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Summary. Reversible jump methods are the most commonly used Markov chain Monte Carlo
tool for exploring variable dimension statistical models. Recently, however, an alternative ap-
proach based on birth-and-death processes has been proposed by Stephens for mixtures of
distributions.We show that the birth-and-death setting can be generalized to include other types
of continuous time jumps like split-and-combine moves in the spirit of Richardson and Green.
We illustrate these extensions both for mixtures of distributions and for hidden Markov models.
We demonstrate the strong similarity of reversible jump and continuous time methodologies by
showing that, on appropriate rescaling of time, the reversible jump chain converges to a limiting
continuous time birth-and-death process. A numerical comparison in the setting of mixtures of
distributions highlights this similarity.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods for statistical inference, in particular Bayesian
inference, have become standard during the past 10 years (Cappé and Robert, 2000). For vari-
able dimension problems, often arising through model selection, a popular approach is Green’s
(1995) reversible jump MCMC (RJMCMC) methodology. Recently, however, in the context
of mixtures of distributions, Stephens (2000) rekindled interest in the use of continuous time
birth-and-death processes for variable dimension problems, following earlier proposals by Rip-
ley (1977), Geyer and Møller (1994), Grenander and Miller (1994) and Phillips and Smith
(1996). We shall call this approach birth-and-death MCMC (BDMCMC) sampling and its
generalizations continuous time MCMC (CTMCMC) sampling.
In this paper, we investigate the similarity between the reversible jump and birth-and-death

methodologies. In particular, it is shown in Section 4 that, for any BDMCMCprocess satisfying
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Université Paris 9—Dauphine, F-75775 Paris Cedex 16, France.
E-mail: xian@ceremade.dauphine.fr
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some weak regularity conditions, there is a sequence of RJMCMC processes that converges, in
a sense specified later, to the BDMCMC process.
In their application of RJMCMC methods to mixtures of distributions, Richardson and

Green (1997) implemented two types of move that could change the number of components
of the mixture: one was the birth-and-death move, in which a new component is created or an
existing one is deleted, and the other was the split-and-combine move, in which one component
is split in two, or two components are combined into one. In contrast, Stephens (2000) only dealt
with birth-and-death moves to keep the algorithm within the theory of marked point processes
on general spaces, while pointing out that ‘one can envision a continuous time version of the
general reversible jump formulation’.We showhere that continuous time algorithms are not lim-
ited to the birth-and-death structure and that convergence of reversible jump to birth-and-death
MCMC methodology is much more general. For example, split-and-combine moves could be
incorporated, resulting in more general CTMCMC algorithms, and the appropriate theoretical
framework is that ofMarkov jump processes. To complete our study of the connections between
RJMCMC and CTMCMC methods, we implemented a full-scale numerical comparison with
moves similar to those in Richardson and Green (1997) used in both algorithms: the outcome
is the same for both samplers, with a longer execution time for CTMCMC algorithms.
The paper is organized as follows: in Section 2 we review the main features of the BDMCMC

methodology, including moves that are more general than birth-and-death moves in Section 2.4
and variance reduction techniques in Section 2.5. This technology is exemplified for hiddenMar-
kov models in Section 3. Section 4 addresses a comparison of this approach with RJMCMC
methodology, recalling the basics of RJMCMC methods in Section 4.1, establishing conver-
gence of RJMCMC to BDMCMCmethods in Section 4.2 and detailing the numerical compar-
ison of both algorithms in Section 4.4. Section 5 concludes the paper with a discussion.

2. Continuous time Markov chain Monte Carlo methodologies

In this section we review BDMCMC methods in the mixture case that was considered by Ste-
phens (2000) and we discuss the extension of the birth-and-death moves to other continuous
time moves. Although Stephens (2000) provided a full description of the method in the specific
set-up of mixtures of distributions, CTMCMC sampling is limited neither to birth-and-death
moves nor to mixture models. For example, CTMCMC methods may be applied to any of the
examples in Green (1995). See also Ripley (1977), Geyer and Møller (1994), Grenander and
Miller (1994) and Phillips and Smith (1996), where broader descriptions of continuous time
approaches can be found. In particular, Ripley (1977) introduced the concept of simulating a
birth-and-death process to approximate its limiting distribution, even though he was interested
in a problem of fixed dimension, whereas Geyer and Møller (1994) proposed a Metropolis–
Hastings algorithm for spatial point processes and argued the superiority of this scheme com-
pared with a continuous time approach, as did Clifford and Nicholls (1994).

2.1. A reference example: mixture models
Our bench-mark is a mixture model, with probability density function of the form

p.y|k,w,�/ =
k∑
i=1

wif.y|φi/,

where k is the unknown number of components, w = .w1, . . . ,wk/ are the component weights,
� = .φ1, . . . ,φk/ are the component parameters and f.·|φ/ is some parametric class of densities
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indexed by a parameter φ, like the Gaussian, the gamma, the beta or the Poisson family.
The component weights are non-negative numbers summing to 1. Mixture models have been
extensively considered in the literature but remain a challenging setting for variable dimension
techniques.
The above densities are written as conditional on the parameter φ, given the Bayesian per-

spective of the paper.Hencewe need to specify a prior density for .k,w,�/, denoted by r.k,w,�/.
Here, r is a density with respect to a product measure, made of the counting measure in
the k-dimensions and of the Lebesgue measure in the .w,�/ dimension. We make no further
assumptions about the prior, except that it is proper and exchangeable for each k, i.e. invariant
under permutations of the pairs .wi,φi/. We do not impose any ordering of the φi, motivated
by identifiability concerns (Richardson and Green, 1997). We also denote the likelihood as

L.k,w,�/ =
m∏
i=1
p.yi|k,w,�/,

where y = .y1, . . . ,ym/ is the observed data. The posterior density, which is our starting-
point for inference, is thus proportional to r.k,w,�/L.k,w,�/. More realistic models typically
involve hyperparameters, which add no further difficulty. Below we set � = .w,�/, with k being
implicit in this notation, and Θ.k/ denotes the space of k component parameters.
A feature that is inherent to mixture models is that we may associate with each observation yi

a label or allocation zi ∈ {1, . . . , k}, with P.zi = j | k,w/ = wj, that indicates from which com-
ponent yi was drawn. Given the data, these labels can be sampled independently according to

P.zi = j|k,w,�, yi/ = wj f.yi|φj/
/

k∑
l=1

wl f.yl|φl/: .1/

This simulation is called completing the sample as, following EM terminology, .z,y/ is referred
to as the complete data. As detailed in Section 3 and as demonstrated in Celeux et al. (2000)
for mixtures, completion is not necessary from a simulation point of view. Richardson and
Green (1997) devised an algorithm that carries along the complete data through all moves of
the sampler. In contrast, the algorithm of Stephens (2000) works with incomplete data, i.e. y
alone, in the dimension changing moves, but completes the data at regular intervals to carry
out a resampling of all the parameters and hyperparameters except k.

2.2. Birth-and-death Markov chain Monte Carlo methods
In Stephens’s (2000) form of BDMCMC sampling, new components are created (born) in con-
tinuous time at a rate β.�/, where � refers to the current state of the sampler. Whenever a new
component is born, its weight w and parameter φ are drawn from a joint density h{�; .w,φ/}.
To include the new component, the old component weights are scaled down proportionally to
make all the weights, including the new one, sum to 1, i.e.wi := wi=.1+w/. The new component
weight–parameter pair .w,φ/ is then added to �. We denote these operations by ‘∪’, so the new
state is � ∪ .w,φ/. Conversely, in a .k+ 1/-component configuration � ∪ .w,φ/, the component
.w,φ/ is killed at rate

δ{�; .w,φ/} = L.�/ r.�/

L{� ∪ .w,φ/} r{� ∪ .w,φ/}
1

k + 1
β.�/ h{�; .w,φ/}
.1 − w/k−1 : .2/

The factor .1−w/k−1 in equation (2) results from a change of variable when renormalizing the
weights. Indeed, when the component .w,φ/ is removed, the remaining component weights are
renormalized to sum to 1. We denote these operations by ‘\’, so � = {� ∪ .w,φ/}\.w,φ/.
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An important feature of BDMCMC sampling is that a continuous time jump process is
associated with the birth-and-death rates: whenever a jump occurs, the corresponding move is
always accepted. The acceptance probability of usual MCMC methods is replaced by the dif-
ferential holding times. In particular, implausible configurations, i.e. configurations such that
L.�/ r.�/ is small, die quickly.

2.3. The Markov jump process view and local balance
The birth-and-death process described in the previous subsection is a Markov jump process:
whenever it reaches state �, it stays there for an exponentially distributed time with expecta-
tion depending on �, and, after expiry of this holding time, jumps to a new state according to
a Markov transition kernel. To ensure that a Markov jump process has an invariant density
that is proportional to L.�/ r.�/, it is sufficient, although not necessary, that the local balance
equations

L.�/ r.�/ q.�, �′/ = L.�′/ r.�′/ q.�′,�/ for all �,�′ .3/

are satisfied (Preston, 1976; Ripley, 1977; Geyer and Møller, 1994). Here q.�,�′/ is the rate of
moving from state � to �′. Special care is required with such considerations, however, since the
transition kernel of the jump chain typically does not have a density with respect to a single
dominating measure. For example, after killing a component the new state is completely known
given the current state. This problem also occurs for RJMCMC samplers, as exemplified by the
measure construction in Green (1995), and we do not detail it further here. Further reading on
Markov jump processes may be found in, for example, Preston (1976), Ripley (1977), sections
2 and 4, and Breiman (1992), chapter 15, sections 5 and 6.
Let us now derive equation (2) from equation (3). In the particular case of birth-and-death

moves and a k-component configuration �, equation (3) takes the form

L.�/ r.�/ β.�/ h{�; .w,φ/}=.k + 1/! .1 − w/k−1

= L{� ∪ .w,φ/} r{� ∪ .w,φ/} δ{�; .w,φ/}=k!, .4/

which indeed leads to equation (2). The justification for the various factors in equation (4)
is as follows: the factorials k! and .k + 1/! arise from the exchangeability assumption on the
mixture components. Given that we do not impose an ordering constraint on φ1, . . . ,φk, there
are k! and .k + 1/! equivalent ways of writing � and � ∪ .w,φ/ respectively. The equivalence is
to be understood as giving the same likelihood, prior and posterior densities. The 1=.k + 1/!
and 1=k! terms thus appear as the probabilities of selecting one of the .k + 1/! and k! possible
ways of writing � ∪ .w,φ/ and � in the birth-and-death moves. This selection is immaterial,
since it has no relevance for the posterior distribution. Furthermore, b.�/ h{�; .w,φ/} is the
density of proposing a new component .w,φ/, and .1 − w/k−1 is again a Jacobian arising from
renormalization of the weights. This determinant should be associated with the density h, as
the .k+ 1/-component parameter � ∪ .w,φ/ is not drawn directly from a density on Θ.k+1/, but
rather indirectly through first drawing .w,φ/ and then renormalizing. To compute the resulting
density on Θ.k+1/ we must then calculate a Jacobian. Thus,

q{�, � ∪ .w,φ/} = β.�/ h{�; .w,φ/}=.1 − w/k−1:

2.4. Generalizations of birth-and-death Markov chain Monte Carlo methods
Stephens (2000) resampled component weights and parameters with fixed k, as well as hyper-
parameters, at deterministic times (as opposed to the random occurrences of the birth-and-death
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moves). This makes the overall process inhomogeneous in time. We can incorporate similar
moves into the continuous time sampler by adding a continuous time process in which, in state
�, such moves occur at rate γ.�/. Birth-and-death rates stay the same. The rates for resampling
the component weights, parameters and hyperparameters could also be different.
A further generalization is to introduce other moves, like the split-and-combine moves of

Richardson and Green (1997). We consider here the special case where, as in Green (1995),
the combine move is deterministic. For simplicity θ denotes an element of the k-component
parameter �. Thus, in a mixture context, typically θ = .w,φ/.
As for the RJMCMC proposal, the split move for a given component θ of the k-component

vector � is to split this component so as to give rise to a new parameter vector with k+1 compo-
nents, defined as ..� \ θ/ ∪ T.θ, "// where T is a differentiable one-to-one mapping that outputs
two new components and " is a random variable with density function p. We also assume that
the mapping is symmetric in the sense that

P{T.θ, "/ ∈ B′ × B′′} = P{T.θ, "/ ∈ B′′ × B′} for all B′,B′′: .5/

We denote the total rate of splitting by η.�/ and assume that, in a split move, each component is
chosen with equal probability 1=k. Conversely, the local balance equation (3) provides, for any
of the k.k − 1/=2 pairs of components of �, the rate of combining them. In this particular case,

2 L.�/ r.�/
η.�/

k
p."/

∣∣∣∣@T.θ, "/@.θ, "/

∣∣∣∣
/
.k + 1/!

= L{.� \ θ/ ∪ T.θ, "/} r{.� \ θ/ ∪ T.θ, "/} q[{.� \ θ/ ∪ T.θ, "/},�]=k!:
As before the factorials arise as probabilities of selecting particular representations of � and
.�\θ/ ∪ T.θ, "/, and η.�/=k is the rate of splitting a particular component as η.�/ is the overall
splitting rate. The coefficient 2 is due to the fact that a component can be split into two pairs
that are identical apart from the ordering and that occur with the same probability because of
the symmetry assumption (5); otherwise we would have to replace p."/ with the average of two
terms. Thus, the rate of combining two components, q[{.�\θ/ ∪ T.θ, "/},�], is

2
L.�/ r.�/

L {.� \ θ/ ∪ T.θ, "/} r {.� \ θ/ ∪ T.θ, "/}
η.�/

.k + 1/k
p."/

∣∣∣∣@T.θ, "/@.θ, "/

∣∣∣∣ : .6/

In Section 4.3, we shall derive this rate directly from Richardson and Green’s (1997) sampler.

2.5. Sampling in continuous time: a new Rao–Blackwellization
For a discrete time RJMCMC sampler, its output is typically monitored after each step, or
at regular intervals to decrease intersample correlation as in Ripley (1977), section 5, and
Richardson and Green (1997).
In continuous time there are more options. For example, the process may be sampled at reg-

ular times, as in Stephens (2000), or at instants given by an independent Poisson process. In
either case posterior means E[g.�/|y] are estimated by sample means

N−1
N∑
1

g{�.τi/},

where {θ.t/} is the CTMCMC process and the τis are the sampling instants. Under the former
sampling scheme, if the sampling interval tends to 0, we effectively put a weight on each state
visited by {�.t/} that is equal to the length of the holding time in that state, when computing the
sample mean. Before elaborating further on this idea, we introduce some additional notation.
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Let Tn be the time of the nth jump of {�.t/} with T0 = 0. By the jump chain we mean the
Markov chain {�.Tn/} of states that are visited by {�.t/}. We denote this chain by {�̃n}, i.e.
�̃n = �.Tn/. Let λ.�/ be the total rate of {�.t/} leaving state �, i.e. the sum of the birth- and all
death-rates, plus the rates of all other kinds of move that there may be. Then the holding time
Tn−Tn−1 of {�.t/} in its nth state �̃n−1 has a conditional exponential Exp{λ.�̃n−1/} distribution.

Returning to the sampling scheme, we can reduce sampling variability by replacing the weight
Tn − Tn−1 by its expectation 1=λ.�̃n−1/. In this way the variances of estimators built from the
sampler output are decreased: both the numerator and the denominator have reduced variance
by virtue of the Rao–Blackwell theorem, since

N∑
n=1

g.�̃n−1/

λ.�̃n−1/
=

N∑
n=1
E[Tn − Tn−1 | �̃n−1] g.�̃n−1/

and likewise for the denominator. The asymptotic variance of the ratio

N∑
n=1

g.�̃n−1/

λ.�̃n−1/

/
N∑
n=1

1

λ.�̃n−1/

can then be shown to be smaller than when using Tn − Tn−1 in place of 1=λ.�̃n−1/, following
Geweke (1989).
When sampling {�.t/} this way, we only simulate the jump chain and store each state that it

visits and the corresponding expected holding time. Alternatively, the expected holding times
may be recomputed when post-processing the sampler output. The transition kernel of the jump
chain is as follows: the probability that an event happens is proportional to its rate. For exam-
ple, the probability of a birth is β.�/=λ.�/, and if a birth occurs the new component weight and
parameter are drawn from h{�; .w,φ/} as before. Thus we need to compute all rates when simu-
lating the jump chain, just as we do when simulating {�.t/}. All possiblemoves are incorporated
into the Rao–Blackwellized estimator, not only those that are selected.
This reformulation of the continuous time algorithm has more than practical appeal for the

approximation of integrals. Indeed it highlights a point that will be made clearer in Section 4,
namely that the continuous time structure is paramount neither for the MCMC algorithm nor
for the approximation of integrals.

3. An illustration for hidden Markov models

Before moving to the comparison with the RJMCMCmethod, we illustrate the potential of our
continuous time extension in the set-up of hidden Markov models (Robert et al., 2000).

3.1. Setting
In this generalization of the mixture model, the observations yn are such that, conditional on
a hidden Markov chain {zn} with finite state space {1, . . . , k}, yn is distributed as an N .0,σ2

zn
/

variate. Therefore, marginally, yn is distributed from a mixture of normal distributions.
Unlike previous implementations, we choose to parameterize the transition probability

matrix of the Markov chain {zn} by P = .ωij/ as follows:

P.zn+1 = j|zn = i/ = ωij

/
k∑
l=1

ωil:

The ωijs are therefore not identified, but this parameterization should facilitate the MCMC
moves, provided that a vague proper prior is selected, since it relaxes the constraints on those
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moves. Further, this reparameterization allows for a point process representation of the problem
(Preston, 1976; Ripley, 1977; Geyer and Møller, 1994). The prior model consists of a uniform
prior U{1, : : : ,M} on k, an Exp.1/ prior on the ωijs, a uniform U.0,α/ prior on the σis and a
data-dependent Exp.5max |yn|/ prior on the hyperparameter 1=α; Robert et al. (2000) noted
that the factor 5 in the exponential distribution was of little consequence. We stress that we
impose no identifiability constraints by ordering the variances, in contrast with Robert et al.
(2000). Another major difference is that, as in Stephens (2000), we do not use completion to run
our algorithm, i.e. the latent Markov chain {zn} is not simulated by the algorithm. This can
be avoided because of both the forward recursive representation of the likelihood for a hidden
Markov model (Baum et al., 1970), which has been used before in Robert et al. (1999), and
the random-walk proposals as in Hurn et al. (2003). Although it is not strictly necessary from
an algorithmic point of view (Robert et al., 1999), this choice facilitates the comparison with
Stephens (2000).

3.2. The moves of the continuous time Markov chain Monte Carlo algorithm
Since Robert et al. (2000) implemented reversible jumps for this model, we focus on the
CTMCMC counterpart, extending Stephens (2000) to this framework. In addition to birth-
and-death moves, which were enough to provide good mixing in Stephens (2000), we are forced
to introduce additional proposals, similar to those in Richardson andGreen (1997), because we
observed that the birth-and-death moves are not, by themselves, sufficient to ensure fast con-
vergence of the MCMC algorithm. The proposals that we add are split-and-combine moves, as
described earlier, andfixed kmoves,where theparameters aremodifiedvia a regularMetropolis–
Hastings step. The latter proposals are essential in ensuring irreducibility and good convergence
properties.
The birth-and-death and fixed k moves are simple to implement and are equivalent to those

given in Hurn et al. (2003) with fixed k moves relying on random-walk proposals over the
transforms log.ωi/ and log{σi=.α − σi/}.
The split-and-combine move follows the general framework of Section 2.4 with a combine

rate given by expression (6). We used ηS as an individual splitting rate which is the same for
all components. This means that the overall rate of a split move for a k-component vector is
η.�/ = kηS. In the practical implementation of the algorithm, we chose ηS = ηB = 2 and
ηF = 5, where ηB and ηF correspond to the birth and fixed k move rates respectively.
In the case of the above normal hidden Markov model, a split of state i0 into states i1 and i2

involves four different types of actions.

(a) The first is a split move in row j �= i0 for ωj,i0 as

ωj,i1 = ωj,i0"j,

ωj,i2 = ωj,i0.1 − "j/,
where "j ∼ U.0, 1/. This proposal is sensible when thinking that both new states i1 and
i2 issue from state i0 and the probabilities of reaching i0 are thus distributed between the
probabilities of reaching the new states i1 and i2 respectively.

(b) The second is a split move in column i �= i0 for ωi0,i as

ωi1,i = ωi0,iξi,

ωi2,i = ωi0,i=ξi,

where ξi ∼ LN .0, 1/. The symmetry constraint (5) is thus satisfied, i.e. ξi and 1=ξi have
the same log-normal distribution. Before this, we tried a half-Cauchy C+.0, 1/ proposal,
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which also preserves the distribution under inversion, but this led to very poor mixing
properties of the algorithm.

(c) The third action is a split move for ωi0,i0 as

ωi1,i1 = ωi0,i0"i0ξi1 ,

ωi1,i2 = ωi0,i0.1 − "i0/ξi2 ,
ωi2,i1 = ωi0,i0"i0=ξi1 ,

ωi2,i2 = ωi0,i0.1 − "i0/=ξi2 ,

where "i0 is uniform on .0, 1/ and ξi1 and ξi2 are LN .0, 1/.
(d) The last is a split move for σ2

i0
as

σ2
i1

= σ2
i0
"σ,

σ2
i2

= σ2
i0
="σ,

where "σ ∼ LN .0, 1/.
The combine move is chosen in a symmetric way, so that states i1 and i2 are combined into

state i0 by taking first the geometric average of rows i1 and i2 in the unnormalized transition
probability matrix and then adding columns i1 and i2. One can check that this sequence of
moves also applies to the particular case of ωi0,i0 . The variance σ2

i0
is the geometric average

of σ2
i1
and σ2

i2
. Appendix B details the computation of the corresponding Jacobian.

3.3. An illustration
For a comparison with Robert et al. (2000), we consider a single data set studied there, namely
the wind intensity in Athens (Francq and Roussignol, 1997). Since the prior distribution on the
σs is a uniform U.0,α/ distribution, α is a hyperparameter that is estimated from the data set in
a hierarchical way and updated through a slice sampler (see Robert et al. (2000) for details) via
an additional process with intensity ηα, set equal to 1. The variances σ2

i , being constrained to
be smaller than α2, are updated via a Gaussian random-walk proposal in the α-logit domain,
i.e. by using the transform log{σ=.α − σ/} and its inverse.
Fig. 1 summarizes the output for this data set. As in Robert et al. (2000), we obtain a mode of

the posterior distribution of k at k = 3, although the posterior distribution differs slightly in our
case since the posterior probabilities for k = 1, 2, 3, 4 are 0.0064, 0.1848, 0.7584, 0.0488, to be
comparedwithTable 1 ofRobert et al. (2000). Fig. 1 also provides the distribution of the number
of moves per time unit (on the continuous time axis). The log-likelihoods cover a wider range
than those found in Robert et al. (2000), although the highest values are the same. For instance,
the largest likelihood for k = 2 is −688, whereas it is −675 for k = 3 and −670 for k = 4. That
we find lower log-likelihoods than with RJMCMC techniques is to be expected since, although
both RJMCMC and CTMCMC algorithms explore the same target distribution, continuous
time algorithms can explore more unlikely regions in the parameter space, like the tails of the
target, by downweighting states with shorter lifetimes.

4. Comparisons of reversible jump Markov chain Monte Carlo with
continuous time algorithms

In this section we provide a comparison of reversible jump and continuous timemethodologies,
starting with a review of RJMCMC methods within the framework of mixtures.
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Fig. 1. CTMCMC algorithm output for a sequence of 500 wind intensities in Athens: (a) equal time sample
of ks; (b) corresponding log-likelihood values; (c) histogram of the number of moves per unit time; (d) MCMC
sequence of the probabilities πj of the stationary distribution of the three components when conditioning on
k D 3; (e) same graph for the σj s
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4.1. Reversible jump Markov chain Monte Carlo methods
In a k-component state �, at each iteration, the simplest version of the reversible jump algorithm
proposes with probability b.�/ to create a new component and with probability d.�/ to kill one.
Obviously, b.�/ + d.�/ = 1, if we do not account for fixed k moves at this level. If an attempt
to create a new component is made, its weight and parameter are drawn from h{�; .w,φ/} as
above. If an attempt to kill a component is made then, for instance, in a mixture model, each
component is selected with equal probability. A new component is accepted with probability
min.1,A/, where

A = A{�; � ∪ .w,φ/}

= L{� ∪ .w,φ/} r{� ∪ .w,φ/}
L.�/ r.�/

.k + 1/!
k!

d{� ∪ .w,φ/}
.k + 1/ b.�/

.1 − w/k−1

h{�; .w,φ/}

= L{� ∪ .w,φ/} r{� ∪ .w,φ/}
L.�/ r.�/

d{� ∪ .w,φ/}
b.�/

.1 − w/k−1

h{�; .w,φ/} : .7/

Here the first ratio is the ratio of posterior densities, b.�/ h{�; .w,φ/} is the density corres-
ponding to proposing a new component .w,φ/ and d{� ∪ .w,φ/}=.k + 1/ is the probability of
proposing to kill component .w,φ/when in state �∪ .w,φ/. Finally .1−w/k−1 is the same Jaco-
bian determinant as above, and the factorial ratio arises from the exchangeability assumption.
Recall that, unlike in Section 3, the wis sum to 1. If a proposal to kill a component .w,φ/ of a
.k + 1/-component state � ∪ .w,φ/ is made, the acceptance probability is min.1, 1=A/, where
A = A{�; � ∪ .w,φ/} is as above.
RJMCMC sampling typically involves other kinds of move like fixed kmoves resampling the

component weights, parameters φi and, possibly, hyperparameters—see, for example, Rich-
ardson and Green (1997). A complete sweep of the algorithm consists of the composition of
a birth-and-death move with these other fixed k moves. Sampling for a fixed k can be carried
out by using a Gibbs move after completing the sample according to equation (1). As noted
above, Richardson and Green (1997) designed additional moves for splitting and combining
components.

4.2. Convergence to birth-and-death Markov chain Monte Carlo sampling
In this section we construct a sequence of RJMCMC samplers converging to the BDMCMC
sampler.
Before proceeding we introduce some additional notation. Let Sk−1 = {.w1, . . . ,wk/ : wi >

0,Σiwi = 1} and let Φ denote the space in which each φi lies. Hence Θ.k/, the space of k-
dimensional parameters, is Θ.k/ = Sk−1 × Φk. Finally let Θ = ∪k�1Θ.k/ denote the overall
parameter space.
For N ∈ N we define an RJMCMC sampler by defining birth-and-death probabilities

bN.�/ = 1 − exp{−β.�/=N},
dN.�/ = 1 − bN.�/ = exp{−β.�/=N},

where β.�/ is the birth-rate of the BDMCMC sampler. ThenA also depends onN, and we write
A = AN . We remark that, as N → ∞, bN.�/ ∼ β.�/=N, and if β.�/ is bounded we can take
instead bN.�/ = β.�/=N. The state at time n = 0, 1, . . . of theNth RJMCMC sampler is denot-
ed by �Nn , and for each N we construct a continuous time process {�N.t/}t�0 as �N.t/ = �N�Nt�,
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where �·� denotes the integer part. The state of the BDMCMC sampler at time t � 0 is denoted
by �.t/.
We now consider what happens as N → ∞. The probability of proposing a birth in state �

tends to 0 as β.�/=N. Hence the acceptance ratio AN tends to ∞, so a birth proposal is always
accepted. If time is speeded up at scale N, on the nominal timescale the limiting process of
accepted births in state � is a Poisson process of rate β.�/. Furthermore, the scaled probability
of deleting component .w,φ/ in a state � ∪ .w,φ/ ∈ Θ.k+1/ is

N dN.�/
min[1, 1=AN{�; � ∪ .w,φ/}]

k + 1

→ L.�/ r.�/

L{� ∪ .w,φ/} r{� ∪ .w,φ/}
1

k + 1
β.�/

h{�; .w,φ/}
.1 − w/k−1 as N → ∞:

and the right-hand side is just δ{�; .w,φ/}, given in equation (2). Considering the rescaled time
axis and the independent attempts to create or delete components, in the limit the waiting time
until this component is killed has an exponential distribution with rate δ{�; .w,φ/}, agreeing
with the BDMCMC sampler. Thus, as N → ∞ a birth is rarely proposed but always accepted
and a death is almost always proposed but rarely accepted. Both these schemes result in wait-
ing times which are asymptotically exponentially distributed with rates in accordance with the
BDMCMC sampler. Thus, we may expect that, as N → ∞, the processes {�N.t/} and {�.t/}
will become increasingly similar.
We shall now make this reasoning strict, starting with the following assumptions.

(a) Φ has a separable topology which can be metrized by a complete metric.
(b) β.�/ is positive and continuous on Θ.
(c) r.�/ and L.�/ are positive and continuous on Θ.
(d) For each .w,φ/ ∈ .0, 1/× Φ, h{·; .w,φ/} is continuous on Θ and for each � ∈ Θ there is

a neighbourhood G of � such that sup�′∈G{h.�′; ·/} is integrable.

We first note that, since the standard topology on the open unit interval .0, 1/ is separable
and can be metrized by a complete metric, e.g.

d.x, y/ = | log{x=.1 − x/} − log{y=.1 − y/}|,
Sk−1 can be viewed as a complete separable metric space. Then Θ, with the induced natural
topology, is a space of the same kind. The process {�.t/} is a Markov process on Θ which we
assume has sample paths inDΘ[0,∞/, the space ofΘ-valued functions on [0,∞/which are right
continuous and have left-hand limits everywhere.
We then derive the following result (see Appendix A for a proof).

Theorem 1.Under assumptions (a)–(d) and assuming that �.0/ and �0 are drawn from the
same initial distribution, {�N.t/}t�0 converges weakly to {�.t/}t�0 in the Skorohod topology
on DΘ[0,∞/ as N → ∞.

4.3. Convergence to other continuous time processes
Recall again that, in Richardson and Green’s (1997) version, the RJMCMC sampler also in-
cludes a split-and-combine move. More precisely, using the same notation as in Section 4, they
proposed to split a randomly chosen component of the k-component vector � with probability
sN.�/ to give rise to a new parameter vector with k+ 1 components, defined as .� \ θ/∪ T.θ, "/.
Conversely, the probability of proposing to combine a randomly chosen pair of components of
� (there are k.k − 1/=2 pairs) is denoted by cN.�/ = 1 − sN.�/.
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A split move changing the k-component vector � to .�\θ/∪T.θ, "/ has acceptance probability

min
[
1,
L {.� \ θ/ ∪ T.θ, "/} r {.� \ θ/ ∪ T.θ, "/}

L.�/ r.�/

.k + 1/!
k!

× cN{.� \ θ/ ∪ T.θ, "/}k
sN.�/ k.k + 1/=2

1
2 p."/

∣∣∣∣@T.θ, "/@.θ, "/

∣∣∣∣
−1 ]

:

If, as above, we let sN.�/ = 1 − exp{−η.�/=N} for some η.�/, so that N sN.�/ → η.�/, and
accordingly scale by N the trajectory of the corresponding discrete time sampler, the limiting
continuous time process has a rate of moving from .� \ θ/ ∪ T.θ, "/ to � by a combine move
which is given by expression (6). Convergence of RJMCMC to continuous time processes thus
occurs in a broader context than within the birth-and-death framework of Stephens (2000).

4.4. A numerical comparison of both methodologies
Although theorem 1 establishes a strong connection between RJMCMC and CTMCMCmeth-
odology, by showing that CTMCMC sampling can be arbitrarily well approximated by an
RJMCMC algorithm, it does not imply that in practice both approaches perform equivalently,
e.g. in terms of computational cost. We thus carried out a numerical comparison of both
approaches based on identical moves and identical proposals on both sides. Further imple-
mentational details are provided in Appendix C. In this comparison, we chose to remain within
the framework of mixtures of distributions, partly because the setting is simpler than hidden
Markovmodels and partly because most of the earlier literature on the topic relates to this area.
We use the galaxy data set (Roeder, 1990).

4.4.1. Implementational issues
We first discuss computational aspects of both discrete and continuous time algorithms. In
continuous time settings, once a state � has been visited, it is necessary to compute the rates
of all possible moves leading to an exit from that state, i.e. O.k/ and O.k2/ computations for
birth-and-death and split-and-combinemoves respectively. Discrete time settings do not require
this exhaustive checking, as the acceptance ratio of a move is not computed until the move has
been proposed. This advantage of RJMCMC sampling is, however, mitigated by three facts.

(a) For continuous time moves such as births and splits, the rates are typically very simple
(e.g. constant) and it is only the death or combine rates that are expensive to compute.

(b) Except for small data sets, the cost of evaluating the acceptance probability in RJMCMC
sampling mainly lies in computing the log-likelihood at the parameters proposed accord-
ing to

log{L.k,w,�/} =
m∑
i=1

log
{

k∑
j=1

wj f.yi|φj/
}
, .8/

which involves O.k × m/ computations. For mixture models, the computation that is
associated with RJMCMC sampling thus also increases proportionally to k.

(c) At the expense of storing all values f.yi|φj/ as in Stephens (2000), it is possible to reduce
significantly the cost of repeated evaluations of equation (8). For instance, in a death
proposal the only required new computations are the summations in i and j, omitting
the index of the component selected. Although this remark also applies to the RJMCMC
sampler, it is most profitable when applied to the implementation of the continuous time
sampler.
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Thus, when only birth-and-death moves are used, the average computation times for simu-
lating one jump of the continuous time sampler and one step of the reversible jump sampler
are comparable. In our implementation, the former is longer by a factor which varies between
1.5 and 2, depending on the data set. In contrast, the computation time for continuous time
simulation with split-and-combine moves is a factor 3 longer for the galaxy data set.

4.4.2. Birth-and-death samplers
We first contrast the performance of the two types of sampler, RJMCMC and CTMCMC,
when only birth-and-death moves are used in addition to moves that do not modify the number
of components. Except for the fine details of the proposals that are described in Appendix C
and the absence of completion in the fixed k moves, we are thus in the setting considered by
Stephens (2000). Note, however, that for CTMCMC sampling we adopted the Rao–Black-
wellization device that is discussed in Section 2.5 (weighting each visited configuration by the
inverse of the overall rate of leaving rather than by the corresponding exponentially distributed
holding time). We proposed the fixed k moves according to an independent Poisson process of
rate ηF, which leaves the overall continuous time process Markovian, whereas Stephens (2000)
proposed these moves at fixed regular times. By setting the probability PF of proposing a fixed
k move in RJMCMC sampling equal to the rate ηF = 0:5 at which fixed k moves are proposed
in CTMCMC sampling and likewise PB = ηB = 0:25 for the birth moves, we guaranteed that
the moves were proposed in equal proportions by both samplers. The most important aspect is
that both the reversible jump and the continuous time sampler were implemented using exactly
the samemove proposals to the point of sharing the same routines, which allows for meaningful
comparisons. In what follows, we compare the performance of both samplers when the number
of jumps (the number of configurations visited) in CTMCMC sampling is equal to the number
of iterations of the RJMCMC algorithm.
Themainmessage here is conveyed byFig. 2which shows that there is no significant difference

between the samplers:whether it is for a small (5000) or a large (500000) number of iterations, the
accuracy of the estimated posterior probabilities for all allowed values of k is equivalent for both
samplers. Other signals like posterior parameter estimates conditional on a fixed k tend to show
even less difference; this is not surprising given that both samplers share the same fixed kmoves.
Another evaluation of the performance of MCMC samplers is provided by the autocovari-

ance function of simulated traces. To implement this idea for the continuous time sampler, the
Rao–Blackwellized continuous timepath—i.e. the path of the continuous timeprocesswhere the
inverse rates are substituted for the corresponding holding times—was sampled regularly, with a
number of points equal to the number of jumps. Fig. 3 shows the resulting autocovariance for the
posterior simulations of k for both RJMCMC and CTMCMC sampling, estimated on 2million
iterations after discarding a burn-in period of 8 million iterations. Once again, both samplers
are seen to perform equivalently: although all moves are accepted in the CTMCMCmethod, the
mixing is not significantly improved over RJMCMC sampling because of the weighting mech-
anism. This is well captured by Fig. 4 which shows that only about 30% of the configurations
that are visited by the continuous time sampler are maximally weighted. Conversely, 15% of
the configurations have a negligible weight, a situation which occurs when there is at least one
death move which has a very large rate.

4.4.3. Samplers with split-and-combine moves
Richardson and Green (1997) suggested that for mixture models it is profitable to allow moves
that can combine two components into a single one or conversely split a component. The



692 O. Cappé, C. P. Robert and T. Rydén

   2    4    6    8   10  12  14  
 0 

   

0.1

   

0.2

   

0.3

k

   2    4    6    8   10  12  14  
 0 

   

0.1

   

0.2

   

0.3

   2    4    6    8   10  12  14  
 0 

   

0.1

   

0.2

   

0.3

k

   2    4    6    8   10  12  14  
 0 

   

0.1

   

0.2

   

0.3

   2    4    6    8   10  12  14  
 0 

   

0.1

   

0.2

   

0.3

po
st

er
io

r 
pr

ob
ab

ili
ty

k

   2    4    6    8   10  12  14  
 0 

   

0.1

   

0.2

   

0.3

po
st

er
io

r 
pr

ob
ab

ili
ty

(a) (b) (c)

(d) (e) (f)

Fig. 2. Box plots for the estimated posterior on k obtained from 200 independent runs for the galaxy data
set: (a) RJMCMC sampling, 5000 iterations; (b) RJMCMC sampling, 50000 iterations; (c) RJMCMC sam-
pling, 500000 iterations; (d) CTMCMC sampling, 5000 iterations; (d) CTMCMC sampling, 50000 iterations;
(e) CTMCMC sampling, 500000 iterations
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Fig. 4. Empirical distribution function of the inverse rates in CTMCMC sampling: the maximal value cor-
responds to the addition of the fixed rates, 1=.ηF C ηB/ D 1=.0:3 C 0:35/, and thus occurs in configurations
in which all death-rates are negligible

inclusion of suchmoves in the CTMCMC framework is straightforward and has been discussed
in Section 4.3.
Fig. 5 is the equivalent of Fig. 2 with all types of move enabled; here, PF = ηF = PB =

ηB = PS = ηS = 0:2 is used, where PS and ηS are the probability of proposing a split move in
RJMCMC sampling and the split rate in CTMCMC sampling respectively. Looking in greater
detail at the plot for 5000 iterations, it is possible to see a small advantage for the continuous
time sampler: the reversible jump sampler has a small downward bias for k = 3 and its vari-
ability is slightly larger for all bins. Part of the explanation is that the weights (inverse rates) in
the continuous time sampler have a very similar distribution for the death and combine moves
whereas the acceptance probabilities for these are very different in the reversible jump sampler,
where deaths are accepted about three times more often. This is because, even when k is large,
there are always at least one or two pairs which have a reasonable rate of being combined and
these are selected by the continuous time sampler. In contrast, when k is large, the reversible
jump sampler has a low probability of drawing precisely these few pairs.
Another interesting conclusion to be drawn from Fig. 2 and Fig. 5 is that the inclusion of

the split-and-combine moves does not significantly improve the accuracy of the results. This is
understandable for RJMCMC sampling since split proposals need to be very carefully tuned to
maintain reasonable acceptance probabilities (see also Appendix C). For CTMCMC sampling,
however, the same conclusion is also true despite the advantage that was mentioned above.
In conclusion, if we were to rank all the techniques on the basis of their computation time,

as detailed in Section 4.4.1, the optimal choice would be the RJMCMC method with birth
and death only, very closely followed by the equivalent CTMCMC sampler, then, at some dis-
tance, RJMCMC sampling with both types of dimension changing moves enabled and finally
CTMCMC sampling in the same conditions, which is unattractive because of its high compu-
tational cost.
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Fig. 5. Box plots for the estimated posterior on k obtained from 5000 independent runs for the galaxy data
set: (a) RJMCMC sampling, 5000 iterations; (b) RJMCMC sampling, 50000 iterations; (c) CTMCMC sampling,
5000 iterations; (d) CTMCMC sampling, 50000 iterations

5. Discussion

Our work suggests that there is no clear-cut improvement in using CTMCMC algorithms:
although discrete time moves can also be implemented in continuous time, this alternative
implementation does not bring a visible improvement in the performances of the algorithms. If
anything, the continuous time samplers are slower, because they involve a consideration of the
whole range of possible moves and their respective rates after each move. Repeated calls to the
likelihood function are very costly in computing time and/or memory.
The advantage of continuous time samplers is rather their ability to move to unlikely places:

given that the split and birth-rates are independent of the data, the algorithm can impose moves
to low probability regions of the parameter space. Such regions are of little interest for infer-
ence but they can constitute a kind of springboard for the Markov chains, allowing these to
move from one mode of the posterior distribution to another. But this potentially better mixing
behaviour can only be achieved when a wide variety of moves is proposed simultaneously, as
illustrated in Fig. 5.
A typical set-up of BDMCMC sampling is to let β.�/ be constant, say β.�/ = 1, since a

different constant only rescales time. Likewise, for RJMCMC sampling b.�/ = d.�/ = 1
2 is

typical, except for states � with k = 1 for which b.�/ = 1. Under these assumptions, equations
(2) and (7) relate as A = .k+ 1/δ−1. Since both samplers have the same stationary distribution,
we find that, if one of the algorithms performs poorly, so does the other. For RJMCMC
sampling this is manifested as small As—birth proposals are rarely accepted—whereas for
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BDMCMC sampling it is manifested as large δs—new components are indeed born but die
again quickly.
The ‘attractive alternative’ toRichardson andGreen (1997) in terms ofmixing over the values

of k, as reported in Stephens (2000), section 5.3, is thus not to be sought in the continuous time
nature of his algorithm, but rather in the different choices that are made in the sampler: Ste-
phens (2000) used birth-and-death moves only for modifying the dimension of the model, and
these moves did not involve the complete data, i.e. the component labels, whereas Richardson
and Green (1997) used split-and-merge moves as well and carried along the component labels
through all moves, including the dimension changing moves. The issue of completion is not
directly related to the central theme of this paper, but it may be that the absence of completion
explains the different behaviour of the sampler. This was not the case, however, in the fixed k
mixture setting that was studied by Celeux et al. (2000).
Finally we perceive Rao–Blackwellization as an advantage of continuous time algorithms;

this feature is, as noted above, obtained at no extra cost. Rao–Blackwellization could in prin-
ciple be carried out in discrete time as well—holding times have geometric distributions—but,
there, the expected holding times cannot be computed easily; see equation (9) in the proof of
lemma 1 in Appendix A. See also Casella and Robert (1996) for another Rao–Blackwellization
of Metropolis algorithms.
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Appendix A: Proofs

For � ∈ Θ.k/, let

λ.�/ = β.�/+
k∑
i=1

δ{� \ .wi,φi/; .wi,φi/}

be the overall rate of leaving state � in the BDMCMC sampler and let λN.�/ be the overall probability of
moving away from state � (in one step) in the RJMCMC sampler.

Before proving the theorem, we state and prove a lemma.

Lemma 1. For each k � 1 and �
′ ∈ Θ.k/, there is a neighbourhood G ⊆ Θ.k/ of �

′ such that
sup�∈G |NλN.�/− λ.�/| → 0 as N → ∞.

Proof. We first note that, for � ∈ Θ.k/, λN.�/ can be written

λN.�/ =
∫
bN.�/ min[AN{�; � ∪ .w,φ/}, 1] h{�; .w,φ/} d.w,φ/

+
k∑
i=1
dN.�/

1
k
min[A−1

N {� \ .wi,φi/; �}, 1]: .9/
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Thus

sup
�∈G

|N λN.�/− λ.�/|

�
∫

sup
�∈G

|N bN.�/ min[AN{�; � ∪ .w,φ/}, 1] h{�; .w,φ/} − β.�/ h{�; .w,φ/}| d.w,φ/ .10/

+
k∑
i=1

sup
�∈G

∣∣∣∣1kN dN.�/ min[A−1
N {� \ .wi,φi/; �}, 1] − δ{� \ .wi,φi/; .wi,φi/}

∣∣∣∣: .11/

We start by looking at the ‘birth part’ (10) of this expression.We shall prove that it tends to 0 by showing
that the integrand tends to 0 for all .w,φ/ andby showing that the integrand is dominated, for all sufficiently
large N, by an integrable function. Bound the integrand as

sup
�∈G

|N bN.�/min[AN{�; � ∪ .w,φ/}, 1]h{�; .w,φ/} − β.�/h{�; .w,φ/}|

� sup
�∈G

|N bN.�/− β.�/| × 1 × sup
�∈G

[h{�; .w,φ/}] .12/

+ sup
�∈G

{β.�/} sup
�∈G

|min[AN{�; � ∪ .w,φ/}, 1] h{�; .w,φ/} − h{�; .w,φ/}|: .13/

For β � 0 and N > β,

β

N
− 1

2
β2

N2
� 1 − exp

(
− β

N

)
� β

N
,

so ∣∣∣∣N
{
1 − exp

(
− β

N

)}
− β

∣∣∣∣ � β2

2N
:

Hence, for sufficiently large N, expression (12) is bounded by
1
2N

sup
�∈G

{β2.�/} sup
�∈G

[h{�; .w,φ/}]; .14/

by assumptions (b) and (d) in Section 4.2 for an appropriate G this expression tends to 0 as N → ∞ and
is dominated by an integrable function.

Regarding expression (13), it is dominated by an integrable function similar to expression (14) (remove
1=2N and the squaring), and it remains to show that it tends to 0 as N → ∞. We have

|min[AN{�; � ∪ .w,φ/}, 1] h{�; .w,φ/} − h{�; .w,φ/}| = h{�; .w,φ/}

− min
[
L{� ∪ .w,φ/} r{� ∪ .w,φ/}

L.�/ r.�/

dN{� ∪ .w,φ/}
bN.�/

.1 − w/k−1, h{�; .w,φ/}
]
:

By assumption (c) in Section 4.2, for each .w,φ/, L{� ∪ .w,φ/} r{� ∪ .w,φ/} and L.�/ r.�/ are bounded
away from ∞ and 0 respectively, on a sufficiently small G. Likewise, by assumption (b), dN{� ∪ .w,φ/}
and bN.�/ tend to 1 and 0 respectively, uniformly over such a G. Finally, by assumption (d), h{�; .w,φ/}
is bounded on an appropriate G, and we conclude that expression (13) tends to 0 uniformly over G as
N → ∞ if G is sufficiently small.
We now turn to the ‘death part’ (11). By arguments that are similar to those above, for large N and

sufficiently small G it holds that
1
k
N dN.�/min[A−1

N {� \ .wi,φi/; �}, 1]

= 1
k
N min

[
L{� \ .wi,φi/} r{� \ .wi,φi/}

L.�/ r.�/

bN{� \ .wi,φi/} h{� \ .wi,φi/; .wi,φi/}
.1 − wi/k−2

, dN.�/
]

− L{� \ .wi,φi/} r{� \ .wi,φi/}
L.�/ r.�/

1
k

N bN.�/ h{� \ .wi,φi/; .wi,φi/}
.1 − wi/k−2

uniformly over G, and, also using arguments as above, one can show that the right-hand side of this
expression converges to δ{� \ .wi,φi/; .wi,φi/} as N → ∞, uniformly over a sufficiently small G. �
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Recall the definitions of jump times and the jump chain in Section 2.5. The sequence {�̃n, Tn − Tn−1}
of visited states and holding times form a Markov renewal process. The transition kernel of this process
is denoted by K, i.e. K.�;A × B/ = P.�̃n ∈ A, Tn − Tn−1 ∈ B | �̃n−1 = �/. Since {�.t/} is Markov, the
conditional distribution of Tn − Tn−1 given �̃n−1 = � is exponential with rate λ.�/. In addition, �.Tn/ and
Tn − Tn−1 are conditionally independent. Similarly, {�N.t/} is a semi-Markov process with jump times
{TNn } in the lattice i=N, and the kernel of the associated Markov renewal process is denoted by KN .
Since {�Nn } is Markov, �N.TNn / and T

N
n − TNn−1 are conditionally independent given �

N
.TNn−1/.

A.1. Proof of theorem 1
Using results of Karr (1975), it is sufficient to prove that, for each real-valued uniformly continuous
function g on Θ × [0,∞/,
(a) K g.�/ is continuous on Θ and
(b) KN g.�/ → K g.�/ uniformly on compact subsets of Θ as N → ∞.

We start by showing part (b). By the structure of Θ, it is sufficient to show that, for each �
′ ∈ Θ.k/, there

is a neighbourhood G ⊆ Θ.k/ of �′ such that KN g.�/ → K g.�/ uniformly on G, and this is what we shall
do. For � ∈ Θ.k/, KN g.�/ and K g.�/ can be written

KN g.�/ =
∞∑
m=1

∫
{1 − λN.�/}m−1

bN.�/min
[
AN{�; � ∪ .w,φ/}, 1]h{�; .w,φ/}g

{
� ∪ .w,φ/, m

N

}
d.w,φ/

+
∞∑
m=1

{1 − λN.�/}m−1
k∑
i=1
dN.�/

1
k
min

[
A−1
N {� \ .wi,φi/; �} , 1] g

{
� \ .wi,φi/, m

N

}

=
∫ ∞

0

∫
{1 − λN.�/}�Nu�

N bN.�/min
[
AN {�; � ∪ .w,φ/} , 1]

× h{�; .w,φ/}g

{
� ∪ .w,φ/, �Nu�

N

}
dud.w,φ/

+
∫ ∞

0
{1 − λN.�/}�Nu� k∑

i=1
N dN.�/

1
k
min

[
A−1
N {� \ .wi,φi/; �} , 1] g

{
� \ .wi,φi/, �Nu�

N

}
du,

K g.�/ =
∫ ∞

0

∫
λ.�/ exp{−λ.�/u}β.�/

λ.�/
h{�; .w,φ/}g{� ∪ .w,φ/, u}dud.w,φ/

+
∫ ∞

0

k∑
i=1

λ.�/ exp{−λ.�/u}δ{� \ .wi,φi/; .wi,φi/}
λ.�/

g{� \ .wi,φi/, u}du

=
∫ ∞

0

∫
exp{−λ.�/u}β.�/h{�; .w,φ/}g{� ∪ .w,φ/, u}dud.w,φ/

+
∫ ∞

0

k∑
i=1

exp{−λ.�/u}δ{� \ .wi,φi/; .wi,φi/}g{� \ .wi,φi/, u}du,

where �x� is the smallest integer that is no smaller than x.
We again start by looking at the ‘birth parts’ of the kernels, bounding the corresponding part of

|KN g.�/−K g.�/| as
∫ ∞

0

∫
sup
�∈G

∣∣∣∣∣{1 − λN.�/}�Nu�N bN.�/min
[
AN{�; � ∪ .w,φ/} , 1] h{�; .w,φ/}

× g

{
� ∪ .w,φ/, �Nu�

N

}
− exp{−λ.�/u}β.�/h{�; .w,φ/}g{� ∪ .w,φ/, u}

∣∣∣∣∣dud.w,φ/:
We wish to prove that this expression tends to 0 as N → ∞. We can do this by showing that the integrand
tends to 0 for all u � 0 and all .w,φ/ and that there exists a dominating (for all sufficiently large N)
integrable function.

To accomplish this, we add and subtract a number of telescoping terms, giving us
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sup
�∈G

∣∣∣∣∣{1 − λN.�/}�Nu�N bN.�/min
[
AN{�; � ∪ .w,φ/}, 1]h{�; .w,φ/}g

{
� ∪ .w,φ/, �Nu�

N

}

− exp{−λ.�/u}β.�/h{�; .w,φ/}g{� ∪ .w,φ/, u}
∣∣∣∣∣

� sup
�∈G

∣∣∣∣∣{1 − λN.�/}�Nu� − exp{−λ.�/u}
∣∣∣∣∣ sup�∈G

{N bN.�} × 1 × h̄.w,φ/ ||g||∞

+ sup
�∈G

[
exp{−λ.�/u}]

sup
�∈G

{N bN.�/} × 1 × h̄.w,φ/ δg
1=N

+ sup
�∈G

[
exp{−λ.�/u}]

sup
�∈G

|N bN.�/− β.�/| × 1 × h̄.w,φ/ ||g||∞

+ sup
�∈G

[
exp{−λ.�/u}]

sup
�∈G

{β.�/} sup
�∈G

|min
[
AN{�; � ∪ .w,φ/}, 1] h{�; .w,φ/}

− h{�; .w,φ/}| ||g||∞,

where h̄.w,φ/ = sup�∈G [h{�; .w,φ/}] and

δg
1=N = sup

∆..�,u/,.�′ ,u′//�1=N

|g.�, u/− g.�
′, u′/|

is the modulus of continuity of g; ∆ is a metric making Θ × [0,∞/ separable and complete. All the terms
on the right-hand side except the first can be treated as in the proof of lemma 1, with the extra observation
that λ.�/ � β.�/ is bounded away from 0 on compact subsets of Θ. Moreover, since

{1 − λN.�/}�Nu� � exp{−λN.�/�Nu�} = exp{−N λN.�/.�Nu�=N/},

lemma 1 implies that the first term is, for large Ns, dominated by an integrable function. Finally

{1 − λN.�/}�Nu� − exp{−λ.�/u} � exp{−λN.�/�Nu�} − exp{λ.�/u}
= exp{−λ.�/u} [exp{−λ.�/.�Nu�=N − u/+ �Nu�o.1=N/} − 1],

where, by lemma 1, the o.1=N/ term is uniform over a small G so that the right-hand side tends to 0
uniformly over such aG. The inequality log.1− x/ � −x− 2x2 for 0 � x � 1

2 leads to a reverse inequality
which is handled similarly.

The ‘death parts’ of the kernels, i.e. bounding the corresponding parts of |KN g.�/ − K g.�/|, can be
handled by combining arguments for the ‘birth parts’ and arguments used to prove lemma 1.

Finally requirement (a) above can be proved by using similar techniques.

Appendix B: The Jacobian for the split-and-combine move

The parts of the Jacobian determinant corresponding to the split move in Section 3.2 are

(a) ωj,i0 ,
(b) 2ωi0,i=ξi,
(c)

ω3
i0,i0

∣∣∣∣∣∣∣∣

"i0ξi1 "i0=ξi1 .1 − "i0/ξi2 .1 − "i0/=ξi2
"i0 −"i0=ξ2i1 0 0
0 0 1 − "i0 −.1 − "i0/=ξ2i2
ξi1 1=ξi1 −ξi2 −1=ξi2

∣∣∣∣∣∣∣∣
,

i.e.
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ω3
i0,i0

∣∣∣∣∣∣∣∣

"i0ξi1 0 ξi2 0
"i0 −2"i0=ξ

2
i1

0 0
0 0 1 − "i0 −2.1 − "i0/=ξ2i2

.1 + ξi1/=2 0 −.1 + ξi2 /=2 0

∣∣∣∣∣∣∣∣
= 4ω3

i0,i0
"i0.1 − "i0/=ξi1ξi2

and
(d) this part of the Jacobian can be obtained as

4σ2
i1
σ2
i2
.α − σi1/.α − σi2 /=α.α − σi0/σ

2
i0
,

where σi1 = α-logit−1{α-logit.σi0/ + "σ} and σi2 = α-logit−1{α-logit.σi0/ − "σ} (differentiating
with respect to σ2

i0
).

Appendix C: Implementational details for the numerical comparison experiment

C.1. Model
We consider a Gaussian scalar mixture model with parameters .w1:k,µ1:k, υ1:k/, where the υis are the vari-
ances. The prior modelling is such that

k ∼ U.{1, : : : ,M}/,
w1:k ∼ Dk.1, : : : , 1/,

µi ∼ N .0,κ/,
υ−1
i ∼ Ga.α,β/,

where D denotes the Dirichlet distribution, and with the following hyperparameters (scaled for the recen-
tred galaxy data set):

M = 15,

κ = .max{Yi}1�i�n − min{Yi}1�i�n/2,

α = 0:5,

β = 10−3:

C.2. Sampler
The sampler consists of fixed k, birth-and-death and split-and-combine moves, for both the reversible
jump and the continuous time versions. The fixed kmoves are proposed with probability PF in RJMCMC
sampling and with rate ηF = PF in CTMCMC sampling (for k = M these numbers are both 0). In both
cases, it consists of the three Metropolis–Hasting proposals (weights, means and variances) with inde-
pendent accept or reject decisions. The proposal is a multiplicative log-normal random walk on the wis,
LN .0, η/, followed by a renormalization, an additive normal randomwalk on theµis,N .0, ρ/, and amulti-
plicative log-normal randomwalk on the υis,LN .0, ν/. These moves can just as easily be carried out glob-
ally or one component at a time, but only globalmoves (i.e. with proposal affecting the parameters of all the
components) were used in our simulations. The sampler parameters were tuned to achieve acceptance rates
that stay in the range 0.3–0.7 for all values of k � 15, andwe obtained η = 0:05, ρ = κ=2000k and ν = 0:08:
The normalization of ρ by k tends to stabilize the acceptance rate (with constant ρ the acceptance rate
drops for high values of k). Despite good mixing, these moves alone are not sufficient to generate label
switching (see Celeux et al. (2000)).

Thebirth-and-deathmoves areStephens’s (2000), namely such thatwhen ina k-component configuration
we propose a new component from the prior according tow ∼ Be.1, k/, µ ∼ N .0,κ/, and υ−1 ∼ Ga.α,β/,
where Be is the beta distribution. For the continuous time version of the move, the birth-rate is ηB = PB

(again, these numbers are 0 for k = M) and the death-rates are given by

ηB L.�/=L{� ∪ .w,φ/} × k + 1,

where φ = .µ, υ/; note that h{�; .w,φ/}=.1−w/k−1 in equation (2) cancels with the ratio r.�/=r{�∪.w,φ/}
of prior densities.
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The split-and-combine move is inspired by Richardson and Green (1997). If a component i is proposed
to be split, this is done according to

(a) wi �→ .ξwi, .1 − ξ/wi/ with ξ ∼ Be.γS , γS/,
(b) µi �→ .µi − ξ,µi + ξ/ with ξ ∼ N .0, ρS/ and
(c) υi �→ .υi=ξ, υiξ/ with ξ ∼ LN .0, νS/.

In the current implementation PS is constant except for edge effects (PS.M/ = 0). On the galaxy data,
the choice of parameters that maximizes the acceptance rate for the split-and-combine move is γS = 1,
ρS = 0:2 and νS = 3. However, the acceptance rate is then only 4.3% (compared with 13.3% for the
birth-and-death move).
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