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The last 10 years have witnessed the development of sampling frameworks that permit the construction of Markov chains that simultaneously
traverse both parameter and model space. Substantial methodological progress has been made during this period. In this article we present a
survey of the current state of the art and evaluate some of the most recent advances in this field. We also discuss future research perspectives
in the context of the drive to develop sampling mechanisms with high degrees of both efficiency and automation.
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1. INTRODUCTION

Simultaneous inference on both model and parameter space
is an issue that is fundamental to modern statistical practice. In
general, for observed data x we might consider a countable set
of models, M = {M1,M2, . . . }, indexed by a parameter, k ∈ K,
each with a parameter vector defined on θ k ∈ �k of length nk.
Under a Bayesian framework, we would relate each model to a
posterior distribution,

Mk : π̃k(θ k|x) = πk(θ k|x)

mk(x)

∝ Lk(x|θk)pk(θ k),

generally known only up to a constant of proportionality,
mk(x)−1, where Lk and pk denote the likelihood and para-
meter prior under model Mk. Explicitly expressing mk(x) =∫
�k

Lk(x|θk)pk(θk)dθk as the marginal or predictive densities
of x under model Mk, the normalized posterior probability of
model Mk is given by

Mk(x) = ρkmk(x)
∑|K|

i=1 ρimi(x)
=

(

1 +
∑

i �=k

ρi

ρk
Bik

)−1

, (1)

where Bik = mi(x)/mk(x) is the Bayes factor of model Mi

to Mk, and ρk is the prior probability of model k. (See, e.g.,
Chipman, George, and McCulloch 2001; Berger and Pericchi
2001, 2004; Kass and Raftery 1995; Ghosh and Samanta 2001;
Barbieri and Berger 2004; Robert 2001; George and McCulloch
1996; Madigan and Raftery 1994 for discussion of Bayesian
model selection techniques.) As an alternative to the selection
of a single model, a common approach within the Bayesian
framework is that of model averaging, which incorporates
model uncertainty in addition to parameter uncertainty. Here
interest would be in some predictive density,

π( y|x) =
∫

K

∫

�k

π( y|θk)π̃k(θk|x)dθk dk,

with integration over both model and parameter space. There
is a fantastic literature on the application of Bayesian meth-
ods for model uncertainty. General review articles such as
those by Clyde and George (2004), Chipman et al. (2001),
Clyde (1999a), and Hoeting, Madigan, Raftery, and Volinsky
(1999) contain a wealth of information and references. Simi-
larly, Andrieu, Doucet, and Robert (2004) reviewed the recent
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computational and technological advances relating to Bayesian
analyses, and Müller and Quintana (2004) and Heikkinen
(2003) summarized the current state of nonparametric Bayesian
inference.

A typical Bayesian analysis based on the foregoing will
encounter two related problems. First, the density mk(x) in gen-
eral will be unavailable because of analytic intractability. Sec-
ond, the number of candidate models, |K|, will often be very
large, prohibiting a brute-force calculation of Mk(x) via (1).
One of the more flexible and popular techniques used to over-
come these problems is Markov chain Monte Carlo (MCMC)
methodology. For the approximation of mk(x) in particular,
these include various forms of Metropolis–Hastings samplers.
(See, e.g., Robert and Casella 2004; Cappé and Robert 2000;
Gilks, Richardson, and Spiegelhalter 1996 for a discussion of
standard MCMC methods and implementation issues.) How-
ever, techniques capable of simultaneously considering a large
number of candidate models did not become available until the
mid-1990s.

Almost exactly a decade ago, Green (1995) recast the terms
and definitions involved in the Metropolis–Hastings algorithm
in a more rigorous manner. In particular, the idea of using a
time reversibility condition for the transition kernel of a Markov
chain to ensure convergence to the desired stationary distribu-
tion was extended to more general state spaces. In integral form,
the detailed balance condition for a general transition kernel P
and its invariant distribution π can be written as

∫

(x,x′)∈A×B
π(dx)P(x,dx′) =

∫

(x,x′)∈A×B
π(dx′)P(x′,dx)

(2)

for all Borel sets A × B ⊂ � for a general state space �

(see, e.g., Green 2001; Tierney 1998). The novelty of this
reexpression was that the generality of the state space un-
der consideration now included formulations that could en-
compass multiple models. One often considered instance is
� = ⋃

k∈K �k × {k}, that is, a countable union of subspaces
of possibly varying dimensionality. Via standard Metropolis–
Hastings updates, this development enabled the implementa-
tion of Markov chains simultaneously spanning both parame-
ter and model space, �, with stationary distribution π that is
absolutely continuous in �k for each k ∈ K with respect to the
nk-dimensional Lebesgue measure. As a result, the estimation
of posterior model probabilities and other marginal densities of
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interest is in theory easily obtainable, irrespective of the order
of K. The general class of Markov chains that admit transitions
between states of differing dimension have since been devel-
oped further to achieve a broad family of interrelated sampling
frameworks. Given their model-spanning nature, these have re-
cently been termed transdimensional Markov chains.

This article aims to achieve three objectives: (1) to provide
an accessible evaluation of the current state of the art in terms
of the practical implementation of transdimensional sampling
technologies; (2) to provide an overview of the most recent and
most important developments in multimodel sampling frame-
works, in terms of ongoing theoretical and methodological de-
velopment; and (3) to suggest some perspective of residual open
problems and highlight those facets that would strongly benefit
from further research.

Although transdimensional sampling algorithms are now
well documented in the literature, in the first part of this article
(Sec. 2) we present both a brief overview of the main frame-
works that have been developed in the last 10 years and an
assessment of their impact and implementation, including an
evaluation of the freely available software for this purpose. We
also consider non-Bayesian applications, the efficient estima-
tion of Bayes factors, and the highly important, although fre-
quently overlooked, issue of convergence assessment.

In the second part of this article (Sec. 3), we examine
one facet of transdimensional sampling schemes that holds
considerable potential for future research: the development of
algorithms with increasing degrees of efficiency and automa-
tion. Achieving this—one of the fundamental goals of modern
sampling frameworks—would permit routine implementation
of transdimensional samplers by nonexpert practitioners, per-
haps via stand-alone software packages such as the popu-
lar WinBuGS suite (Gilks, Thomas, and Spiegelhalter 1992;
Spiegelhalter, Thomas, Best, and Gilks 1996b). Recent devel-
opments have made great strides in this direction, providing ad-
vances in the areas of between model transitions in terms of
both efficiency and constructing generic mappings, the exten-
sion of perfect sampling schemes to the transdimensional case,
and progress in default prior specifications over joint model and
parameter spaces.

2. TRANSDIMENSIONAL MARKOV CHAINS AND
THEIR IMPLEMENTATION

A number of frameworks have been proposed since the
mid-1990s that supplement or extend the existing fixed-dimen-
sion Monte Carlo sampling schemes to encompass across
model stochastic simulation. Each scheme may be related to
others in a conceptually straightforward manner, facilitating
natural settings for sampler comparison.

2.1 Sampling Frameworks

Introducing the � = ⋃
k∈K �k × {k} formulation of model

space, Grenander and Miller (1994) proposed a sampling strat-
egy based on continuous time jump-diffusion dynamics. Such
a Markov process essentially jumps between parameter spaces
(and therefore models) at random times, and between the jumps
follows a diffusion process according to a Langevin stochastic
differential equation indexed by time, t, satisfying

dθ t
k = dBt

k + 1

2
∇ logπ(θ t

k)dt, (3)

where dBt
k denotes an increment of Brownian motion and

∇ denotes the vector of partial derivatives. In practice, (3) is
approximated by a discrete-time version with a Metropolis–
Hastings step to preserve the stationary distribution π (Roberts
and Tweedie 1996). This method has found some applica-
tion in signal processing and other Bayesian analyses (e.g.,
Miller, Srivastava, and Grenander 1995; Phillips and Smith
1996), but has in general been superseded by the more acces-
sible reversible-jump sampler (Green 1995). In fact, correcting
for the time-discretization approximation via the Metropolis–
Hastings acceptance probability template, the dump-diffusion
sampler can be shown to result in an implementation of the
reversible-jump algorithm (Besag 1994).

The widely implemented reversible-jump sampler was in-
troduced by Green (1995) in a Bayesian model determination
setting. Tierney (1998) and Green (2003a) both provided inter-
esting expositions on this theme. One reason for the popularity
of this algorithm in particular is conceptual: The framework is
a natural generalization of the standard Markov chain theory,
lending it certain appeal. In general, assuming that detailed bal-
ance (2) is satisfied, we may denote the acceptance probability
of a proposed between-model move from (θ k, k) in model Mk

to the state (θ ′
k′ , k′) in model Mk′ to be min{1,A[(θ k, k) →

(θ ′
k′ , k′)]}. Here

A[(θ k, k) → (θ ′
k′ , k′)]

= Lk′(x|θ ′
k′)pk′(θ ′

k′)ρk′q(k′ → k)qk′(u′
k′)

Lk(x|θk)pk(θ k)ρkq(k → k′)qk(uk)

∣
∣
∣
∣
∂gk→k′(θk,uk)

∂(θ k,uk)

∣
∣
∣
∣,

where θ ′
k′ = gk→k′(θ k,uk) for a random vector uk ∼ qk(u;ψk)

with parameter vector ψk, and q(k → k′) is the probability of
proposing to move from model Mk to Mk′ . Here gk→k′ :�k ×
�

q
k → �k′ denotes a mapping of the state (θ k, k) together

with the vector uk to the state (θ ′
k′ , k′). The mapping satis-

fies gk′→k(gk→k′(θ k,uk),u′
k′) = θk and requires that nk + dk =

nk′ + dk′ , where dk is the dimension of �
q
k (known as “dimen-

sion matching”).
It must be noted that the reversible-jump algorithm is not

limited to the countable set of models M, although it is fre-
quently presented in this context. In fact, one may implement
the sampler without knowing the size of the model space be-
forehand (which may contribute somewhat to the popularity of
the algorithm), although at least some knowledge of the model
space is recommended for the construction of an efficient chain.
The most common setting involving an uncountable number of
models is in Bayesian nonparametrics, where both the num-
ber of basis functions and the functions themselves are free
to vary—via fractional polynomial regression (Royston and
Altman 1994) or free-knot splines, for example. (See Denison,
Holmes, Mallick, and Smith 2002; DiMatteo, Genovese, and
Kass 2001; Denison, Mallick, and Smith 1998; Smith and Kohn
1996 for useful instances of Bayesian nonparametric curve fit-
ting.)

Providing an alternative to samplers designed for implemen-
tation on unions of model spaces, a number of approaches have
developed conventional Markov chain technology on a prod-
uct supermodel space, �∗ = K × ⊗

k∈K �k, that encompasses
all model spaces jointly, thereby circumventing the necessity
of between-model transitions. Defining a composite parameter
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vector, θ∗, consisting of a concatenation of all parameters under
all models, Carlin and Chib (1995) proposed a formulation in
which the posterior distribution for the composite model space
was given by

π(k, θ∗|x) ∝ Lk
(
x
∣
∣θ∗

Ik

)
pk

(
θ∗
Ik

)
pk

(
θ∗
I−k

∣
∣θ∗

Ik

)
ρk,

where Ik and I−k are index sets identifying and excluding the
parameters θk from θ∗. Here Ik ∩ Ik′ = ∅ for all k �= k′, so
that the parameters for each model are distinct. In practice, this
setting requires that the size of the model space, |K|, be fi-
nite, thereby restricting its range of application relative to (say)
the reversible-jump algorithm. Even when this setting is ap-
propriate, a number of impracticalities are apparent for even a
moderately sized model space. Although some of the computa-
tion in sampling the full parameter vector, θ∗, may be avoided
(Godsill 2003; Dellaportas, Forster, and Ntzoufras 2002; Green
and O’Hagan 1998), this approach requires the definition of
pk(θ

∗
I−k

|θ∗
Ik

), termed pseudopriors. Although their specifica-
tion is essentially arbitrary in terms of obtaining the desired
marginal distributions, sampler performance is sensitive to their
specification, introducing practical problems in terms of effi-
ciency and tractability (see Godsill 2001, 2003; Green 2003a
for a discussion). However, it is believed that, in contrast to
the lack of memory of previously visited states inherent in
the reversible-jump sampler, in the product space formulations
(which contain a perfect memory), the information contained
within θ∗

I−k
may be useful in generating efficient between-

model transitions when in model Mk. This idea was exploited
by Brooks, Guidici, and Roberts (2003c), and we consider it in
more detail in Section 3.1.

Comparing the methods of Green (1995) and Carlin and Chib
(1995), Godsill (2001) proposed a further generalization of the
foregoing that achieves enhanced flexibility by permitting in-
dividual model parameter vectors to overlap arbitrarily; that is,
the restriction that Ik ∩ Ik′ = ∅ for all k �= k′ is relaxed. This
may seem intuitive for, say, nested models. The approach of
Godsill (2001) may also be shown to encompass the reversible-
jump sampler, thereby providing a general platform to facilitate
comparisons between all previously introduced algorithms.

An alternative approach to the aforementioned formulations
is based on spatial birth-and-death processes, originally inves-
tigated by Preston (1977) and Ripley (1977). Stephens (2000)
proposed observing particular transdimensional statistical prob-
lems in the guise of continuous-time abstract marked point
processes (see also Geyer and Møller 1994). Finite-mixture
modeling is one such setting with obvious interpretations for
the birth and death of mixture components. Recent work by
Cappé, Robert, and Rydén (2003) has shown that the sampler
of Stephens (2000) may be considered a particular continuous-
time–limiting version of a sequence of reversible-jump algo-
rithms.

A number of illustrative comparisons of the foregoing frame-
works can be found in the literature. Andrieu, Djurić, and
Doucet (2001) and Dellaportas et al. (2002) contrasted re-
versible jump with the pseudoprior approach of Carlin and Chib
(1995), with the former analysis also providing a brief exposi-
tion on jump diffusion methodology. Godsill (2001, 2003) pro-
vided insight into the associations between composite union

and product state-space formulations, and, as mentioned ear-
lier, Cappé et al. (2003) examined the relationship between the
reversible-jump algorithm, the sampler of Stephens (2000), and
more general birth-and-death samplers.

Transdimensional sampling algorithms have had an un-
doubted influence in both the statistical and mainstream re-
search literature. Perhaps not surprising, given the nature of
certain technological advances over recent years, is the number
of genetical applications relative to other subject areas. Over-
all, one in every five citations of Green (1995) can be broadly
classified as genetics-based research. In general, the large ma-
jority of areas in which transdimensional Markov chains have
strongly benefited to date have tended to be computationally
or biologically related. Accordingly, a high number of devel-
opmental and application studies can be found in the signal
processing literature and the related fields of computer vision
and image analysis. Epidemiologic and medical studies also
feature strongly, and MCMC and model selection methodolog-
ical advances are other obvious high-inclusion groupings. With
very few exceptions, the overwhelming use of the reversible-
jump algorithm—and, by implication, transdimensional sam-
plers in general—has been concerned with the generic problem
of model selection.

2.2 Finessing Transdimensionality

Implementation of transdimensional Markov chains typically
involves simultaneous exploration of both model and parame-
ter space. However, depending on the aim or the complexity of
a multimodel analysis, using transdimensional simulation tech-
niques may be somewhat heavy-handed, as reductions to fixed-
dimensional simulations may occasionally be attained. In some
Bayesian model selection settings, transdimensionality can be
avoided if one is prepared to make certain assumptions regard-
ing prior choice, such as conjugacy or objective prior specifica-
tions (Berger and Pericchi 2001). Under these settings, explicit
expressions for posterior model probabilities, mk(x), may be
available (e.g., Casella and Moreno 2002). Similarly, it is not
uncommon to find situations where approximations to mk(x)

may be acceptable. In these cases the only “parameter” of inter-
est is the model indicator k.

A second framework occurs when the full (normalized) con-
ditional distributions, π̃k(θ k|x), for each model Mk are known
in closed form. This also is not uncommon in many conju-
gate models, such as linear regression, regression and classi-
fication trees, decomposable Gaussian and discrete graphical
models, and even exponential family models, where simulation
from block full conditional distributions is feasible. If the ran-
dom vector uk ∼ q(u;ψk) = π̃k′(θ ′

k′ |x) is a draw directly from
this conditional distribution and the proposal state θ ′

k′ deter-
mined through the mapping θ ′

k′ = gk→k′(θ k,uk) = uk, then the
reversible-jump acceptance probability (2.2) reduces to

A[(θ k, k) → (θ ′
k′ , k′)] = ρk′q(k′ → k)mk′(x)

ρkq(k → k′)mk(x)
,

which is independent of both current and proposed parame-
ter states. The algorithm thereby becomes a fixed-dimensional
sampler over the space of models (see, e.g., Clyde 1999b). It is
(or it shortly will be) possible to implement both of these sim-
plified simulation frameworks in the popular WinBuGS suite;
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see Section 2.3. When full model conditionals are not available,
transdimensionality still may be avoided by adopting any of the
product space formulations (Brooks et al. 2003c; Godsill 2001;
Carlin and Chib 1995).

2.3 Implementation

Although most Bayesian analyses are likely to be novel in
some aspect, thereby raising the likelihood that custom-written
code is required for their implementation, at the same time it
is easily appreciable that certain model types recur with suf-
ficient frequency that new analyses may be based loosely on
them. Depending on the nature of an application, it may even
be the case that software is already freely available on the web,
thereby permitting routine implementation of such algorithms
via the code of their authors.

Table 1 lists some of the resources currently available
from the transdimensional sampling community; most fixed-
dimensional analyses may be performed using the WinBuGS
suite. The most well-supported implementations are Gaussian
mixture algorithms of varying forms (Cappé et al. 2003;
Richardson and Green 1997; Sisson and Fan 2004a) and a
number of methods that finesse the transdimensional nature
of variable selection analyses by integrating out the within-
model parameters, θ k, before the analysis. The resulting sim-
ulations may then be performed in WinBuGS (e.g., Katsis and
Ntzoufras 2005; Ntzoufras 2002). Other useful algorithms im-
plement multiple changepoint analyses Green (1995), the auto-
matic sampler of Green (2003a) (discussed further in Sec. 3.3),
and an R (available at http://www.r-project.org) implementa-
tion of the transdimensional algorithm proposed by Petris and
Tardella (2003).

Currently in development for WinBuGS is a new “Jump”
component for the implementation of reversible-jump sampling
for models in which the full conditional distribution for the
within-model parameters is available in closed form (Lunn,
Best, and Whittaker 2004). As discussed in Section 2.2, using
these full conditionals as proposal distributions, the resulting
simplification in the acceptance probability is then independent
of the proposed parameters (which accordingly require genera-
tion only after the proposed move has been accepted). Such an
approach thereby permits an efficient transdimensional imple-
mentation within the WinBuGS framework that retains the full
parameter vectors, which is useful in terms of (say) predictive
inference.

Even when generic or model-specific software is unavail-
able, many articles in the literature provide illuminating details
on implementation of the various samplers. Table 2 provides a
brief selection of just some of these in a range of modeling sce-
narios, and the interested reader is directed to the details therein.
In practice, however, it is apparent that most routine data analy-
ses are performed using the reversible-jump algorithm, given
its more accessible nature. This algorithm is certainly the most
well understood and well developed of all transdimensional
sampling algorithms.

Despite the general dominance of the reversible-jump sam-
pler, there are a number of situations in which adoption of one
of the alternative algorithms may provide a simpler or more
intuitive implementation. For example, when the total number
of models is relatively small, so that the length of the com-
posite parameter vector θ∗ is moderate, then adopting one of
the product-space formulations may be useful (e.g., Ntzoufras
2002). Similarly, the birth-and-death approach has found some

Table 1. Freely Available Software for the Implementation of Transdimensional Samplers, With URL and Primary Citation

Green (2003a) AutoRJ: Automated reversible-jump MCMC
Richardson and Green (1997) Nmix: Bayesian analysis of univariate normal mixtures
Green (1995) Cpt: Bayesian multiple changepoint analysis for point processes

Available from
http://www.stats.bris.ac.uk/∼peter

Cappé et al. (2003) CT/RJ-Mix: Continuous-time and reversible-jump samplers for
Gaussian mixtures
Available from
http://www.tsi.enst.fr/∼cappe/ctrj_mix/

Ntzoufras (2002) Variable/model selection using BuGS
Katsis and Ntzoufras (2005) Available from

http://www.jstatsoft.org/index.php?vol=7;
http://www.ba.aegean.gr/ntzoufras/papers/paper13.htm

Petris and Tardella (2003) HI: Simulation from distributions supported by complex hyperplanes
Available from
http://cran.r-project.org/src/contrib/Descriptions/HI.html

Sisson and Fan (2004a) RjDiag: Convergence diagnostic for transdimensional point
processes (see Nmix)
Available from
http://www.maths.unsw.edu.au/∼scott/

Hoeting et al. (1999) Links to various Bayesian model averaging software
Available from
http://www.research.att.com/∼volinsky/bma.html

Spiegelhalter et al. (1996b) WinBuGS: Software package for the Bayesian analysis of complex
Gilks et al. (1992) models using MCMC

Available from
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
and the “Jump” component to become available from
http://homepages.tesco.net/∼creeping_death/

http://cran.r-project.org/src/contrib/Descriptions/HI.html
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
http://homepages.tesco.net/~creeping_death/
http://www.maths.unsw.edu.au/~scott/
http://www.jstatsoft.org/index.php?vol=7
http://www.ba.aegean.gr/ntzoufras/papers/paper13.htm
http://www.stats.bris.ac.uk/~peter
http://www.r-project.org
http://www.research.att.com/~volinsky/bma.html
http://www.tsi.enst.fr/~cappe/ctrj_mix/
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Table 2. Articles With Detailed Implementations of the Respective Samplers

Jump diffusion
Model comparison Phillips and Smith (1996)
Image segmentation Han, Tu, and Zhu (2004)
Target recognition Miller et al. (1995)

Reversible-jump
Changepoint models Green (2001), Fan and Brooks (2000)
Signal processing Larocque and Reilly (2002), Andrieu et al. (2001)
Mixture models Richardson and Green (1997)
QTL mapping Waagepetersen and Sorensen (2001), Stephens and Fisch (1998)
DNA segmentation Boys and Henderson (2001)

Product space
Switching models Kim and Nelson (2001)
Variable/model selection Spiegelhalter, Thomas, Best, and Gilks (1996a), Katsis and Ntzoufras (2005)

Birth and death
Mixture models Stephens (2000), Marin, Bernal, and Wiper (2003), Hurn, Justel, and Robert (2003)
Hidden Markov models Shi, Murray-Smith, and Titterington (2002)
Switching models Soegner (2000)

application in model settings that may be more naturally ex-
pressed in the point-process setting (Stephens 2000; Cappé
et al. 2003), although these tend to be problem-specific (see Ta-
ble 2 for references to specific illustrations). But jump-diffusion
methods are more easily conceived in the discrete time setting.
As a consequence, they have tended to be superseded in their
application by the reversible-jump framework. Despite occa-
sional implementation in applied settings, in general product-
space approaches have found their greatest utility for sampler
developmental purposes given the insights they provide into
the relationships between the different sampling algorithms.
We examine some of the resulting technological improvements
in Section 3.1.

With the theory of model-spanning sampling frameworks
now well established in the statistical literature, the main
driving force of research in this field concerns the nature of
difficulties encountered in their implementation. Issues of effi-
ciency and mixing translate over from fixed-dimensional sam-
pling schemes, as do problems in assessing convergence, with
the additional obstacle of a substantial increase in the complex-
ity of the problem. Between-model transitions play a key role
in this setting. A related matter is the necessary specification
of tuning parameters and the form of between-model mappings
gk→k′—features that we examine in closer detail in Section 3.

2.4 Exploring Model Space

When the number of candidate models is large, model se-
lection methods are generally concerned with the maximiza-
tion (or minimization) of model-ranking functionals according
to a nondeterministic optimization process (e.g., George and
McCulloch 1993; Chipman et al. 2001). As a means to auto-
mate model selection, Brooks, Friel, and King (2003a) (see also
Andrieu et al. 2000) proposed an extension to the standard sim-
ulated annealing framework by constructing a transdimensional
Markov chain with stationary distribution proportional to the
Boltzmann distribution,

BT(θk, k) ∝ exp

{

− f (θk, k)

T

}

, (4)

where T ≥ 0 and f (θ k, k), (θk, k) ∈ �, is a model-ranking func-
tion to be minimized. A stochastic annealing framework may

then be defined by periodically decreasing the value of T ac-
cording to some schedule while using the Markov chain to ex-
plore functional space. As T → 0, the distribution (4) converges
to a point mass at (θ∗

k∗ , k∗) = arg max f (θk, k). Assuming ad-
equate chain mixing, the algorithm will thereby identify the
model determined by f . Applied to ecological capture-recapture
analyses, this methodology has achieved success in facilitating
the classical model selection procedure according to the Akaike
information criterion (AIC) (Sisson and Fan 2004b; King and
Brooks 2004) by setting f (θ k, k) = −2 log Lk(x|θk) + 2nk. In
Bayesian analyses one natural choice would be to consider
f (θk, k) = Mk(θk)—the posterior model probability (e.g., Clyde
1999a). Stochastic optimization techniques such as the fore-
going are not limited to the classical model selection frame-
works. Under Bayesian decision-theoretic settings where loss
functions defined on variable dimensional space take nonstan-
dard form (e.g., Sisson and Hurn 2004), there is an obvious ben-
efit in adopting flexible optimization methods for the derivation
of Bayes rules.

Unfortunately, selection of the model with the highest-
scoring model-ranking functional need not necessarily be the
most useful in terms of a range of criteria. In the Bayesian
normal linear model framework, Barbieri and Berger (2004)
discussed optimality conditions when a single model must be
chosen for predictive purposes. In particular, they were unable
to identify general conditions under which the optimal predic-
tive model coincided with that of the highest posterior probabil-
ity model (although this does occur in some cases), but instead
concluded that such optimality theorems in fact existed for the
median probability model, defined to consist of those variables
whose posterior probability of inclusion is at least 1/2. In the
classical analysis setting, Sisson and Fan (2004b) derived a se-
quence of profile models MP ⊂ M such that MP

p ∈ MP is
defined to consist of those variables whose “probability” of in-
clusion is at least p, for all p ∈ [0,1], and then perform a re-
duced model search on this set. Here their aim was to avoid
the determination of overfitted models, resulting from use of
the AIC, to retain (in this case) biological interpretability. These
two examples illustrate subtle concerns with the process of
model selection. The latter of these is indicative of the prob-
lems faced in the realistic specification of the model-ranking
functional f when the number of candidate models is large, in
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analogy with meaningful prior specification in the Bayesian set-
ting. The former example underlines that the procedure is not
necessarily straightforward, even when natural model-ranking
measures are available.

2.5 Assessing Convergence

Perfect sampling schemes aside (see Sec. 3.2), under the
assumption that an acceptably efficient method of construct-
ing a transdimensional sampler is available, one obvious pre-
requisite to inference is that the Markov chain converges to
its equilibrium state. This is a contentious issue even for
fixed-dimensional cases. A priori convergence bounds are in
general difficult or impossible to determine; a posteriori con-
vergence diagnostics assess necessary rather than sufficient in-
dicators of chain convergence (see, e.g., Mengersen, Robert,
and Guihenneuc-Joyaux 1999; Cowles and Carlin 1996 for
comparative reviews). The transdimensional setting generates
additional concerns—in particular, how one might assess con-
vergence not only within each of a potentially large number of
models, but also across models with respect to posterior model
probabilities.

One natural approach to this would be to implement inde-
pendent subchain assessments, both within models and for the
model indicator. However, in isolation this would erroneously
associate convergence of the full chain with those of multiple
subchains, thereby generating the potential for underestimation
of convergence time for the full density. For example, with the
focus purely on model selection, Brooks, Giudici, and Philippe
(2003b) proposed various ideas based on the sample path of the
model indicator, k, under the assumption that replicated chains
that have converged will generate similar posterior model prob-
ability estimates. The focus on the model indicator permits the
application of a number of nonparametric hypothesis tests; the
chi-squared and Kolmogorov–Smirnov tests are discussed in
detail. In this manner, distributional assumptions of the models
(but not the statistics) are circumvented, at a price of associating
marginal with full density convergence.

Other sampler performance issues arise as sparsely realized
models of low posterior probability will be poorly represented
(if at all), presenting an obstacle to even marginal assessment
(Brooks 1997). One further problem is that of credibly as-
sessing chain convergence of complex equilibrium distributions
defined over high-dimensional state spaces by a univariate sta-
tistic, however well chosen.

Given the involved difficulties, it is hardly notable that to
date there have been relatively few diagnostics designed specif-
ically for transdimensional samplers. One strategy, proposed
by Brooks and Giudici (2000), requires the determination of
model reparameterization such that as many model parameters
as possible, θ+, retain their interpretation for all models under
consideration. These parameters may then be monitored to pro-
vide an indication of chain performance. Specifically, Brooks
and Giudici (2000) suggested a two-way ANOVA decomposi-
tion of the variance of a functional, h(θ+), over multiple-chain
replications. A similar approach was advocated by Castelloe
and Zimmerman (2002), who addressed the observed sensitiv-
ity of the Brooks and Giudici (2000) method to imprecise sam-
ple means from rarely visited models. They argued that a single
visit to a rare model in one chain should not overwhelmingly

dominate the diagnostic, and accordingly developed an unbal-
anced two-way ANOVA, with weights constructed in propor-
tion to the frequency of model visits. Castelloe and Zimmerman
(2002) also extended their methodology to the multivariate
(MANOVA) setting on the observation that monitoring several
functionals of marginal parameter subsets is more robust than
monitoring a single statistic.

Although both groups of authors identified useful statistics
to monitor, and Castelloe and Zimmerman (2002) offered some
innovation in surmounting a problem of label-switching, one
immediate problem with this approach in general is the diffi-
culty identifying the requisite parameter set. A lesser issue re-
gards the extent of approximation induced by violations of the
ANOVA assumptions of independence and normality. Even ig-
noring the underlying implication of marginal assessment, the
issue of parameter selection is magnified when considering that
even common parameters may change meaning from one model
to another (e.g., Berger and Pericchi 1996). This leads naturally
to statistics, h, based on fitted and predicted values of observa-
tions as the obvious choice in many cases, reducing the problem
to the fixed-dimensional setting (Green 2003a).

Sisson and Fan (2004a) suggested a method that circumvents
the transdimensional nature of the problem when the underlying
model can be formulated in the marked point-process frame-
work of Stephens (2000). Specifically, the differences in in-
tensity functions between chain replicates are determined by
statistics based on the distributions of point-to-nearest-neighbor
distances, thereby permitting the direct comparison of parame-
ter vectors of varying dimension and, as a result, naturally in-
corporating a measure of across model convergence. Because
of the nature of the construction of such functionals, Sisson and
Fan (2004a) were able to monitor an arbitrarily large number
of them. Although this approach may have some appeal, it is
limited by the need to construct the model in the marked point-
process setting.

Given the spectrum of difficulties involved in the perfor-
mance monitoring of transdimensional samplers, and the oblig-
ingly small suite of tried-and-tested diagnostic tools available
for this task, the ever-increasing numbers of articles contain-
ing analyses based on these sampling methods is perhaps some
cause for concern. The most common approach adopted in
the literature using the reversible-jump sampler (e.g., Jackson
and Sharples 2004; Bottolo, Consonni, Dellaportas, and Lijoi
2003; Salmenkivi, Kere, and Mannila 2002; Suchard, Weiss,
and Sinsheimer 2001; Kasuya and Takagawa 2001) rests on
monitoring those parameters that “retain their interpretation
as the sampler moves between topologies and [which] may
be used effectively to monitor how well the MCMC sampler
is performing” (Suchard et al. 2001), despite the aforemen-
tioned difficulties in selecting such parameters and the ques-
tionable “effectiveness” that marginal monitoring may provide.
These parameters, generally a small subset of the full parameter
set, are then monitored using popular fixed-dimensional perfor-
mance measures (e.g., Smith 2004; Brooks and Gelman 1998;
Gelman and Rubin 1992; Geweke 1992), although in many
cases this analysis is limited to a single diagnostic. Of course,
there is an obvious danger in monitoring only a single diag-
nostic to evaluate sampler performance—as much so as relying
on marginal assessment. For instance, the finite mixture of nor-
mals (i.e., reversible-jump) algorithm of Richardson and Green
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(1997) is perhaps the most studied in terms of its performance
via a number of diagnostics (Sisson and Fan 2004a; Brooks
et al. 2003b; Brooks and Giudici 2000; Richardson and Green
1997). However, despite the general perception that the sampler
is fairly efficient, there is less unanimity on exactly “when” con-
vergence may have been attained, depending on the diagnostic
implemented.

Although it is undeniable that the benefits for the practitioner
in implementing transdimensional sampling schemes are im-
mense, it would seem arguable that the practical importance of
ensuring chain convergence is often overlooked. More charita-
bly, perhaps, it is more likely the case that current technology
is insufficiently advanced to permit a more rigorous default as-
sessment of sampler convergence, and until this shortcoming is
resolved, conscienceous practitioners will be obliged to manage
with the best that is currently available.

2.6 Estimating Bayes Factors

When the number of candidate models, |K|, is large, using
transdimensional sampling algorithms to evaluate Bayes fac-
tors between competing models raises issues of efficiency. In
moving from (θk, k) in model Mk to (θ k′ , k′) in model Mk′ ,
Bartolucci and Scaccia (2003) demonstrated that the expected
value of the reversible-jump acceptance probability under
the distribution fk(θk,uk) = πk(θ k|x)qk(uk) is bounded above
by Bk′kρk′/ρk. Accordingly, if model Mk accounted for a large
portion of posterior mass, then the reversible-jump algorithm
will tend to persist in model Mk and visit others models rarely.
As a consequence, the resulting estimates of Bayes factors
based on model-visit proportions will tend to be inefficient
(e.g., Han and Carlin 2001); that is, the auxiliary random
process adopted for transitions between models increases the
variability of the estimator. In contrast, individually estimating
the marginal model probabilities mk(x) and mk′(x) (Chib and
Jeliazkov 2001; Chib 1995) or their ratio (Mira and Nicholls
2004; Meng and Schilling 2002; Chen and Shao 1997) via inde-
pendent fixed-dimension simulations is more precise, although
impracticalities emerge when the model space is large.

In an interesting recent development, Bartolucci and Mira
(2003) (see also Bartolucci and Scaccia 2003) proposed an ex-
tension to the bridge estimator for estimating the ratio of nor-
malizing constants of two distributions (Meng and Wong 1996).
These authors augment the state spaces of the two distributions
in the exact manner that is implicit in the specification of the
auxiliary variables uk and u′

k′ in the reversible-jump algorithm,
so that the distributions of interest, f (θ k,uk) and f (θk′ ,u′

k′),
are defined on the same, but not necessarily nested, space. Ac-
cordingly, using realizations from these two distributions, pos-
sibly directly from the reversible-jump sampler, the estimator of
Bartolucci and Mira (2003) essentially integrates out the auxil-
iary random process, which thereby depends on a property of
the acceptance probabilities and consequently provides more
efficient estimates.

3. FUTURE PERSPECTIVES: TOWARD AUTOMATION

Since their inception, there has been a concerted drive to
design sampling algorithms, both fixed-dimensional and trans-
dimensional, that require the minimal initialization overheads

but achieve the maximum in efficiency. This effort has mani-
fested itself in a number of different ways, but to a greater ex-
tent current research is focused on embedding varying degrees
of automation into the sampling process. Whether through de-
fault prior specification and one-size-fits-all generic algorithms,
methods that adapt chain performance to enhance efficiency
during implementation, or attempts to circumvent issues of con-
vergence entirely, it is clear that the benefits in achieving fully
automatic transdimensional algorithms are immense for the sta-
tistical community as a whole, as well as for those in other dis-
ciplines who wish to use these methodologies.

3.1 Efficient Chain Construction

Their popularity, conceptual simplicity, and obvious util-
ity notwithstanding, transdimensional samplers have gained a
reputation for inefficiency in implementation and poor perfor-
mance in general. This is perhaps a somewhat unfair assess-
ment; it would seem credible that at least some techniques of
chain construction could be determined that would generate
acceptable performance given that, for example, the reversible-
jump algorithm encompasses all Metropolis–Hastings methods
for between-model state transitions (Green 2003a). Failure to
achieve acceptable performance could be considered merely
a result of poorly constructed between-model transitions or
inappropriate tuning of proposal distributions. Some meth-
ods targeted specifically at improving the acceptance rate of
between-model transitions include the multistep candidate-
generating scheme of Al-Awadhi, Hurn, and Jennison (2004),
and the delayed rejection sampling scheme of Green and Mira
(2001). Mengersen and Robert (2003) described a self-avoiding
population Monte Carlo scheme aimed at increasing explo-
ration of the state space.

It should perhaps even be anticipated that implementation
of a transdimensional sampling scheme may result in en-
hanced mixing, even when applied in a fixed-dimensional
setting. In this case, sampling from a single model distribu-
tion with a more sophisticated machinery might be considered
loosely analogous with the extra power gained with augmented
state–space sampling methods. For example, in the case of a
strongly multimodal posterior, Richardson and Green (1997)
reported markedly superior mixing in examining the output of
a reversible-jump algorithm conditioned on there being exactly
three mixture components, in contrast to the output generated
by the respective fixed-dimension sampler. Similarly, George,
Mengersen, and Davis (1999) achieved improved chain per-
formance in an analysis concerning the ordering of genetic
markers—a fixed-dimensional model—although in this case the
“birth” and “death” moves were preformed simultaneously, so
that the dimension of the model remained constant. In a short
study, Green (2003a) presented a discussion on which infer-
ential circumstances may determine whether the adoption of a
transdimensional sampler may be beneficial (although see Han
and Carlin 2001 for an argument to suggest that transdimen-
sional sampling may have a detrimental effect on efficiency).

One complicating factor arises when the number of can-
didate models is considerable. Here the state space of the
between-model structure may become difficult to visualize,
causing problems in aligning regions of high probability and
thereby in constructing efficient proposal templates—although
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this factor may be of less concern under specific model set-
tings, such as nested models. In addition, the task of manually
tuning between-model transition variables via repeated pilot
runs of the chain can become laborious and quickly prohibitive.
There is, therefore, a strong argument for continued research
into the development of assisted or automated proposal gen-
eration for both standard Metropolis–Hastings methods (e.g.,
Roberts, Gelman, and Gilks 1997) and transdimensional sam-
pling schemes in particular.

Recently, Brooks, Guidici, and Roberts (2003c) (see also
Ehlers and Brooks 2003) introduced a number of methods to
achieve the automatic scaling of the proposal density. For a
proposed move from (θ k, k) in Mk to model Mk′ , one tech-
nique is based on identifying the random vector “centering
point,” c(θk) = gk→k′(θ k,uk(θ k)), such that for some partic-
ular choice of proposal vector, uk(θ k), the current and pro-
posed states are identical in terms of likelihood contribution;
that is, Lk(x|θ k) = Lk′(x|c(θk)). Given the constraint on uk(θ k),
the relevant scaling parameters are then obtained to ensure that
A[(θ k, k) → (c(θ k), k′)] = 1. For example, in the case of au-
toregressive regression, if Mk′ is a higher-order model than Mk,
then we may have uk(θ k) = 0 as Lk(x|θk) = Lk′(x|(θ k,0)). (See
also Ntzoufras et al. 2003 for a centering method in the context
of linear models.)

A similarly motivated method is based on a series of
nth-order conditions (for n ≥ 1), which require that for the pro-
posed move, the nth derivative of the acceptance probability
equals the zero vector at c(θ k),

∇nA
[
(θk, k) → (c(θ k), k′)

] = 0. (5)

Similar to the foregoing, appropriate values for the proposal pa-
rameter vector, ψk, are determined via (5), such that are likely
to generate acceptance ratios close to one within a region. In
this manner, proposal parameters are adapted to the current state
of the chain at each stage rather than relying on a constant pro-
posal parameter vector for all state transitions. It can be shown
that for a simple two-model case, the aforementioned condi-
tions are optimal in terms of the capacitance of the algorithm
(Lawler and Sokal 1988).

Brooks et al. (2003c) also proposed a second class of mod-
els based on augmenting the state space with an auxiliary
set of state-dependent variables, vk, so that the state space of
π(θk,vk|x) = πk(θk|x)τk(vk) is of constant dimension for all
models Mk ∈ M. Although this fixed dimensionality is later
relaxed, there is obvious analog with the product-space frame-
works of Carlin and Chib (1995) and Godsill (2001). By con-
sidering updates of vk via a slowly mixing Markov chain with a
Gaussian stationary distribution a temporal memory is induced
that persists in the vk from state to state. In this way, the idea
behind the auxiliary variables is to assist in between-model
proposal transitions in that some memory of previous model
states is retained. The authors demonstrate that this approach
can significantly enhance mixing compared with an unassisted
reversible-jump algorithm.

There is an obvious utility in the foregoing and other ap-
proaches for generic proposal design. However, one caveat with
the foregoing schemes is that they assume prior specification of
the between-model mapping gk→k′ , and consequently that inter-
est lies primarily in maximizing the between-model acceptance

probability. When the candidate models have a strong degree
of mutual consistency—so that there exist well-defined func-
tionals of parameters with consistent meaning across models,
and when prior specifications regarding these functionals are
also consistent across models—the decomposition of the pro-
posal model Mk′ into prior and likelihood terms, as proposed
by Brooks et al. (2003c), is likely to generate natural local map-
pings between models Green (2003b). This can be observed in
moment-matching methods, such as the well-known “split-and-
merge” move types. When mutual consistency between models
is lacking, however, or where the mappings, gk→k′ , are subop-
timal or even wholly undetermined, there is a clear limitation
in the degree of chain efficiency that may be realized, and it is
difficult to envisage how such schemes may assist.

In this sense, although maximizing within-model acceptance
probabilities through local structural proposals will be use-
ful in a broad range of modeling scenarios, more moderate
acceptance rates, which aim to balance comprehensive within-
and between-model transitions, may offer enhanced efficien-
cies in more general settings. (A useful, and familiar analogy
can be found in the fixed-dimensional Metropolis–Hastings set-
ting, whereby it is trivial to ensure a near-100% acceptance
rate, but at the expense of poor exploration of the state space;
see, e.g., Gelman, Roberts, and Gilks 1996.) From this perspec-
tive, a combination of both structurally local and more global
between-model move types that do not rely on structural knowl-
edge of the models to specify the between-model mapping, may
provide the optimum specification. The case of automatically
generating global between-model proposals is examined further
in Section 3.3.

3.2 Perfect Sampling

Publication of the seminal paper by Propp and Wilson (1996)
(see also Fill 1998) on the subject of stochastic sampling
schemes that aim to draw realizations exactly from the sta-
tionary distribution of a Markov chain (see, e.g., Dimakos
2001; Casella, Lavine, and Robert 2000 for a review) gener-
ated considerable interest in the statistical community, based
on the hope that such frameworks would become panacea to is-
sues of convergence. (A valuable perfect sampling resource is
http://dbwilson.com/exact/ maintained by D. Wilson.) Despite
considerable research in this area, perfect sampling schemes
have proved difficult to implement in all but the simplest of
modeling situations. This, coupled with the nonmodularity of
the proposed algorithms, has resulted in a general reticence to
embrace them as a mainstream technology. The increasing re-
semblance of exact simulation methods to standard algorithms
involving Metropolis–Hastings steps is even leading some re-
searchers to the opinion that little may be further gained by
such methods in terms of ease and speed of implementation
Robert (2003). Given the enhanced problems associated with
the convergence of transdimensional Markov chains (Sec. 2.5),
an exact multimodel algorithm would appear even more desir-
able than in the fixed-dimensional setting.

To date, the only methodological approach proposed in
which an extension to a multimodal setting is discussed ex-
plicitly (Brooks, Fan, and Rosenthal 2002; Møller and Nicholls
1999) is based on an extension of the simulated tempering al-
gorithm of Geyer and Thompson (1995). Intuitively, the fixed-
model case proceeds by moving through the augmented state

http://dbwilson.com/exact/
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space of heated models, each indexed by a temperature τ ∈
T = {1,2, . . . , τmax} (for example), and at each stage propos-
ing a move to the distribution, indexed by τ = τ ∗, from which
it is possible to sample directly. The smallest possible proba-
bility of this occurring at any stage, assuming an identical state
space �T for all tempering models, is given by

ε = inf
θ∈�T ,τ∈T

q(τ → τ ∗)min
{
1,A[(θ , τ ) → (θ , τ ∗)]}.

Assuming that all possible chains commencing at time t = −∞
coalesce into a single chain in model τ ∗ with probability ε, the
focus would then naturally be on the first instance when this
occurred in the reverse-time chain from t = 0,−1,−2, . . . ,−T .
By construction, T ∼ Geometric(ε). Consequently, commenc-
ing a forward-time Markov chain sampler starting in model τ ∗
at time t = −T will have the effect of generating a draw exactly
from the stationary distribution at time t = 0. Extension to the
multimodel setting is immediate, requiring only a substitution
of the temperature-augmented models by the set of candidate
models M indexed by k ∈ K, from which it is assumed that
there is one model, Mk∗ , from which it is possible to sample
from directly. The algorithm then proceeds as before, following
a transdimensional sampling scheme, where ε is now given by

ε = inf
(θk,k)∈�,uk∈Qk

q(k → k∗)

× min
{
1,A

[
(θ k, k) → (g(θk,uk), k∗)

]}
, (6)

the smallest possible probability moving to model Mk∗ over all
possible models and states (θ k, k) ∈ � and random vectors uk ∼
q(u;ψk) with uk ∈Qk.

Although this algorithm is theoretically intuitive and appeal-
ing, a number of issues restrict its implementation in the gen-
eral setting, most notably surrounding determination of ε in (6).
Problems arise in the sense that the model Mk∗ may not be
known a priori, nor the model, Mk, which results in realizing
the infimum. In addition, ε, or a more computationally accessi-
ble approximation, ε′ ≤ ε, may so small as to make simulation
infeasible. Although the situation may be partially simplified in
certain cases, such as nested models, it remains to be demon-
strated that the foregoing approach (or any other) may be effi-
ciently implemented in a transdimensional setting.

Given the nature of the problems of chain mixing and effi-
ciency, one approach to good sampler construction would be
to identify relevant issues for a given analysis and develop
situation-specific solutions. This may be less than ideal for
the MCMC novice wishing to use transdimensional sampling
methods, who may not have adequate knowledge of the nec-
essary implementational details or other specifications beyond
that of the actual model to be analyzed—naturally, this is not
(yet) recommended in practice! An alternative approach might
be to seek more general solutions, by developing methods that
aim to circumvent such implementation issues. We now con-
sider some generic schemes that aim to adopt just such an auto-
matically calibrated system.

3.3 Generic Samplers

The problem of efficiently constructing between-model map-
ping templates, gk→k′ , as outlined earlier may be approached

from an alternative perspective. Rather than adapting the prop-
erties of a fixed proposal mechanism to maximize the proba-
bility of accepting model-jumping transitions (Sec. 3.1), one
possibility would be to remove the reliance on a user-specified
method (such as birth/death or split/merge transitions) alto-
gether. Although such an attractive ideal currently remains on
the research horizon, a number of preliminary approaches to the
development of generic automatic sampling frameworks have
been recently proposed.

A reversible-jump analogy of the random-walk Metropolis
sampler of Roberts (2003) was proposed by Green (2003a). For
each of a small number of models M, suppose that estimates
of the first- and second-order moments of θ k are known; denote
these by µk and BkBT

k . In proposing a move from (θ k, k) to
model Mk′ , a new parameter vector is generated by setting

θ ′
k′ =






µk′ + Bk′ [RB−1
k (θ k − µk)]nk′

1 for nk′ < nk

µk′ + Bk′RB−1
k (θk − µk) for nk′ = nk

µk′ + Bk′R
(

B−1
k (θ k − µk)

uk

)

for nk′ > nk,

where [·]m
1 denotes the first m components of a vector, uk ∼

qk(u;ψk) is an (nk′ − nk)-dimensional vector of random num-
bers, and R is a orthogonal matrix of order max{nk,nk′ }. If the
marginals πk(θk|x) ∼ MVN(µk,BkBT

k ) and uk is a standard
normal vector, then choosing an appropriate model proposal
density of q(k → k′)/q(k′ → k) = πk′(x)/πk(x) would ensure
that the acceptance probability min{1,A[(θ k, k) → (θk′ , k′)],
with

A[(θ k, k) → (θ k′ , k′)]

= πk′(θ ′
k′ |x)

πk(θk|x)

q(k′ → k)

q(k → k′)
|Bk′ |
|Bk| ×






qk(uk) for nk′ < nk

1 for nk′ = nk

1/qk(uk) for nk′ > nk,

would equal unity. That is, the sampler would automatically
achieve the detailed balance condition and is the motivation
for the author. The implication is that high transition proba-
bilities may be achieved when the marginal distributions πk

are unimodal with first- and second-order moments given by
µk and BkBT

k . Green (2003a) discussed a number of modifica-
tions to this general framework and illustrates it via variable
selection and changepoint problems.

A related sampler was proposed by Godsill (2003), who,
in adopting standard Gaussian approximation arguments, sug-
gested the proposal-generating mechanism

θ ′
k′ = µk′ + Bk′vk′,

where vk′ ∼ q∗
k′ is an nk′ -dimensional standard normal vec-

tor, which has similar detailed balance properties to the Green
(2003a) sampler. Although a detailed comparative study has
not yet been implemented, differences between the two sam-
plers emerge when the target densities are non-Gaussian, in
which there is a trade-off between both the target distribu-
tion ratios, and the difference in variability between the ratio
q∗

k′(vk′)/q∗
k(vk) and qk(uk), which is generally of lower dimen-

sion (Godsill 2003).
The foregoing samplers have a number of obvious restric-

tions. Primarily they involve knowledge of the first- and second-
order moments of the parameters under each model, something
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that may be difficult to attain for anything but a small number
of models. Green (2003a) obtained estimates of these via pilot
chains on each model. The assumption of unimodality is also
an important factor; the departure of the proposal distribution
from the true conditional density strongly affects the acceptance
rate of the algorithm. On a (multimodal) changepoint analy-
sis, Green (2003a) demonstrated a relative efficiency of 29% of
the automatic sampler compared with the results of a standard
reversible-jump sampler (Green 1995), but with reduced imple-
mentation time. Recent work by Hastie (2004) has examined a
finite mixture of normals for this sampler, yielding the expected
improvements over nonnormal marginals, although at the ob-
vious increase in initial computational expense. Such caveats
notwithstanding, the avoidance of the “necessity” of specifying
a between-model parameter mapping gk→k′ is an important step
in the development of future sampling technologies.

3.4 Automatic and Objective Prior Specification

One of the obvious problems with the Bayesian approach to
inference, in contrast with the sampler-based mechanics con-
sidered until now, is prior elicitation. This is a particular prob-
lem in analyses when the number of candidate models is large,
because a specification that accurately represents given prior
knowledge for all parameters and all models is typically infea-
sible. The use of noninformative or improper priors is there-
fore attractive for this task, and in general forms the basis of
an analysis. The drawback to model selection with such pri-
ors is that the Bayes factor is determined arbitrarily, leading
to a number of alternative default methods, such as default
proper priors (e.g., Zellner and Siow 1980), fractional Bayes
factors (O’Hagan 1995), and intrinsic Bayes factors (Berger and
Pericchi 1996). (See, e.g., Berger and Pericchi 2001 for an ex-
tensive discussion.)

One recent development of the intrinsic Bayes factor ap-
proach that is particularly attractive from a computational
viewpoint is the expected-posterior prior approach of Pérez
and Berger (2002). Assuming standard noninformative priors,
pN

k (θk) for each model, the expected-posterior prior for θ k un-
der m∗ is defined as

p∗
k(θk) =

∫
pN

k (θk|y∗)m∗(y∗)dy∗, (7)

where y∗ denotes a minimal vector of “imaginary” training
data, p∗

k(θk|y∗) is the posterior distribution of the parameters θ k

given the training data, and m∗ is a predictive measure for y∗.
Assuming that the (possibly improper) default priors pN

k can
be determining automatically, construction of (7) requires only
the specification of m∗, which itself may be potentially deter-
mined given the modeling situation. For instance, in the case of
nested models, one such choice might be

m∗(y∗) =
∫

L1(y∗|θ1)p1(θ1)dθ1,

the predictive density of the training data under the base
model, M1. Most significantly for the expected-posterior prior
approach, the generated prior distributions for different mod-
els are appropriately compatible, and problems of impropriety
are also avoided (see Pérez and Berger 2002 for full details).

Perhaps what makes the foregoing prior specification particu-
larly attractive is that due to the probabilistic nature of the spec-
ification (7), their use is particularly suited to incorporation in
hierarchical Markov chain sampling frameworks (e.g., Pérez
and Berger 2001). The imaginary training sample y∗ is simply
considered one of the unknown parameters in the simulation.

3.5 Adaptation

The ability of a Markov chain to satisfactorily traverse model
space is further complicated given that models with high pos-
terior probability need not exhibit structural similarities and
correspondingly may reside in relatively disparate portions of
model space (see also Sec. 3.3). This creates obvious problems
for the construction of between-model proposals q(k → k′) and
parameter mappings, gk→k′ , between which it is natural to con-
sider model-transitions based on local perturbations, both for
conceptual ease and for ensuring a reasonable likelihood of
accepting the proposed move. A similar situation occurs in
fixed-dimensional settings in the presence of a strongly mul-
timodal posterior.

Most research to address this problem has been conducted
in the fixed dimension under the generic label of “adaptive”
MCMC, which seeks to use the full sample path of the Markov
chain to construct an efficient proposal density during chain im-
plementation. (See, e.g., Frigessi 2003 for a concise statement
on the current state of the art.) Briefly, the main issues cen-
ter on the extent to which the stationary distribution adheres
to the desired posterior given the manner of adaptation. Care
must be taken to not adapt too quickly or inconsistently, or
the wrong target distribution may be attained, a result that is
all to easily achieved (see, e.g., Atchade and Rosenthal 2003).
Subject to assumptions of uniformly ergodic transition kernels
and bounded state spaces, the adaptive algorithm of Haario,
Saksman, and Tamminen (2001), which depends on the full
history of the chain, can be directly shown to yield unbiased
Monte Carlo estimates of the expectations of bounded function-
als (see Andrieu and Moulines 2002; Atchade and Rosenthal
2003 for results in more general settings). In comparison, if
so-called “regeneration points” exist—such as an independent
sample drawn from the “hot” distribution in a simulated tem-
pering algorithm (Tierney 1996; Brooks et al. 2002), or an
atom in the state space—then the adaptation may be imple-
mented at these times. The dependence on the full chain his-
tory is consequently mitigated, and the Markovian structure is
preserved (Sahu and Zhigljavsky 2003; Gȧsemyr 2003; Gilks,
Roberts, and Sahu 1998). Frigessi (2003) suggested that there
may be scope for development in adopting dth-order Markov
chains whose stationary distribution may be slightly biased but
that are mathematically more flexible than chains based on the
full sample-path history. This could conceivably be extended to
variable-length Markov chains (Bühlmann and Wyner 1999).

Although focus is currently on the fixed-dimensional prob-
lem, it can be easily envisaged that adaptive methods will even-
tually graduate to the transdimensional setting, permitting the
construction of between-model proposals that increasingly re-
semble full-model conditionals. In situations where the trans-
dimensional nature of an analysis may be avoided (Sec. 2.2),
this is already possible. For example, in a Gaussian variable se-
lection setting using intrinsic priors—a fixed-dimensional prob-
lem because posterior model probabilities are known—Casella
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and Moreno (2002) suggested a method of ensuring that the
model proposal density approximates the posterior model prob-
ability q(k → k′) ≈ Mk′(x) as the chain length N → ∞. In this
manner the suggested transitions density q(k → k′) seeks to
avoid the problems associated with local modes of model space
by proposing candidate models approximately in proportion to
their posterior probabilities.

4. DISCUSSION

One of the fundamental goals of transdimensional sampling
frameworks is to achieve high degrees of both efficiency and au-
tomation. In addition to providing a survey of the past decade
of progress toward this goal, in this article we have presented
a discussion on the some of problems associated with attaining
this objective and illustrated some of the most recent attempts
to engage it. Each of the areas highlighted has considerable po-
tential for further development and innovation.

Given the degree of implementational difficulty associated
with such methodologies, the aspect of automation of default
model and chain specifications is particularly important with
regard to the extent to which transdimensional Markov chains
have been embraced within a broad array of application ar-
eas across a wide variety of disciplines. As a fundamental
rule, it is important that statistical techniques be accessible to
those who wish to adopt them while stopping short of black-
box implementations. Public domain software packages, such
as WinBuGS and its open-source companion Open-BuGS, are
increasingly instrumental in propagating new methodologies
through disparate disciplines. An all-in-one software package
implementing automated and generic sampling schemes would
surely prove a formidable resource for Bayesian analyses.

It might be imagined that under such a scenario, specification
of the desired models would made via a graphical user interface
or scripting language, with the option of highlighting a check-
box labelled “adopt objective priors.” The software would then
determine the most efficient within- and between-model tran-
sitions and implement the sampler, possibly even determining
before sampling commences whether a perfect or standard sam-
pling scheme will offer the greatest efficiency for a given com-
putational time. Although such a software package is currently
some way from realization, some recent innovative works dis-
cussed in this article have taken small, but confident strides in
this direction. In doing so, they have generated heightened in-
terest and enthusiasm in this goal.

As a closing note, although we have focused on reversible
Markov chains defined by satisfying the detailed balance
condition, there is a small literature that suggests that non-
reversible chains may offer improvements in efficiency not
available to their more accessible reversible counterparts. For
example, Diaconis, Holmes, and Neal (2000) showed that non-
reversibility can lead to improvements over the diffusive behav-
ior of simple Markov chain sampling schemes. Neal (2004) (see
also Mira and Geyer 2000) demonstrated that any reversible
Markov chain on a finite and irreducible state space may be
used to construct a nonreversible Markov chain on a related
state space with asymptotic variance at least as small as that
using the reversible chain, although typically this will be much
smaller. Neal concluded that “this construction demonstrates
that nonreversible chains have a fundamental advantage over

reversible chains for MCMC estimation. Research into bet-
ter MCMC methods may therefore best be focused on non-
reversible chains.”

[Received March 2004. Revised January 2005.]
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