128 x 128 pixel image to 4 pixels per processor. Each
processor is viewed as smart memory storing the series of nonparametric models
determined by the set of MRF conditional probabilities. These conditional probabilities
can be computed from local neighbouring processor values.

There are two very different computations required for the jump-diffusion
algorithm, as described below.

5.1.1. Local diffusion operation

Envision a virtual object array containing a variable number of objects, each object
a column of processors dedicated to the computation of the diffusion of the group
parameters encoding that object in the scene. For the 64 X 64 processor the number
of objects is limited to 64, with the longest boundary having 64 scale-rotation elements
encoding it. The gradient computation for each object has both a communication
and a computation component.
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The {communication} is associated with each object fetching from the array the
difference in likelihood statistics along the boundary. As part of this communication,
the intersections between boundaries are computed for determination of the penalty
associated with boundary overlap. This penalty prevents local crossing of adjacent
boundaries. As the boundaries are linear and represented by the sample points at
the ends of each arc, the necessary operations required are to grow fences between
the sample vertex points.

The {computation} is associated with the series of scale-rotation parameters encoding
each object with the Jacobian determinants which must be computed. This requires
four multiply cycles per boundary element. All 64 arc elements and 64 boundaries
are completed in four of these multiply cycles. The Jacobian determinants are
computed in a 4 X 2 multiply cycle for all boundaries and group elements, four for
the scales-rotations and positions, and two multiply cycles per determinant. The
curvilinear integrals are completed for each boundary by doing the 64 multiply integrals
for the 64 parameter sets per boundary in a single multiply cycle.

5.1.2. Global computations for jump operations

The family of graph changes consists of births of new objects in one of a finite
number of places on the grid, deleting any of the existing objects, merging any of
the objects and splitting the objects. The jump moves require aggregation of texture
models over the entire array. These are area integrals. The masking and cellular
automata nature of the distributed SIMD class of architectures is ideal.

To compute a jump move all boundary co-ordinates associated with an object are
placed onto the array. The boundary is fenced, giving the contiguous boundaries from
which an image pixel mask is generated corresponding to all interior points of any
boundary. This is computed via local cellular-automata-type spreading rules, with
the spread broken across the fences. This allows for the texture feature accumulation.

The masking and fencing are done for each simple move. For the birth moves,
since a single object is added to the identical configuration, the old mask is saved
with sequential addition of one object at a time, accumulating the new additional
pseudolikelihood along with the penalty term associated with overlaps between the
hypothesized object and the existing mask. The death moves simply remove one of
the existing objects. Again, the masking power of the SIMD machine is ideal.

5.2. Experimental Results

Fig. 3 shows varying points during the random sampling algorithm for one of the
data sets studied, proceeding in time sequence from left to right. Fig. 4 illustrates
the jump moves showing a birth (top row), a death (middle row) and a merger (bottom
row). The left-hand panel in each row shows the state of the Markov process at the
instant before the jump, with the right-hand panel showing the new configuration
after the jump has occurred. Fig. 5 shows the state of the random sampling algorithm
after 1000 iterations for all three data sets.

Analysis of the results demonstrates numerous strengths, as well as shortcomings,
of the approach. First, the shape models and priors are sufficiently flexible to
accommodate the variation in organelle shapes. Secondly the merge, add and delete
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Fig. 3. Various states of the Markov process with time progressing from left to right

Fig. 4. Birth of mitochondria (top row), death of mitochondria (middle row) and a merging of two
mitochondria (bottom row)
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Fig. 5. State of the random sampling algorithm after 1000 iterations of the Markov process for the
three data sets in Fig. 1

(a) (b)

Fig. 6. Data containing a linear membrane, with the result of the segmentation using the Markov process
and the linear membrane representation

moves are adequate for discovering the correct model order for the scenes. A clear
inadequacy of the method is the application of only two texture types, mitochondria
and background cytoplasm: other organelles are clearly evident. The centre organelle
in the left-hand panel of Fig. 5 is rough endoplasmic reticulum. Because of its high
concentration of proteins it is mistaken for mitochondria. The algorithm does not
at present distinguish between the two. Fig. 6 shows the result of using the linear
graph model for segmenting membrane organelles. Fig. 6(a) shows the micrograph
data, with Fig. 6(b) showing the result of running the Markov process constraining
the model to contain a single linear structure of arbitrary growing length. In running
the membrane program, the algorithm was seeded with a point in the scene from
which the membrane is grown.

A second problem with the algorithm is its tendency to join abutting objects. Notice
the clearly delineable mitochondria which have been merged in all the segmented data
in Fig. 5. On careful consideration it appears that humans distinguish close objects
via the long narrow gulfs which form between the objects. A fourth graph change,
a cut-move is being implemented by introducing linear membrane structures which
act as scissors for cutting adjoining objects.
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6. DISCUSSION

The pattern theoretic methods are being applied in several applications: HANDS
(Grenander et al., 1990), LEAVES (Knoerr, 1988), XRAYS (Amit et al., 1991), NMR
(Miller and Greene, 1989; Chen ef al., 1993), AMOEBA (Joshi ef al., 1992; Joshi
and Miller, 1993), BRAINS (Grenander et al., 1992; Christensen et al., 1993a,b; Miller,
Christensen, Amit and Grenander, 1993), TRACKS (Miller and Fuhrmann, 1990;
Srivastava et al., 1991, 1992; Miller, Teichman, Srivastava, O’Sullivan and Snyder,
1993), LANGUAGE (Mark and Miller, 1992), ARTERIES (Elion ef al., 1991) and
COLOR (Grenander and Manbeck, 1993). We shall briefly describe several applications
in HANDS, LEAVES and XRAYS, which are projects that have been virtually
completed, and then show results from problems in BRAINS and TRACKING, both
of which feature the global shape model and random graph (unknown model order)
estimation components of the problem. This emphasizes the context in which the jump-
diffusion random sampler would find application.

In HANDS human hands were captured by a digital camera with the boundary
generators directed line segments in R? with two bond values their end points. The
transformations were from the translation and rotation groups similar to the
mitochondria problem. The connector graph o = n(cyclic) was fixed with 7 sites. The
prior was Gaussian, invariant with respect to cyclic permutations of the # sites, and
specialized to be a cyclic Markov process. The inference was achieved by using
stochastic relaxation. A related example, LEAVES, deals with the shapes of leaves.

In XRAYS the objects were again human hands but pictures were applied by X-
ray photography so that the hands appeared as partially transparent. One set of
generators was obtained by discretizing the unit square and using the lattice points
as generators. On these operated various linear groups, predominantly translation
groups. The translation groups applied to all lattice points were parametrically
constrained to lie in a basis formed by normalized eigenfunctions of the discrete
Laplacian, with the inference implemented through Langevin diffusion.

6.1. BRAINS—Deformable Anatomical Text-books

We now explore the application of global shape models to the representation of
the highly complex systems of neuroanatomies. To illustrate human neuroanatomical
variability Fig. 7 shows two T2-weighted MR axial brain slice images from two patients
(Figs 7(a) and 7(b)) collected in the Department of Radiology at Duke University.
Both images contain the same global structures—white matter, grey matter and
ventricles—but differ in overall size and orientation. The shapes of the internal
structures also differ. Notice that the four ventricles in Fig. 7(a) are smaller than those
of Fig. 7(b) and notice the variations in the folds of grey matter.

In most of the shape representation work already described templates of low
complexity have been used which can be constructed with modest effort: constructing
templates for human anatomies is a task that is orders of magnitude bigger. Until
recently the construction of the template itself seemed to be the major obstacle for
the successful application of these methods. It was therefore a welcome surprise to
learn of the ‘Visible human’ project (US National Library of Medicine Board of
Regents, 1987) undertaken by the National Medical Library (NML) in which digital
anatomical templates are being constructed for two complete human beings. Quoting
from the NML:
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(a) (b)

11774

(d) (e) (f)

Fig. 7. T2-weighted MR axial brain slice images from (a) the text-book and (b) the patient; (c) result
of transforming the text-book co-ordinates into the patient; difference between the text-book and patient
(d) before and (e) after transformation of the co-ordinate systems; (f) transformation applied to the
text-book co-ordinate system, a rectangular grid

‘This Visible Human project would include digital images derived from computerized
tomography, magnetic resonance imagery, and photographic images from cryosectioning
of cadavers’.

These digital libraries form the basis for the templates of our global shape models
as follows.

The anatomical template becomes a multivalued vector function T defined on the
ideal co-ordinate system @ C R*® of the text-book: T: Q—.7, with 7 the range space
assumed to be an M-fold product of spaces 71X 9,%X. . .7, where each
component T,,€ 7, corresponds to a different feature of the tissue. The vector
function contains intensity values of various sensor probes: MR spin density, t1 and
t2 images, and CT attenuation density. It can also contain physiological and histological
information, as well as symbolic information associated with the various labelled areas:
white matter tracts, grey matter nuclei, Broca’s areas, etc. The triple (?, T, ¥) is
termed the anatomical text-book (template).

Normal human variation is accommodated by defining a set of transformations
generated from translation groups applied to all lattice points in Q:

(1, X2, X3) = 06— 1 (R), X — Us(R), X3 — u3(X)). (35)
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The maps constructed from these high dimensional transformations allow for the
local mapping of the underlying ideal co-ordinates of the template.

The anatomical text-book is applied to individual patients by assuming that a patient
is characterized via a study S, an N-valued vector function consisting of N
characterizing data sets {S,}Y_,, or substudies. It is assumed that all the study types
already exist in the ideal text-book: S,: @ »7,, , for some m,€(1, 2, . . ., M}. The
information in the anatomical text-book (2, T, .7) is brought into the co-ordinates
of the patient by finding the transformation registering the studies {S,}Y_, with the
text-book.

Registration between T and S is defined by using a distance measure evaluated on
the transformed text-book and the study. For all the MR data the squared error distance
is used which is consistent with Gaussian models of noise in MR imaging. A prior
is induced on the transformations to obey linear elasticity for deformable solids. The
transformations are generated by using Langevin diffusion on the discrete posterior
induced by the potential

% | 172G -5,0)P i+ B (36)
n=1
with
O 6u,~(53) u; (%) ;%)  ou;(3¥))? .,
E(u)_i§1 jgl SQ)\E ax; }{ ajxj 14_”5 ox; " (;xi }dx @7

Linear elasticity, isotropy, conservation of momentum and small deformation
assumptions yield the energy function (37). See Grenander et al. (1992), Miller,
Christensen, Amit and Grenander (1993) and Christensen et al. (1993a,b) for details.

In our study we take the patient corresponding to Fig. 7(a) to be the text-book.
Shown in Fig. 7(c) is the result of transforming the co-ordinate system of the text-
book to bring the MR modalities between the two patients into register. Notice the
close correspondence between the patient (Fig. 7(b)) and the transformed text-book
(Fig. 7(c)). To illustrate the closeness of the two brain slices, shown in Figs 7(d)-7(f)
are difference images between the patient and text-book before (Fig. 7(d)) and after
(Fig. 7(e)) transformation of the co-ordinate systems. Fig. 7(f) shows the trans-
formation applied to the text-book co-ordinate system, a rectangular grid. Notice
how both the global as well as local variation has been accommodated by the
transformation.

6.2. TRACKS: Automated Tracking Target Recognition

A fundamental task in the representation of complex dynamically changing scenes
involving rigid targets is the construction of models that accommodate the variability
of orientation, range, object number and object type. The problem is to track and
identify the orientation, translation and scale parameters accommodating the variability
manifest in the viewing of each object type. See Srivastava et al. (1991, 1992) and
Miller, Teichman, Srivastava, O’Sullivan and Snyder (1993) for details.

The second distinct part of the sampling process is associated with choosing the
target types. The deduction algorithm must go through multiple stages of hypothesis
during which the airplane types are being discovered. This is accommodated by using
the jump transformations from one object type to another, where a jump may
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correspond to the hypothesis of a new object in the scene, or a ‘change of mind’
about an object type.

The subset of generators ¥©@ C “are the templates, airplane surfaces defined by
a surface lattice indicating the position in three-dimensional space of every point and
its normal pointing direction. Shown in Fig. 8(a) is one such generator from <0,
These are transformed via the application of operators s(P), peR3 in the transla-
tion group and s(¢) in the orthogonal group parameterized by ¢€ [0, 27]3 pitch,
roll and yaw in the toral group, 0, 2« identified.

The parameterized transformations operate globally on the template targets of &
generating the full target space. The fact that these transformations involve the
orthogonal group which we parameterize through the forus emphasizes the need for
diffusions in spaces more general than Euclidean spaces as provided by our theorem 1.
These results have been generalized to Lie manifolds in Amit et al. (1993). The
parameters specify similarity transformations, as well as the airplane type, with each
generator g€ ¥ specified via a parameter vector x€ [0, 27]3 X R3*x o/, o/ the
alphabet of target types.

We are interested in tracking and recognition in ‘hostile or non-co-operative’
environments in which the objects can appear and disappear at random times, implying
that tracks will be over varying length. The group transformations are made finite

(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) Three-dimensional single-target generator at a fixed point in time; (b) high resolution optical
data; (c) azimuth-elevation signal power profile generated from the narrow band tracking data; (d)
actual track with the estimated target superimposed; (e), (f) successive stages of algorithm position,
orientation and track identification
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dimensional via association with a discrete set of times giving the parameter vector
associated with an n-length track x(n)€ Z(n)=([0, 27)*X R*X o¥)". Since n is
unknown, the full parameter space becomes £ =U>_ ([0, 27)* X R3X o7)". In the
problem stated here the data 7Z have multiple components corresponding to the
various sensors: I refers to narrow band tracking and I to high resolution optics.

6.2.1. Tracking priors

The prior on tracks is based on the dynamics of target motion and follows that
described in Srivastava et al. (1992) in which the force equations governing the motion
of targets are utilized to form a prior density on the track parameter space. The prior
on Newtonian dynamics is in terms of the velocity of the airplane J(f)€R? and is
related to the translation group parameters according to

5= | v dr+ B,

where Y(7) is the 3 X 3 rotation matrix. Under simplifying assumptions (Friedland,
1986; Srivastava et al., 1992) (rigid body, earth’s curvature and wind negligible) the
velocity satisfies

30)+ A(3(0), 330 =F) 38)

where f is the forcing function. The set of Euler angles $(t)e [0, 27]3 represents the
orientation of the target with respect to its body frame,

) 0 -g:() @)
Af{o(0), ¢(D}=| gs(2) 0 -q,(0) |,
- ¢ 0

and §(¢) are the angular velocities in the body frame, functions of the Euler angles.

The covariance is induced following the approach in Amit ez al. (1991) and Srivastava
et al. (1992) by assuming that the forcing function is white inducing a Gaussian process
U(f) with covariance operator determined by the dlfferentlal operator of equation (38).
Since the time varying parameter matrlx A{d)(t), ¢(9)} is parameterized by the
sequence of airplane orientations <b(t), te [0, 7), the tracking and recognition
algorithms are linked.

6.2.2. The likelihood: tracking and imaging data

There are two sensor types: a tracking and a high resolution imaging sensor. For
tracking, a narrow band array as in Miller and Fuhrmann (1990) and Srivastava et
al. (1991, 1992) is assumed using the standard narrow band signal model developed
in Schmidt (1981). The cross consists of two uniform, linear orthogonal arrays, sensitive
to the range, elevation and azimuth locations of the targets. The data collected at
the P-element sensor array at time ¢ become the superposition of the incoming signal
and the ambient noise. The deterministic signal model is used (Miller and Fuhrmann,
1990; Srivastava et al., 1991, 1992) in which the measurements y(f) are Gaussian
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distributed with mean determined by the Vandermonde direction vector associated
with the linear arrays and parameterized by the azimuth and elevation angles.

We are currently incorporating models for high resolution radar imaging as described
in Snyder ef al. (1989), Miller et al. (1990) and Moulin ef al. (1992). All the results
shown are based on optical imaging systems in which the data are a two-dimensional
projection with additive noise. Figs 8(b) and 8(c) show the data at one time instant.
Fig. 8(b) shows the high resolution optical images; Fig. 8(c) shows the spatial power
spectrum from the narrow band tracker plotted in the azimuth-elevation plane (bright
is low power, dark is high power).

The tracking recognition algorithm was implemented by using a Silicon Graphics
workstation for data generation and visualization, and the 4096 processor SIMD
DECmpp 12000 SX Model 200 machine for implementing the tracking recognition
random sampling algorithm. A narrow band cross consisting of two 32-element arrays
was simulated with high resolution optical data generated at every time instant. The
track estimation proceeds by births and deaths of track segments at random times,
with the stochastic gradient search running between the jumps for adjusting the
orientation and position estimates. Figs 8(d)-8(f) display successive stages of the
algorithm, with the estimated track superimposed over the actual track in white along
with the estimated target type and orientation.

7. CONCLUSION

Basing our approach on pattern theoretic representations of image ensembles, in
particular global shape models, we have built an algorithm that carries out automatic
hypothesis formation for organelles in electron micrographs. The algorithm gives one
or several explanations of the picture in terms of the number of mitochondria and
membranes, their locations, orientations and shapes. The understanding realized by
the algorithm can be claimed to be successful in that in doubtful (for the algorithm)
cases a human observer also hesitates between alternative explanations. The algorithm
could be made to give degrees of belief for the alternative explanations.

This, together with recent work on neuroanatomies tracking and target recognition,
leads us to believe that the general ideas of this approach are applicable widely, and
also to non-pictorial patterns. As we proceed to increasingly complex image ensembles
the primary task is to build pattern theoretic representations of the ensembles. If this
can be done, incorporating subject-matter knowledge in a precise and realistic way,
the analytical and computational issues that will arise can be dealt with. We therefore
have a powerful and practical technology for pattern analysis in a variety of
applications.
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DISCUSSION OF THE PAPER BY GRENANDER AND MILLER

John T. Kent (University of Leeds): Ulf Grenander has played a pioneering role in the development
and application of probabilistic methods in image analysis and related areas. Indeed he has inspired
a whole generation of research workers. Michael Miller combines an appreciation of the importance
of careful probabilistic modelling with the practical viewpoint of an engineer. Together they make a
powerful team and this paper offers a flexible and sophisticated approach for the recognition of structure
in images.

I want to focus my comments on two aspects of the paper. The first point is a comparison of three
different ways to represent object outlines in the plane: vertices, edges and similarities. The second point
is a study of the parsimonious description of object variability. It is important to keep models as simple
as possible, both to facilitate interpretation and to make the extension to new applications as effective
as possible.

To begin, consider the outline of an object in R2 with » vertices {vj,j=1, ..., n}. The vertices may be
physically identifiable landmarks on the object, or they may be n arbitrary equally spaced points around
the outline (as for the mitochondria example). Two other ways to represent the outline are in terms
of the edges e;=v;—v;_, or in terms of the ‘similarities’ described in Section 2.1.2. For both edges and
similarities, it is necessary to add an overall location vector to complete the representation of the outline.
The similarities essentially measure the relative change in each edge with respect to an underlying template.

All three representations are linearly related to one another. Therefore, it is largely a matter of taste
which representation is used. In many applications the vertex representation is most straightforward.
However, a notable case where the similarity representation is most elegant is given by the mitochondria
example in the paper, with its underlying rotational symmetry.

Next I would like to turn to the topic of parsimonious models. A general covariance matrix in »n
dimensions requires O(n?) pieces of information for large n. Therefore there is a need for methods of
expressing variability by using a smaller number of parameters.

The most straightforward approach involves the graph structures of Section 2 so that only neighbouring
generators contribute an interaction term to the probability density function. In the context of a Gaussian
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model for edges or similarities around an outline, this model reduces to a first-order cyclic Markov
random field, as used in the HANDS project of Grenander ef al. (1990). Unfortunately, the edge process
needs to be constrained, T e;=0, which destroys its Markov nature. However, in this case, provided
that the overall position of the object is given a uniform prior in R2, the edge model can be recast as
a second-order improper cyclic Markov random field model on the vertices (Mardia et al., 1991). Further,
for large n, the quadratic form in the exponent of the density is related to geometric quantities of a
path such as the integrated squared curvature (Kent et al., 1992).

An alternative route to parsimony is through principal components (e.g. Kent (1994) and Cootes et
al. (1992)). In many examples the variation in the data is dominated by the first few principal components
of the covariance matrix. Further, for large n and with smooth outlines, these principal components
are often analogous to low frequency terms in a Fourier series.

As recognized by the authors in their mitochondria example, one attempt to achieve parsimony that
is often unsuccessful is the assumption of complex symmetry. This assumption is very attractive from
an analytical point of view but can be unrealistic in practice. For example, the amount of variability
at a vertex in the tangent direction of the outline may be different from the variability in the normal
direction. See also Kent (1994) for further discussion.

Next we turn to the circulant covariance matrix K in Section 4.1.1 for the mitochondria. Here the
assumption of rotational symmetry nicely limits the number of parameters. As the authors point out,
the underlying structure is brought out most clearly by transforming to the independent four-dimensional
vectors (Re{it(k)}, Re{D(k)}, Im{iz(k)}, Im{o(k)}), k=0, . . ., n/2. These vectors have covariance
matrices of the form

A(k) Bk
—-Bk) Ak))

where A4 is 2 x 2 symmetric and B is 2 x 2 skew symmetric (except for k=0, n/2, where the imaginary
parts of #(k) and U(k) vanish).

Since K is a symmetric matrix, the 2x2 blocks satisfy K(i)=K(n—i)T, 1<i<n/2, and K(0) is
symmetric. Further simplification occurs if the additional assumption is made of ‘axial symmetry’ or
‘mirror symmetry’, so that K (i) = K(n—1i), 1<i<n/2 -1, implying B(k) =0 in the above representation.
Such an assumption seems natural for objects such as mitochondria.

Another simplification involves the incorporation of Markov random field structure into K: just set
most of the 2 x 2 blocks in a model for K ~! equal to 0. Similarly, principal component analysis can
be used to simplify a model by assuming that many of the A4 (k) and B(k) equal 0. Have the authors
considered simplifying K in this way?

The authors have given an impressive panoramic view of their vision of image analysis. In particular
the jump diffusion processes represent an elegant application of Markov chain Monte Carlo methodology.
At the same time the implementation of their ideas in practice involves many detailed considerations
that there has not been space to cover here. I encourage the authors to make available a more complete
account of their algorithms to enable other researchers to build on their work.

As you can see, I have found the paper very stimulating and it gives me great pleasure to propose
the vote of thanks.

P. Clifford (Oxford University): Traditionally in this Society, the role of the seconder is to be critical
of the material which has been presented. There is a small complication here, in that I was probably
one of the most enthusiastic supporters of the paper at the review stage. At least, this shows that some
of the members of the Research Section Committee have a sense of humour.

A seconder usually starts by posing a fairly fundamental question, such as: ‘Is this really statistics?’.
He or she then goes on to make a damning observation, e.g. ‘Physicists have been doing this for years’.
The authors are then chastised for omitting to mention some recent relevant work, and with these
preliminaries out of the way the seconder will take the opportunity to talk about his or her own work
in the area.

So, is this really statistics? This begs the question: ‘What is statistics?’. The authors have suggested
that statistics is about understanding information and I agree with this to an extent. Certainly, there
are data sets, such as the stack loss figures, which statisticians now understand quite well. These are
data whose idiosyncracies have been explored, which are familiar and which have the status of old friends.
I suspect that this depth of understanding is atypical. Far more frequently, statistics is about acting
on information, and, for this, familiarity with the method is more important than familiarity with the
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data. I would question whether the authors are providing real understanding of the data rather than
the means to act, for example, to identify the cells.

The paper is important because it is a signpost to future directions in statistics. It illustrates the
effectiveness of the traditional engineering ‘get it done’ philosophy. Just as chemical engineers deal
with chemicals in bulk, so information engineers are being trained, in engineering and computer science
departments, to handle large data sets with high dimensional parameters. Will we as statisticians be
superseded by the information engineers or will we become the architects, the visionaries who design
the structure, leaving the construction to the engineers? This paper suggests that such a symbiosis is
possible and it may be essential to the survival of our specialized discipline. The principles of statistical
data analysis have been absorbed by the engineering community; they have the computing skills, both
in hardware and software, to build data analysers which can do the job.

I was reminded of this recently when I read that the US Immigration and Naturalization Service is
currently evaluating a system (INSPASS) for identifying individuals to reduce the large queues on entering
the USA. An individual puts his or her hand on a plate, and after 30 seconds the hand is identified.
This is something put together by engineers. It does not use the beautiful and elegant HANDS theory
which Professor Grenander has built up—it just works.

Let us wonder whether we are happy with this, and content to have important statistical problems—
data problems—handled by engineers and computer scientists, with essentially no input from the statistical
community.

Have physicists been using jump diffusions for years? Well, yes they have, and so have chemists,
epidemiologists and those working in point process theory. There are many publications on the problem
of simulating the positions and velocities of molecules in finite systems. In the grand canonical ensemble
the number of molecules is not fixed but has a distribution given implicitly by the potential. Metropolis
and Langevin methods which allow the creation and annihilation of molecules are used; in other words,
jump diffusions. In mathematical epidemiology, the locations of the infectious animals are modelled
and simulated as a spatial birth-death process, a jump diffusion.

What related recent work has there been? Well, there is the work of Gelfand and Mitter (1991). They
showed that certain continuous time interpolations of Metropolis and heat bath Markov chains converge
weakly on path space to Langevin diffusions. There are important implications here, in that, if you
only wish to sample from the equilibrium distribution then there is no particular benefit in using hybrid
jump diffusion processes. You may as well use pure Metropolis sampling, using jumps which are
sometimes big and sometimes small.

Finally, my own work: the authors’ presentation has emphasized elastic deformations; the cell
membrane deforms elastically to fit the picture. I know that in other applications the authors have also
considered deformations consistent with viscous flow. My interest is in the estimation of crustal velocity
fields on the basis of earthquake data. This is work done in collaboration with Philip England at Oxford.
India has been moving north for 20 million years, producing the Himalayas, a great mound of material
which then flows onwards forming the Tibetan plateau. The motion is rather slow, about the speed
of growth of a fingernail. The crust has to accommodate this motion and the occurrence of earthquakes
is related to the associated deformation. There is a substantial database of earthquakes, numbering
tens of thousands of events. The objective is to use these data to estimate the underlying velocity field,
a field which is modelled by viscous flow theory. We are having some success with this project, and
even with the computing resources that we have in Britain we can do the calculations in realtime!

Let me add my congratulations to the authors on producing a stimulating paper. It gives me great
pleasure to second the vote of thanks.

The vote of thanks was passed by acclamation.

K. V. Mardia (University of Leeds): Ulf Grenander’s school has pioneered many ideas and particularly
we in Leeds have been inspired by their work. We were also fortunate to have Professor Miller as the
key speaker at our annual research workshop in 1993. Indeed, this paper is extremely profound with
many new ideas. Image understanding as described in this paper is the key in most of medical imaging.
Some ideas go back at least to Galton (1878) who constructed composite portraits from photographs
to understand whether there was an average face associated with a particular trait. Averaging,
interpolating, differencing and caricaturing are also fundamental to image understanding. For landmark
methods, the planar deformation underlies these constructions. Consider say caricaturing. Given x; old
landmarks and y; new landmarks, i=1, . . ., n, the objective is to find a smooth transformation
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y1=%,(x), y,=P,(x), which takes old landmarks to new, namely, x=(x;, x,) > y=();, »2). There are
situations where we need to use derivative information at landmarks as shown by Bookstein and Green
(1993). Instead of using higher derivatives indirectly as in Bookstein and Green (1993), we could proceed
in the following way for each of &, and ®,.

Suppose that ®(x) is the kriging predictor, x€R? with constraints ®(x;)=,09, dP(X;)/0X,;=Yi105
AP(x;)/ x5, =y, I=1, . . ., 0, X;=(xy;, Xy;) and based on the generalized covariance function o(h).
For x=(x;, X;), let 3¢+ g(x)/dx53x5= 02 (x). It can be shown that ®(x) can be written as (Mardia
et al., 1993)

B(X)=By+B1X,+Baxy+ 25 2, W, o (x—x)),

r j=1

where the first summation is over r=(0, 0), (1, 0), (0, 1), and

Xoos Lo, & 1, X, X
<W> <E Q>_l<y> . E00 ElO EOl Q o 1l 02
B - QT 0 0 ) - 109 20 11 |» - ) ) )
E019 Z:lla Z:02 0’ 0a 1
with W=, Wio, Wo), WI=(Wi, ooy Wa), B=(B0, Bis B, Tup=(0“P(xi-x), 1=
1 ...,0=0©,...,0),y :(yOO’ Yio» y()])’ y, =1rs -+ s Vur) and X =Xk1s + + o> Xkn)» k=1, 2.
Hence, ®(x) can now be evaluated. We could select for example o(h)=l]h|2°‘, 1<a<?2, so that the

kriging equations are well defined. Note that the limiting case as a — 1, o(h) = |h|?log|h|, is not strictly
valid as the second derivative is discontinuous at h = 0 but, for an approximate approach, see Bookstein
and Green (1993) who have inspired our work. My colleague, Dr Rabe, will show in her contribution
the fitting of our predictor to an average face profile but for further details see Mardia et al. (1993).

I have a few simple questions. I appreciate various properties of jump-diffusion but do we need it
when there are about 15 or more non-overlapping objects? Is the systematic search too naive or expensive
in such cases? Does the method work well with a very large number of objects? Given a collection of
contours of objects where the landmarks are difficult to pick out, what is the most efficient way (Section
2.3, point (d)) to treat landmark misidentification in estimating a template?

A. J. Baddeley (Centre for Mathematics and Computer Science, Amsterdam, and University of Leiden):
The ‘random configurations’ studied in this paper are point processes of geometrical objects, which
have been studied extensively in stochastic geometry (Stoyan et al., 1987) and spatial statistics (Ripley,
1981, 1988). Indeed Ripley and co-workers (Molina and Ripley, 1989; Ripley, 1986, 1991; Ripley and
Sutherland, 1990) have applied point process methods to computer vision, and I was surprised to see
no reference to this. Miss M. N. M. van Lieshout and I have also studied object recognition from this
viewpoint (Baddeley and van Lieshout, 1991, 1992a, b, 1993; van Lieshout, 1991, 1993) and have some
results that are complementary to those of the present paper.

The point process analogue of a Markov random field is a Markov point process (Ripley and Kelly,
1977; Ripley, 1988, 1989). The simplest form is a pairwise interaction process, where a configuration
x={x, . . ., X,} has density

pxe I alx;, x))

X‘~XI

where x; ~ x; signifies, say, that x; and x; are close, | X;—X; | <r. This resembles the authors’ equation
(5), but Markov point processes may also have higher order interaction terms a(x;, x;, x;) etc., and
dynamic graphical interaction structures (Baddeley and Mgller, 1989).

A Markov point process can be simulated by running a spatial birth-and-death process to equilibrium
(Preston, 1977; Ripley, 1977; Mgller, 1989). This is a jump process in the space of configurations x,
involving instantaneous ‘births’ (addition of a new point at a random position) and ‘deaths’ (deletion
of an existing point). Other methods are possible, including Metropolis—Hastings algorithms and jump-
diffusion processes.

The object recognition problem is to estimate the true configuration x={x,, . . ., x,}, usually a
pattern of objects in continuous space, from the data y, usually a discrete pixel image. Postulating a
suitable ‘noise model’ for y given x with density f (y|x), and a prior distribution p (x) which is a Markov
point process, the posterior
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px|y)xf(y|x)p(x)

is again a Markov point process.
To determine the maximum a posteriori estimator of x we recursively update the current estimate
x by considering the posterior likelihood ratio

p(xVUfd}ly) _p(xUla)) f(y|xUfa})
p(x]y) p(x) fy]x)

updating either deterministically (an algorithm analogous to Besag’s iterated conditional modes) or
stochastically: the natural analogue of stochastic annealing is a spatial birth-and-death process with
transition rates depending on the posterior likelihood ratios. We have studied these algorithms in the
papers cited above.

This approach also provides an appreciation of some existing techniques in computer vision. We have
shown that, for simple models of binary noise, the maximum likelihood estimator & coincides with the
standard erosion and dilation operators of mathematical morphology (Serra, 1982), and, for models
such as Gaussian additive noise, the log-likelihood ratio

log f (v |x Ufu})—log f(v]x)

is the celebrated Hough transform, used in computer vision to detect simple features such as lines and
circular arcs (Illingworth and Kittler, 1988).

M. N. M. van Lieshout (Free University Amsterdam and Centre for Mathematics and Computer
Science, Amsterdam): In addition to Professor Baddeley’s contribution I would like to mention a few
results from our research.

To find an approximate maximum a posteriori (MAP) solution, we proposed to search iteratively
for that object whose addition or deletion would most increase the posterior likelihood ratio and to
update the scene accordingly (Baddeley and van Lieshout, 1992a,b). This is a variant of Besag’s iterated
conditional modes (ICM) algorithm for discretized images but is also defined on more general spaces.

The authors propose a jump-diffusion process to sample from the posterior distribution. The jump
part bears a close resemblance to the spatial birth-and-death processes introduced by Preston (1977).
These are well known in spatial statistics (Ripley, 1977) for sampling Markov point processes. The rate
of convergence was studied by Mgller (1989). Alternatively, a Metropolis—-Hastings algorithm (Geyer
and Mgller, 1993) is built as a mixture of two transition kernels: one can be regarded as the analogue
of Grenander and Miller’s diffusion process; the other generates new hypotheses.

The main advantage of sampling from the posterior distribution is the ability to estimate any functional
of the posterior (see Section 1.2). In particular, the (estimated) first-order intensity surface can be regarded
as an alternative to the Hough transform.

A sequence of birth-and-death processes can be combined in a stochastic annealing schedule. For
H>0 define

pa(x|y)e{f(y|x) p(x)}/H.

As for discrete Markov random fields, H has the interpretation of ‘temperature’. If the set of MAP
solutions has positive reference measure and the number of objects is effectively bounded above, a
sequence can be constructed that converges in total variation to a uniform distribution on the set of
global maxima of the posterior distribution, regardless of the initial state (van Lieshout, 1994).

When H is very close to 0, the corresponding birth—death process behaves like the deterministic
algorithm described above. This suggests using an algorithm which incorporates a search operation.
However, there will be problems with the ‘curse of dimension’: as the dimension of the object space
increases, the cost of searching it increases exponentially. To overcome this problem, we propose a
multiresolution strategy (Baddeley and van Lieshout, 1993).

We have implemented the method and found that it performs creditably on simple test examples.
The introduction of a Markov prior successfully combats the multiple-response problem and increases
robustness to noise and initial scene selection. For digitized images, replacing the ICM pixel scan by
steepest ascent also improves robustness and frees the technique of scanning order dependence. Moreover,
Markov point processes are well suited to the techniques proposed, as posterior ratios are typically easy
to evaluate.
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Ian L. Dryden (University of Leeds): How do the authors obtain estimates of the prior model parameters
of Section 4.1.1? Some training data are required and would conveniently be as subimages containing
single objects. One method is to digitize the outlines of the objects by hand but if many objects are
available this is laborious. A simple automated method may be worth employing. The prior can then
be updated later by successful fits from the more sophisticated Bayesian procedure.

For example, in the study of mouse vertebral shape (Johnson et al., 1985), approximately 500 images
of each of the first and second thoracic vertebrae were available. Approximate outlines were extracted
by a simple thresholding method, to give a series of about 300 points per outline. After some smoothing
these points could then be used to estimate the prior of Section 4.1.1. How are the parameters estimated?
Johnson et al. (1985) used a Fourier series approach but alternative methods were later sought as local
shape differences were difficult to describe.

Alternative approaches for specifying prior distributions include using labelled landmarks on each
object, i.e. there is some correspondence, either geometrical or biological, between landmark i on one
object and landmark i/ on another. Examples include the principal components models of Cootes et
al. (1992) and Kent (1994), smoothed principal components used by Mardia et al. (1994) or the use
of simple covariances structures in offset normal models in size-and-shape or shape space (Dryden and
Mardia, 1991, 1992). If using the offset normal models, inference can proceed by using maximum
likelihood.

Again the prior model can be estimated from training data. Rather than hand digitization we used
a semi-automatic method for the mouse vertebrae (Mardia, 1989). After obtaining the smoothed outline
the landmarks were chosen at important curvature extrema by applying an iterative splitting algorithm
for polyline fitting (e.g. Duda and Hart (1973)) to the subset of curvature extrema. Equally spaced
pseudolandmarks can then be placed along the outline in between the landmarks. The algorithm is only
semi-automatic as a human observer is required to check that the smoothing and the final fit are
satisfactory.

The advantage of the labelled natural landmark-based models for the mouse vertebrae example is
in the interpretation of local shape differences between different groups. Labelled landmark methods
are not always appropriate; for example it does not seem possible to obtain corresponding landmarks
on mitochondria. Also, equal numbers of points are required on each figure for the labelled landmark
method. In some of the figures the mitochondria appear to be fitted by different numbers of points.
Does the method of the paper require equal numbers of points on each figure?

B. D. Ripley (University of Oxford): This meeting occurs during a six-month period I am spending
at the ‘Computer vision’ programme at the Isaac Newton Institute in Cambridge, and it has been our
privilege to have both Professor Ulf Grenander and Professor Mike Miller for (separate) short visits.
Many of us have been inspired by Ulf’s work over many years in seeking realistic models of the contents
of an image, of which this paper is an exemplar. It gives me the opportunity to pay tribute to Ulf’s
seminal contributions—they are often hard to read but reward greatly persistent study by revealing his
remarkable intuition.

The section on ‘related work’ is rather cursory, and I do want to draw the attention of statisticians
to some of the excellent work being done on statistical inference for images and video sequences within
the computer vision community, very close to the spirit of this paper. In particular, I want to commend
to you the volume edited by Blake and Yuille (1992). At the meeting I showed examples on locating
cell membranes in electron micrographs, and on tracking of facial features, a buggy and an F-18 Hornet
aircraft, all taken from that book. The computer vision community continue to build on their successes
and are seeking the collaboration of statisticians, for which we are grateful and look forward to fruitful
interactions.

David Mumford (Harvard University, Cambridge): This paper introduces an intriguing algorithm
which combines the small stochastic steps of simulated annealing algorithms with large ‘jumps’ to produce
a Markov chain sampling a complex Gibbs field of the type encountered in vision problems. The paper
is remarkable in coming to grips with the necessity of making large jumps which change the topology
of the sought-for pattern, while also making small incremental improvements with a fixed topology.
Shah and I proposed something of this kind (Mumford and Shah, 1985) but had been defeated by its
complexity.

One noteworthy antecedent is the work of Brandt ef al. (1986) on a multigrid algorithm for sampling
the Ising model with external field. In fact, their random variables, the spins x,= % 1, are equivalent
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to those of the authors when there is only one type of organelle and only cyclic graphs. Brandt et al.
(1986) employed a hierarchy of moves, in which increasingly larger square blocks of pixels are flipped.
In the authors’ situation, this could introduce a new organelle or radically reshape the partition, chopping
a big block out of an organelle, etc. Brandt’s method, however, does not accept or reject a move
immediately but works back down the hierarchy, improving the result with smaller flips, before deciding.

This raises an issue in the present paper which is not stressed: it seems to be computationally intractable
to calculate the transition probabilities Q (x, dy) because of the need to sum over all possible new curves
(1) that might be introduced. These new curves can only be sampled, and the illustrations suggest that,
even more drastically, only small circles were considered. It is exactly the need to sample well the more
probable new curves that forced Brandt et al. (1986) to a complex algorithm which delayed acceptance
or rejection.

A logical route is to mimic genetic algorithms and, rather than to entertain one or a series of global
moves on one sample, to consider a small population of samples simultaneously. The moves are now
the stochastic evolution of the individual members of the population, and the splicing of parts of one
sample with parts of another. In the authors’ paper, this is especially simple: we may combine two patterns
x(m,) and x(m,) by taking k, of the objects c(j) in x(m,) together with k, of the objects in x(m,) and
forming a new pattern x(k, + k,) out of their union. I believe that this will often be faster and more
effective.

Maria Petrou (University of Surrey, Guildford): I would like only to make one comment concerning
the four tasks of inference in pattern theory. To me, the fourth task, that of creating regular structures
to represent knowledge, is the task that bears relevance to all the other three tasks mentioned by the
authors. It is this that has defeated us so far, even for the least challenging tasks of all: image restoration.
Let us consider, for example, a random texture pattern that has to be restored. Let us assume that only
one texture is present in the image, so that the need to introduce model discontinuities and object
boundaries is avoided. Random textures can be ‘successfully’ modelled by Markov random fields (MRFs).
The posterior distribution can be derived and the image can be restored, say by using the method of
simulated annealing. The restoration can also be done by a multiresolution approach, which when
performed carefully can preserve all the implicit and explicit correlations of the model. The idea is to
create a pyramid of images of decreasing dimensions and each time to choose the Hamiltonian function
describing the image by computing the renormalization group transformation (RGT). Let us also assume
that the RGT equations can be solved exactly each time. If I reduce the size of the image to 2 X2 and
optimize the Hamiltonian of these four pixels and propagate the solution to the finer levels of resolution,
will I obtain the correctly restored image? I believe that the answer is no! The reason would be that,
even though I took pains to record carefully the implicit and explicit correlations of the MRF model,
these correlations were incorrect because the model was not sufficiently good. And it would not have
been sufficiently good even if the texture had been created by simulating an MRF with chosen parameters.
Indeed, in such MRF simulation algorithms, we stop the process when the cost function stops changing
noticeably. If, however, we allow the algorithm to carry on, we may end up with a very different looking
texture, even though the change of the cost function was extremely slow (Picard, 1991). Fig. 9 shows
two simulated images with identical values of their Hamiltonians (from Petrou (1993)). So, what we
understand by the word ‘model’ does not capture all aspects of the object modelled. That is why fractal
algorithms have been extremely successful in simulating natural scenes in computer graphics, but they
have failed miserably in modelling textures. Our failure lies in the fact that we usually model the result,
i.e. the object that we are interested in, whereas we possibly should model the process by which this
result was reached.

Lisa Wiffen (University of Leeds): In their paper, Grenander and Miller discuss pattern recognition
as a method of automatically locating mitochondria on an electron micrograph. I would like to talk
about automatic identification techniques in relation to another particular application: the automation
of chromosome analysis.

The data consist of digitized images of cells viewed under an optical microscope. The cells have been
exposed to mutagenic chemicals, which can cause abnormalities in the chromosome configurations. The
aim is to locate all the chromosomes in an image automatically and further to classify each chromosome
as normal or abnormal. If the chromosome is abnormal, it can then be categorized as a specific
abnormality.
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Fig. 9. Two differently looking MRFs described by the same Markov parameters and having Hamiltonians with
the same value

The location of chromosomes in an image can be compared with the problem of locating mitochondria,
studied by Grenander and Miller. In fact, it may be possible to apply their algorithm to the location
of chromosomes. However, such a sophisticated technique is not required. As there is a reasonable
contrast between the background of the image and the chromosomes, simple thresholding is sufficient
to segment the images. Further, knowledge of the outline of a chromosome does not itself provide enough
information about the image to classify it as normal or abnormal. Instead, it is necessary to examine
the chromosome image in greater detail.

Normal chromosomes have a characteristic X-shape. The crossover of the X is a constriction in the
chromosome arms and can be located anywhere along the length of the chromosome, even at the end.
Individual chromosomes are characterized by the length of their arms and the position of this constriction
along them. Abnormal chromosomes do not conform to these characteristics, but they do share some
features with normal chromosomes; see Fig. 10. Cytologists recognize normal chromosomes by looking

(a) (b)

(c) (d)

Fig. 10. (a), (b) Normal chromosomes with the constriction in different places; (c), (d) abnormal chromosomes
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(a) (b)

Fig. 11. (a) Grey level image and (b) binary image of a normal chromosome

for the two arms and the constriction along them. It is not usually possible to use this approach directly,
as thresholding often does not separate the arms of chromosomes; see Fig. 11. Instead, image
understanding is implemented in a different way.

The medial axis of a normal chromosome can be found from the minimum of bimodal and the
maximum of unimodal grey level profiles across the chromosome. A medial axis found by this method
is smooth and continuous for a normal chromosome. There should also be a single cluster of consecutive
unimodal profiles, corresponding to the constriction in the chromosome arms. So far, this approach
has been very successful in practice.

P. J. Green (University of Bristol): I shall comment here only on the jump-diffusion dynamics,
providing the computational engine for the fascinating vision applications in the paper.

Gibbs-sampler-like dynamics like those of corollary 1 will rarely be useful; Markov chain simulation
is unnecessary if jumping into a subspace in equilibrium is possible. Much more generally, jumps must
be controlled by Metropolis-Hastings acceptance-rejection decisions, and here I shall describe a
framework for doing this, discussing only the reversible case. Sufficient conditions are given in
theorem 1, but the authors’ specific instances of jump measures provide little guidance for the reader
with a new problem.

Working in discrete time, consider a family of possible ‘moves’, indexed by m, counting, for example,
a birth from & to k+ 1 objects in the mitochondria example the same move as a death from k+1 to
k. When the current state is x€ &, the probability of proposing a move of type m and landing in dy
is r,, (x, dy).

Some dimension matching is necessary. Writing »,, for the measure on ¥ x & given by

rAxB)= | | w0 r, a),

XEA yeB

suppose that, for each m, v, (4 x B) and »,,(Bx A) have finite positive densities with respect to the
same symmetric measure £, on ¥x .
Then

wdy) 1, (0, dx)}
" w(dx) 1, (x, dy)

is well defined (the ratio is that of the two aforementioned densities). This is similar to the usual Hastings
ratio, though here the r,, are improper distributions, and on different subspaces. The proposed move
is accepted with probability a,,(x, y); otherwise x is retained. The resulting jump measure is

o, (x, y)=min {l

qCx, dy)= 2] a,,(x, ¥) 1, (x, dy)
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Moves within subspaces can be expressed in the same notation.
It is clear that the resulting chain satisfies the detailed balance condition

|, ma0 |, Pa—an=| uan |, Po~av.

This framework covers fixed parameter space Markov chain Monte Carlo methods, as used in general
Bayesian inference and pixel-based imaging, the birth-death simulations used in point processes and
the examples in the paper.

For a simple concrete example, suppose that the target distribution has just two components, with
probabilities p, and p,, a univariate density =;(x) on [0, 1] and a bivariate density m,(x;, x;) on
[0, 11 x [0, 1]. We might consider proposals summarized by

Move X 1, )~
type

1 (xr u) xl

2 (4, ) X,

3 (uy, u) u

4 (x—u, x+u) 30 +x,)

where the us are independently uniformly distributed on the appropriate intervals. If the probabilities
of each move type are bounded away from 0, the dimension matching requirement is met, although
the proposal densities have dimensions that are not determined solely by those of the take-off and landing
subspaces. The «,, (x, y) are easily derived.

Finally, note that one could contemplate the invention of additional subspaces and associated models,
simply to facilitate mixing.

Sophia Rabe (University of Leeds): I would like to focus my contribution on the shape variability
present in a laser scan of a human head. This is a more structured problem than the mitochondria
considered by Grenander and Miller. The laser scan is an array of measured three-dimensional co-ordinates
of points on the surface of the head. One way of representing the shape of the head is to segment the
surface into patches of different surface types, based on the local principal curvatures, with peaks
corresponding to negative principal curvatures, saddles to principal curvatures of opposite signs, etc.
Colour-coded segmentation helps to visualize the shape and is a suitable representation for comparing
the faces of patients before and after plastic surgery (Coombes et al., 1991). This analysis suggests that
local curvature is an important facial attribute.

Another way to summarize this type of data is to fit a smooth surface with a few parameters. For
simplicity, consider the problem in two dimensions using the face profile in Fig. 12 taken from a vertical

(a) (b) (©

15 20

height x
10

depth y

Fig. 12. Face profile ( ) with sites (¢) and the following splines (- -« - - - ) superimposed: (a) r=1, 2a=3,
qg=0; (b) r=1, 2a=3, g=1; (¢) r=2, 2a=5, g=2




1994] DISCUSSION OF THE PAPER BY GRENANDER AND MILLER 591

slice through the laser scan of a female head. Let the height and depth be the explanatory variable x

and the response variable y respectively. From the work of Mardia et al. (1993), presented in the

contribution by Professor Mardia, we can incorporate local curvature and gradient information as follows.

Define a spline or kriging predictor ®(x) which matches not only the profile depths y; at n sites x;, i=1,
. ., h, but also the first g derivatives y; say, »=1, . . ., g,

r

d(x)= 2 4+ i i (=1yw/e} (x—x), (39
Jj=0 i=1 v=0

where ¢ (x)=d”|x|**/dx” for non-integer «>0, r>[«] and g<oa. The case r=1, a=4%, ¢=0 yields
the usual interpolating cubic spline.

This cubic spline was fitted to the data at the sites marked by diamonds in Fig. 12, giving the dotted
curve (a). Graphs (b) and (c) in Fig. 12 show the same profiles as in (a) with superimposed splines,
the dotted curves matching the sites in the gradients (g=r=1, «=3%) and curvatures (g=r=2, a=%
of the depth respectively. o must be increased from % to 5 to accommodate second derivatives. There
is a steady improvement in the fits from (a) to (c) as ¢ and the number of parameters for the spline
increase. It may be possible to achieve a better balance between compactness and precision by including
different numbers of derivatives at each landmark, using g; instead of g in equation (39). A three-
dimensional model of the face may be constructed by using a generalization of equation (39) to two-
dimensional variables x. This is joint work with Professor Kent and Professor Mardia.

A. C. Atkinson (London School of Economics and Political Science): In the talk we were shown
a video of pink simulated mitochondria and the progress of the algorithm in identifying them. This
made more explicit some of the properties which might be inferred from the still pictures of Figs 3-6.

Templates are born circular and are then gently deformed until they take up the shape of the object
that is being identified. It was very noticeable, when viewing the process in time, that objects in the
centre were identified first, those cut off by the edges of the frame being identified much later, if at
all. The problem presumably is that the intersection of a mitochondrion with the boundary causes a
sharp corner, with such violent deformation resisted by the template.

It is not clear to me how the mathematics of the algorithm allow for the fact that some boundaries
are edges and may require abnormal deformations. With, for example, eight whole and four cut
mitochondria, severe edge effects seem likely.

Chromosomes were mentioned in the discussion. Those shown looked like two short pieces of basically
parallel string joined by a knot or two. They would require templates with sharp corners. The edge
of the frame should not then introduce any new feature requiring abnormal deformation. It would seem
likely that any edge effects will be much reduced when identifying chromosomes, provided that a suitable
deformable template can be found.

Julian Besag (University of Washington, Seattle): It is a particular pleasure to add my congratulations
to Professor Grenander and Professor Miller. It is already clear that the concept and the implementation
of pattern theory (e.g. Grenander (1983)) have provided tremendous pay-offs, not only in image analysis
but also in general Bayesian computation, where the Markov chain Monte Carlo method has had such
a liberating effect.

A feature of the paper, and of some others listed in the references, is the use of a diffusion process
to drive the inference machine. In this case, it is a jump process, whereas previous papers have employed
basic Langevin diffusions. The simpler versions may also prove to be useful in non-spatial statistical
settings, where they can be tightened up as below.

Let p(s)=n(s|y), s€ %", denote a posterior density for parameters s, given data y. Then the
Langevin equation (14) has stationary distribution p and suggests a discrete time Markov chain Monte
Carlo algorithm in which the current state s is replaced by

s'~ #{s+7V logp(s), 271},

where 7 is some small positive constant. In this form, which goes back at least to Parisi (1981) in the
physics literature and to Grenander (1983) in pattern theory, p is only approximately maintained.
However, if instead one uses s’ merely as a Hastings proposal for the next state, then the usual acceptance
probability ensures that p is an exact stationary distribution of the modified Markov chain. Note that
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7is arbitrary and should now be chosen to ensure appreciable proposal increments, accepted moderately
often, rather than sufficiently small to mimic closely the Langevin diffusion itself. One might apply
such an algorithm to fixed or random subsets of the parameters and 7 might be treated as an auxiliary
variable with a distribution of its own. Non-Gaussian proposals are also permissible. Sometimes the
algorithm is not directly applicable (e.g. for non-negative s) but can be resurrected by a simple (e.g.
logarithmic) transformation of the variables. It is not yet clear whether the above Langevin-Hastings
algorithm has advantages over standard Hastings methods, such as the Metropolis algorithm and the
Gibbs sampler, the first of which can also often be used with vector proposals. Unfortunately,
implementation of the Langevin-Hastings algorithm requires knowledge of p up to scale and not just
V log p, which presumably precludes it from the applications in the paper.

The following contributions were received in writing after the meeting.

Yali Amit (University of Chicago): The ideas presented by Grenander and Miller offer an excellent
conceptual framework for the description of complex systems. I would like to use this opportunity to
speculate on some new directions which should be explored in this context. Using Grenander and Miller’s
terminology, the nodes of the object graphs that they employ are edge elements which are local features
in the image. The graph ensures local connectedness and closedness of the boundary. We could, however,
introduce a much richer family of local features, in particular various local topographies, of which the
edges are only one special case. We would then provide likelihood models of the data in the neighbourhood
of the local features. These local features could be arranged in graphs to describe intermediate features
such as a boundary segment of high curvature, or a point of overlap of two objects, #-junctions of
edges, etc. The intermediate features could be arranged in a graph describing the objects and their possible
relationships to each other in the plane.

The bonds in the graphs could enforce connectedness, but they could also enforce a geometric or
topological relationship between two nodes or more, e.g. relative location of nodes, relative distances,
angles between various directions associated with the local features. At all levels prior probabilities would
be assigned to the various values that the graph bonds can assume.

A preliminary attempt at more structured graphs in the context of grey level images can be found
in Amit and Kong (1993), where X-rays of hands are analysed. Here the generators are certain local
maxima of the image, corresponding to high bone concentrations near the joints and at the palm. The
graph describes the planar and geometric configuration of the generators (Fig. 13(a)). A penalty penalizing
deviations of shape is imposed on the cliques of the graph which are all triangles. Other hand X-rays
are analysed by scanning for local maxima (Fig. 13(b)), and then finding the match of the template
graph to a subset of these local maxima, such that the sum of the penalties on the individual cliques
is minimized (Fig. 13(c)).

Fred L. Bookstein (University of Michigan, Ann Arbor): In Section 6.1 Grenander and Miller diffuse
one picture T, the text-book, on top of another, the study S, to minimize a combination of elastic energy
and squared pixel-by-pixel difference after registration. The warping that results has no convenient
analytical form and no ‘features’—no straightforward expression in terms of a small number of
parameters. Further, the example shown in Fig. 7(f) seems very unfortunately kinked all around the
edge of the skull.

If we augment the available data by landmark points characterizable both pictorially and biologically,
then these and other infelicities of the Langevin diffusion approach can be circumvented by methods
that have already appeared in neuroanatomical and statistical publications. The relationship of the
landmarks of S to those of T is borne in a finite dimensional parameter space, David Kendall’s shape
space (Kendall, 1984; Bookstein, 1986; Goodall, 1991). In bicmetrical applications there is a privileged
basis for this shape space closely according with the original task of fitting deformable templates. Let
the authors’ elastic energy E (i), equation (37), be replaced by a similar formula related to the bending
energy of an infinite, uniform metal plate (Timoshenko and Woinowsky-Krieger, 1959):

n n n 9?2 ; 2
E@=3 % % L( - ) :
i=1 j=1 k=1

dx; 0

The interpolant i minimizing £ while mapping T’s landmarks to those of S is linear in the co-ordinates
of the landmarks of S, and the value of E at the minimum is a quadratic form in those same landmark
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Fig. 13. (a) Template graph, (b) extracted local maxima and (c) optimal match

co-ordinates. Each eigenvector of this form then specifies a ‘partial warp’ having well-defined localization
and geometric scale. In this way the fitted deformation decomposes automatically into a finite set of
features potentially of use for both multivariate statistical analysis and display. For n=2 (plane data),
Bookstein (1991) demonstrates this formalism, the method of thin plate splines, in detail. W. D. K.
Green and I have extended the method to incorporate explicit information about boundaries as well
(Bookstein and Green, 1993).

The problem set-up in Section 6.1 is incomplete as a ‘representation of knowledge’ in that the biologist’s
knowledge of the scientific importance and/or reliability of various features has not been coded. In
practice, for certain points and arcs the correspondence between T and S is far more stable or salient
than for others. Text-book figures label and interpret these loci, and specialized algorithms for their
automatic extraction are urgently under development in many medical imaging centres. Together,
landmarks and edges support a fully developed multivariate praxis (group means, covariances of form,
diagnosis, etc.) at no cost to the quality of image matching achieved.

Colin Goodall (Pennsylvania State University, University Park): I enjoyed reading this paper. In the
exposition, the authors have been unusually careful in relating to references on Markov random fields.

I wish to articulate some of the similarities and differences between shape theory and the deformable
template-jump diffusion approach. The point of view follows from Goodall (1991), which develops
the statistical analysis of shape, building on Procrustes analysis (Gower, 1975) as well as the cited work
of D. G. Kendall and F. L. Bookstein.

Shape theory addresses the analysis of structures in images
Like Grenander’s pattern theory, shape theory is cognisant that important problems of statistical
analysis follow image restoration and pattern recognition: we are in the domain of image understanding,
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both internal and external, but, for shape analysis, a typical application involves building a statistical
model for one or more samples of shapes.

Shape theory involves quotients by a group of similarities

Shape theory considers the analysis of geometrical figures modulo a transformation group, which
may be Euclidean, special similarity, affine or projective. The figures may be in ordinary Euclidean
space, but need not be (Kendall, 1989, 1992). The group .~ is more flexible still and allows an exact
superposition of two figures, albeit with some penalty, —logp(c), that may itself be a function
p(c)xexp{—d(c, c;)} of the distance d between shapes.

Morphometrics builds on existing scientific expertise

Anatomists can identify homologous features—landmarks—across images with high accuracy. In
biology, the analysis of shape follows a notably interdisciplinary approach.

Through the analysis of landmark data, the statistical analysis of shape becomes an extension of
multivariate analysis. Some theoretical aspects are explored by Goodall and Mardia (1993). Most
important, the same basic principles of statistics apply to the analysis of shape as in an introductory
statistics course. Shape is to be thought of as a dependent variable in statistical models, as outlined
in Goodall (1993), and it simply remains to explain how to accommodate transformation groups that
are more general than the translations of randomized block designs.

The statistical analysis of shape, therefore, represents a classical approach to image understanding,
in contrast with the computational Bayes approach of Grenander and Miller. Shape models will become
increasingly complex, incorporating edge and textual data as well as landmarks, and including a variable
number of objects in a scene. Then the distinction blurs, as the computational Bayes approach becomes
the most viable strategy. Also, until now, model identifiability has been explicit; images in _#can be
identified directly with configurations in £( %), and the similarities of .%”are accommodated in explicit
nuisance parameters.

I look forward to continued development in both shape theory and Grenander’s pattern theory, to
mutual challenges and to further cross-fertilization, e.g. as in Mardia et al.’s (1991) use of shape
distributions as shape priors in deformable template models.

Jim Kay (University of Stirling): I wish to congratulate the authors on their impressive achievements
as described in this paper. It is most interesting to see these further implementations of Professor
Grenander’s seminal work in image analysis and pattern theory. I believe that the methodology of the
paper is relevant to the following problem, although there are potential complications.

Parasitologists wish to develop an automated image analysis procedure for the identification of the
parasite Gyrodactylus salaris and its discrimination from other species of Gyrodactylus. This pathogen
is known to have been responsible for the eradication of populations of wild salmon in Norwegian rivers
and it is desired that monitoring stations in the UK can detect its presence on salmon. A largish database
of images of the various species of Gyrodactylus is available, having been obtained by using both scanning
electron microscopy (SEM) and light microscopy (LM). The differences between the species are subtle,
except to one of the few world experts, and involve the shapes of the hooks that are used by the parasites
to attach to the host salmon. For each specimen one could hopefully, and automatically, extract the
shape of its hooks and exploit the fact that there is greater between-species variability of shape than
within-species variation to classify a specimen. However there are two complications. Firstly, owing
to cost and availability, it is required that the system uses LM images which have a coarser resolution
than that of SEM images. However, the availability of a training set of images in both imaging modalities
means that some kind of shape calibration might be performed. Secondly, the shapes of the hooks depend
on covariates such as the temperature of the water (time of year) and its salinity. In particular, seasonal
effects can be quite dramatic. Note that the data are collected cross-sectionally rather than longitudinally
and so approaches such as tracking would not seem to be directly applicable. Thus it would seem that
the classification procedure will require to be performed conditionally on the values of these and possibly
other covariates. Would the authors be prepared to offer any suggestions?

Andrew Lawson (Dundee Institute of Technology): I would like to make the following comments
on issues relating to object recognition and the use of prior information. My comments echo those of
Professor Baddeley and Marie-Colette van Lieshout in that prior distributions from stochastic geometry
are of great use in object modelling. Both Poisson process and Markov process object models can describe
a rich class of spatial structures with relatively simple parameterization. For example, Markov line process
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models can be used to model linear features found in the mitochondria examples. In some situations
the clustering tendency of objects is of prime importance: such features as cluster centre estimation
and membership labelling can also be modelled under Poisson cluster or Cox process models. Markov
chain Monte Carlo methods for object models have been discussed by Baddeley and van Lieshout (1992b,
1993) and, specifically, for the case of clustering by Lawson (1993) and Lawson et al. (1993). For example,
cluster centre estimation for the Neyman-Scott cluster model can be based on the posterior likelihood ratio

p(x;i[r})IY) =p ﬁ 1+M exp {—Ljh(v—u)dv},
pPX]y j=1 g\i h(_Yj—xi)

where £() is a radial cluster distribution function, p is the parent rate and u is a proposal centre, X
is the current configuration of n centres and y are the m data points.
This can be included in a Metropolis-Hastings step.

David Phillips (Imperial College of Science, Technology and Medicine, London): The authors are
to be congratulated for presenting an illuminating exposition of state of the art modelling and inferential
algorithms for use in image analysis.

As noted in the paper, realistic image scenes may be composed from the superposition of many shapes
(see the mitochondria images) which can be characterized by using suitable deformable templates. An
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appealing way to model the arrangement and interaction of these shapes, when they are known, is to
embed the templates in a hierarchy, exploiting the interplay between local and global features present
in many types of image.

An example described in Phillips and Smith (1993) relates to models of face images, for which the
hierarchical structure can be schematically represented in the form of a graphical model (see, for example,
Spiegelhalter ef al. (1993)), as illustrated in Fig. 14, where X denotes the segmented image and Y the
observed image.

The use of hierarchical models based on a number of related modelling stages, and exploiting
conditional independence between levels, is an attractive way of approaching many imaging problems
requiring a combination of local and global prior specification, which has the advantage that further
levels of refinement, if required, may easily be added to the model.

Michael W. Vannier (Mallinckrodt Institute of Radiology, St Louis): Characterization of biological
shape variation has had little practical importance since methods for rigorous analysis have significantly
lagged developments in techniques for the acquisition and manipulation of surface and volumetric data
in the last decade. It has not been possible to deal efficiently and reliably with biological shape variations
in clinical medicine. Grenander and Miller have given us a new set of tools to understand biomedical
silhouettes, projection radiographs, serial slices and volumetric image data sets. An extension to three
and four dimensions where shape varies with time is awaited.

An application to populations allows the separation of individual differences from normal variation.
Grenander and Miller’s work will revolutionize allometry applied to the study of normal and abnormal
human growth and development, interspecies variation and sexual dimorphism. Their method provides
a mathematically tenable means to isolate markers for testing heritability of traits through quantitative
genetic analysis.

Magnetic resonance imaging (MRI) has emerged recently as a major research and clinical modality
to study the brain, heart, musculoskeletal system and other organs and body regions. Despite great
flexibility in conducting imaging experiments that yield high contrast between body tissues, the specificity
for MRI is low. For example, a reliable separation of normal brain tissue components such as grey
matter, white matter, cerebrospinal fluid and others is very difficult.

Statistical pattern recognition has been applied with modest success to the segmentation of MR scans.
These methods are based on feature extraction from observed measurements categorized according to
a rule set. Supervised methods are often required owing to instrument signature and measurement
variations so fully automatic segmentation of MR data sets has not been practical. Superior results were
demonstrated by Grenander and Miller with an important generalization of statistical pattern recognition
to achieve what no other method has been able to do—to increase the specificity of MRI.

Neuromorphometric studies of the brain in subpopulations afflicted with neuropsychiatric disorders
are performed in vivo by using MRI, based on the premise that symptomatic individuals share regional
shape and volume differences which correspond to focal abnormalities. Identification of these sites
requires high precision image analysis that cannot be achieved manually, not to mention the tedium
of processing large numbers of images. Using the methods of Grenander and Miller, we can automatically
scale, register, segment and label complex MR images, given the existence of prior knowledge in the
form of an electronic atlas or text-book.

The authors replied later, in writing, as follows.

Statistical knowledge representations

In response to Professor Clifford’s thought-provoking remarks concerning “is this really statistics?’,
‘is it information engineering?’, we make an analogy with statistics in the early 20th century. At that
time large-scale sample surveys became common with a theory for their design just beginning to appear.
What had earlier appeared intractable could now be handled, both because mechanical devices (such
as the Hollerith machine) became available and because the theoretical underpinning for the inferences
required had been created. Today we are faced with a new situation with powerful new sensor modalities
becoming available which make it possible to acquire astronomical amounts of data fast and at rapidly
decreasing costs. The user is forced to develop tools for utilizing the data sets. This is not just a matter
of developing relevant software, although that is of course needed. We must also learn to represent
the knowledge that will scientifically support the inference algorithms, and give a conceptual basis for
their formal development. We have argued that pattern theory provides such a framework.
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But then, who is going to do it? It is difficult to see how probabilistic ideas can be avoided with
the immense variability inherent in biomedical image ensembles. This is familiar territory for the
statistician and engineer of the signal processing type as well. The mathematics used in our paper may
not be familiar to all statisticians, but the way of thinking about data, whether Bayesian or not, certainly
belongs to the statistical field and our hope is that more statisticians will be attracted to this challenging
endeavour.

Turning to Professor Besag, an innovator in our field of study, he points out that related methods
‘may also be useful in more conventional statistical problems’ and we certainly agree. In our paper
we have remarked, pointing to several case-studies, that the application to mitochondria micrographs
is a special case of a methodology of wide applicability. In all such cases the fundamental difficulty
lies in the creation of knowledge representations. This will be true a fortiori in the near future when
we have to deal with gigabytes of information. The derivation of the inference algorithms from these
representations will require considerable effort. Dr Petrou emphasizes that ‘the task of creating regular
structures to represent knowledge is the task’. We agree. It is tempting just to apply generally known
statistical principles to the image ensembles without modelling the underlying structure.

Modelling and constructing the prior distribution

Professor Kent’s insight concerning the usefulness of the ‘mirror symmetry’ for the mitochondria
prior is fully appreciated. It has not yet been incorporated, although we are currently investigating its
applicability and the associated sine-cosine all-real rotation; instead of the cyclic group to characterize
invariances we could use the dihedral group. We appreciate his careful examination of the assumptions
associated with our complex block diagonalization of the block stationary processes. Concerning
simplifying the covariances, the basis representation is used to enforce closure. Flowing through the
rotated co-ordinates is not significantly complicated by the non-zero quadratic term that the prior
contributes to the posterior.

Dr Dryden inquires into the actual construction of the prior. 497 mitochondria in 41 images were
hand traced and sampled for constant arc length, with the Fourier transform means and variances
computed. Concerning fixed versus variable numbers of arcs, the jump-diffusion reallocates the number
of arcs (power of 2 for fast Fourier transform use) to maintain roughly constant arc length.

Jump-diffusion strategies

Professor Mumford and Professor Green provide insight into the jump-diffusion mechanics.
Concerning the study of practical choices for the jump sampling two alternative procedures are described.
Professor Mumford is quite correct in that the first approach, shown for the mitochondria and membrane
examples, involves explicit calculation of the transition probability Q(x, dy) over all possible new
boundaries or curve segments. For mitochondria this is crudely approximated by choosing the mean
shape from the prior with placement attempted at 64 alternative places biased via the intersection penalty
into the uncovered part of the grid. For the membranes new segments are added to existing ones requiring
sampling a distribution associated with the single scale-rotation distribution. The second version of
jump selection has also been implemented proceeding by drawing from the prior on shape and position
and accepting via the likelihood. This can be computed exactly; however, in the electron micrograph
application method the first version has been found to be efficient. For the tracking recognition application
the second method is used since drawing from the prior on airplane dynamics is fast and effective.

Concerning Professor Green’s questioning of the applicability of the Gibbs-sampler-like dynamics, the
posterior must be simulated only over the space of configurations in the range of a single jump move.
This corresponds to sampling a distribution associated with single objects which can be of low or high
dimension. The original posterior involves multiple objects, for which direct sampling is impossible.

Professor Mumford’s suggestion to enlarge the space of moves to include stochastic evolution before
accepting is intriguing and our colleague K. Mark has explored this in the computational linguistics
context of sentence parsing (Mark et al., 1992). For realistic grammars exhaustive chart parsing is a
demanding n’-computation (# being sentence length). Random parsing is performed by using a ‘super
move’ consisting of a series of graph changes pushing randomly towards a complete parse. The moves
are not accepted or rejected immediately. The resulting hypothesized complete parse becomes the candidate
which is tested on. The connection to genetic algorithms made by Professor Mumford seems intriguing
in which the power of sampling multiple choices on any one jump transition could perhaps be obtained
while receiving the benefit of diffusion search for spreading candidates through connected parts of
parameter space.
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Professor Mardia raises an important question concerning systematic search versus jump-diffusion.
The jump-diffusion algorithm allows us to organize systematically the components associated with a
brute force search. When first discussing how the deduction process should proceed we thought that

(a) the algorithm should scan the picture looking for large shapes before focusing in, analogous to
saccades in the visual system, which correspond to large jumps in visual space, and
(b) the algorithm should be able to break and fuse objects.

The mathematical structure for organizing these transformations are jump-diffusions. The algorithm
works equally well irrespective of the number of objects: the global search is obtained from the saccades
that it performs via the jump process, the local structure from the diffusion.

Returning to Professor Besag’s discussion of the use of a gradient-based proposer, we have been
motivated to use Langevin search since the mid-1980s because it is natural for continuous-valued variables
and because it supports completely parallel site updating, a desirable feature for parallel machine
implementation. Interesting analytic formulae result. For example theorem 3 shows that variation of
the posterior with respect to shape parameters corresponds to line integrals around the boundary; in
Miller et al. (1993) this has been extended to three dimensions with corresponding surface integrals.
Dr Petrou comments on our choice of the continuum, and the difficulties which arise with scaling on
a discrete lattice. In imaging the lattice is often chosen, although it is often a technological artefact
related to the sensor and not the parameter space. The continuum is actually simpler since the Euclidean
spaces support natural similarity groups: translation, scaling, rotation, affine groups and projective
transformation as well.

Hierarchical graph models

We applaud Professor Amit and Dr Phillips for their latest developments using graph-based templates.
The introduction of a hierarchy of graphs with the more general generators forming the patterns is
a major emphasis of our work. For example, examine the stochastic phrase structure language models
explored in Mark et al. (1992). The graphs are trees with loops at the leaves. The generators are the
production rules of a probabilistic context-free grammar describing the way in which non-terminals
(syntactic variables) may be rewritten. The bond values are the non-terminals and terminals (words).
A configuration consists of a set of generators (production rules), placed at the sites of the tree graph
type £ =FOREST. To accommodate Markov relationships on the leaves (terminals or words) of the
trees, interactions between the words in the lexicon are enforced. Acceptor functions on the bond values
are chosen to reflect the stochastic structure of random branching processes (Harris, 1963; Grenander,
1967; Miller and O’Sullivan, 1992) on the context-free tree bases of the derivations and the Markov
chain structure on the word (leaves) of the tree.

The parameters for such a model were estimated from a subset of the Penn TreeBank corpus consisting
of 1013789 words in 42254 sentences which have been machine parsed and hand corrected using a context-
free grammar containing 24 111 rules to the preterminal level and 78929 to the word level. Markov leaf
structure was estimated from 389440 bigrams and 744162 trigrams in the data. Mark has compared
the entropies of four different language models: the mixed graph model, compared with the bigram
and trigrams Markov chain models and a purely context-free random branching process model. The
power of the mixed graph model is the discriminability that it provides (as measured via the entropy
decrease) as a function of the number of parameters. As shown in Fig. 15 the mixed graph model provides
dramatic reductions in entropy for a small addition of parameters.

Knowledge representations on the continuum

Professor Goodall, Professor Bookstein and Professor Vannier raise significant points concerning the
future of complex knowledge representations. Professor Goodall suggests that ‘shape theory will become
increasingly complex . . . the distinction blurs as computational Bayes becomes the most viable strategy’.
We agree. Indeed, as biologists and engineers develop ever more powerful technologies for image
acquisition the analysts will be forced to incorporate huge amounts of information in their representations.

Professor Bookstein suggests that a small number of parameters or landmarks are closely linked to
representations of knowledge. Our work on mitochondria, membranes and anatomy has given rise to
representations in the continuum, involving high dimensional vector fields. Specialized landmarks when
available (sulci, fissures, etc.) can be accommodated in the methods, and we are currently doing this.
As emphasized by Professor Vannier, the advent of new imaging modalities makes it possible to generate
massive data sets which accurately represent the 2-3 dimensional geometry in the near continuum.
Examine the questions that our collaborators are investigating. Felleman and Van Essen (1991) are
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Fig. 15. Comparison of the model entropy of the four language models: the mixed graph model, the bigram and
trigram models, and the context-free branching process model

studying the shape and folding of neocortex; Csernansky et al. (1991) are quantifying the morphological
changes in the brain associated with schizophrenia. Having a precise representation in the continuum
seems essential. To illustrate, shown in Fig. 16 are sections from visual cortex taken from David Van
Essen’s laboratory at an approximate 10X increase in resolution over the magnetic resonance data.
Figs 16(a) and 16(b) show slices from two different macaque monkeys; Fig. 16(d) shows a result generated
by Christensen et al. (1993) of the top left anatomy elastically deformed into the top right. Fig. 16(c)
shows the extent of the necessary deformation as applied to the original grid.

Dr Wiffen and Dr Rabe first made us aware of their work at the 1993 Leeds workshop on three-
dimensional shape. These are exemplary of what we believe to be an area of growing applications:

(a) (b)

(c) (d)

Fig. 16. (a), (b) Two visual cortical slices from two macaque monkeys, (c) the deformed grid and (d) the result
of deforming (a) into (b) (data from David Van-Essen and Tom Coogan)
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(a) (b) (c)

Fig. 17. Result of elastically deforming (a) a 128° voxel, three-dimensional MPRAGE magnetic resonance volume
into (b) the individual is shown in (c): notice how similar the magnetic resonance data and the faces are in (b) and
(c) (data taken from collaborators Marcus Raichle and Michael Vannier)

the mixture of linear, surface and volume representations. As shown in Fig. 17, we have built our first
three-dimensional magnetic resonance imaging (MRI) text-book of the human head including both the
soft tissue facial surface, bony skull and brain volume. Figs 17(a) and 17(b) show the facial surface
and volumes of two individuals from full three-dimensional MRI volumes generated in Michael Vannier’s
laboratory. Fig. 17(c) shows a three-dimensional elastic deformation generated by Christensen et al.
(1994) of the left volume into the middle volume. We are currently examining surface representations
such as proposed by Dr Rabe for inclusion in the text-book.

Jump-diffusion strategies

Professor Ripley alludes to the tracking results mentioned in the comprehensive book of Blake and
Yuille (Harris, 1992). Automated target tracking and recognition are well-known problems in the vast
control and signal processing literature. Multiple-target tracking posed as state estimation is discussed
extensively in Bar-Shalom and Fortmann (1988) and Bar-Shalom (1990), including feature-based tracking
such as alluded to by Ripley (Harris, 1992). Dynamics-based Kalman filter techniques are emphasized,
with linear equations of state playing a fundamental role. For situations in which the observed data
are non-linear in target parameters the use of the extended Kalman filter has been proposed. More relevant
is the growing body of work on tracking from sensor arrays based on Schmidt’s classical characterization
of the so-called array manifold. Linear state to data models do not apply. Recognizing this, investigators
(Rao et al., 1993; Sastry et al., 1991; Sword et al., 1990) have explored generation of gradient-based
estimators of the position (state) at each instant of time from the likelihood; these estimators serve as
the measurements in the Kalman filter state equations. Simplifications are again required: targets are
assumed stationary with multiple measurements at each sample time (required so that the gradient-based
estimates are asymptotically Gaussian (Rao et al., 1993)), and linear models of target dynamics (usually
constant velocity—constant acceleration) are adopted. More fundamental is the explicit separation of
the tracking and recognition problems.

The approach used here is to couple the recognition and tracking problems reflecting the fact that
the rotational and translational motions of rigid bodies as described via the classic set of Newtonian
differential equations are coupled. The recognition data provide the orientation information. As shown
in Fig. 8 random sampling via the jump-diffusion allows for the conditional mean to be generated from
the single unified posterior on the tracking and recognition data. The family of graph changes correspond
to increases and decreases in track length and changes in target type. The acceptance-rejection alternative
analogous to the second part on theorem 4 was used.

Professor Baddeley, Dr van Lieshout and Dr Lawson point out that various aspects of the random
inference algorithm exhibit close resemblance to spatial birth-and-death processes. Closer scrutiny,
however, reveals a host of differences and difficulties which we have attempted to solve systematically
and precisely. It is suggested that the configurations be viewed as realizations of marked point processes,
the marks taking values in Euclidean spaces. Priors, such as the Strauss distribution as used by
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Dr van Lieshout, would then become available. For rigid and regular shapes, models which control
overlap may be helpful. For highly deformable biological shape such as mitochondria it does not appear
that a prior distribution based on centres and radii will be informative. Our approach via the intersection
penalty is to encode spatial interactions by using a completely connected graph at the object level with
areas laboriously painted and calculated for the Gibbs potential. A second point concerns the apparent
similarity of our jump-diffusion construction to various allusions to jump processes or diffusions.
Examine the reference to Geyer and Mgller’s Metropolis-Hastings algorithm: containing a mixture of
transition kernels, the first an analogue of the diffusion and the second the jump. This is misleading
as in the aforementioned work the random algorithm simply proposes on fixed times, with no gradient.
In the work of van Lieshout (1993) and Baddeley a diffusion component is not included although positions
in Euclidean spaces of the rigid objects are parameters of interest. Gradient search through the connected
parts of the space seems natural; a mathematical framework (such as our theorem 4) allowing for the
state to evolve continuously between random jump times, and to be carried forwards after the jump,
seems extremely important. But this also presents technical challenges. The state space is not compact
implying that the drifts are not bounded over R". Periodizing or reflecting the translation-rotation
group does not seem natural to us. So to prove irreducibility and thus uniqueness of the invariant measure
we cannot use the standard theorems on the existence of densities for diffusions (as was elegantly done
in Geman and Hwang (1987)). In van Lieshout (1993), although interested in R, theorems for the jump
process are proven in a bounded or discrete subset of R”. We have been more ambitious. Irreducibility
is proven for the diffusion within each Euclidean space by proving that for a new killed process (defined
by first passage out of compact subsets) a density exists, implying irreducibility within each subspace
via the diffusions; irreducibility over the full state space follows from the jumps (see Grenander and
Miller (1991) and Amit et al. (1993) for technical details).
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