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Abstract

We develop a statistical framework for the quantitative characterization and analy-
sis of force-extension curves obtained from single-molecule force spectroscopy (SMFS)
measurements. We apply this methodology to force-extension data obtained for elastin-
like polypeptides (ELPs) with precisely engineered molecular architectures, where we
demonstrate that our approach enables SMFS to be used to study hydrophobic hydra-
tion in intrinsically unstructured biomacromolecules. Our results obtained for ELPs
suggest that hydrophobic hydration, rather than local backbone conformational en-
tropy, is the key contributor to modulating the molecular elasticity of ELPs under
changes in amino acid sequence.

As with previous analysis, we parametrize SMFS curves using models from polymer
statistical mechanics; however, we introduce several statistical innovations that dramat-
ically improve the precision of the estimated parameters. Our approach (i) accounts
for increased thermal noise in the data at low forces, (ii) provides confidence inter-
vals for fitted polymer-theory parameters obtained from nonparametric bootstrapping,
(iii) treats multiple curves simultaneously to reduce variability in the fitted parame-
ters, and (iv) treats noise in both force and extension measurements simultaneously.
A key advantage of our approach is the ability to quantify uncertainty in the fitted
parameters, allowing comparison of parameters obtained under different experimental
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conditions or for structural variants. Our approach is able to distinguish previously
unresolvable small differences in the molecular architecture of ELPs from SMFS exper-
iments, resolving differences in Kuhn segment lengths as small as 0.01nm, significantly
smaller than previously possible. This approach is universally applicable to SMFS data
and of general interest for the analysis of structure-property relations in polymers and
biomacromolecules.

Running title: Statistical Analysis of AFM Curves
Keywords: atomic force microscopy, freely-jointed chain, worm-like chain, bootstrapping,
Bayesian analysis, elastin-like polypeptides

1 Introduction

Over the last decade, atomic force microscope (AFM) force spectroscopy and optical tweezers
have been increasingly used to study structure and conformation, inter- and intra-molecular
interactions, and mechanical properties of various biological and synthetic macromolecules
(1–12). Advances in both the experimental (3, 11, 13, 14) and theoretical treatments (3,
15, 16) have been applied to study DNA (14, 17–19), proteins (6, 7, 9, 20) and other
macromolecules (5, 13, 21) on molecular length scales.

When individual globular proteins or DNA are stretched with an AFM, characteristic
force-extension “fingerprints” are often observed that arise from force-induced changes in
the secondary and tertiary conformation of the molecule (7–9, 14, 22). However, many
macromolecules do not exhibit such characteristic fingerprints, and behave instead like ran-
dom polymer chains. The force-extension curves of such molecules are often well described by
statistical mechanical polymer elasticity models (3, 10, 11). The most commonly used mod-
els for this purpose are the freely jointed chain (FJC) model (23), the worm-like chain (WLC)
model (15, 17), and their modifications (18). These models have been applied successfully
to fit and interpret the force-extension behavior of various biological and synthetic poly-
mers (2–7, 10, 13, 24, 25). Although polymer elasticity models do not provide atomic-level
information, they can generate valuable insight onto mechanical properties and structural
variants of single molecules (2, 3, 10, 17). Alternatives to polymer elasticity models include
the use of molecular dynamics (MD) simulations under applied mechanical force, which have
been used to study detailed molecular rearrangements in proteins, polysaccharides, and DNA
(9, 26–28), and the use of simplified kinetic models and Monte Carlo simulations (6, 29, 30).

Despite significant recent work on theoretical aspects of polymer elasticity models (16, 31–
33), there has been little discussion about the statistical methodology used for obtaining and
interpreting model parameters from AFM force spectroscopy measurements. In particular,
little has been published regarding the accuracy, reproducibility, and uncertainty of polymer
elasticity model parameters obtained from fitting to experimental data.

In this paper we present a set of statistical procedures and tools for the analysis of AFM
force-extension curves and their fitting with polymer elasticity models. As with previous
studies, we parameterize SMFS curves using models from polymer statistical mechanics;
however, we introduce several statistical innovations that dramatically narrow the resulting
distribution of fitted polymer-theory parameters such as the Kuhn segment length. Our
approach (i) accounts for increased thermal noise in the data at low forces, (ii) provides
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confidence intervals for the fitted polymer-theory parameters obtained from nonparametric
bootstrapping, (iii) treats multiple curves simultaneously to reduce variability in the fitted
parameters, and (iv) treats noise in both force and extension measurements simultaneously.
A key advantage of our approach is the ability to quantify uncertainty in the fitted parame-
ters, allowing comparison of parameters obtained under different experimental conditions or
for structural variants.

We first demonstrate the applicability of our approach by analyzing the force extension
behavior of poly(ethylene glycol) (PEG) in hexadecane. As has been shown previously, the
conformational behavior of PEG in hexadecane is well described by a FJC model (11). We
then demonstrate the power of our approach for biophysical studies by showing that SMFS,
when combined with our approach for data analysis, can be used to study hydrophobic hy-
dration in intrinsically unstructured biomacromolecules. We perform SMFS to study the
conformational mechanics of stimulus-responsive elastin-like polypeptides (ELPs) (34, 35),
using our data analysis approach to quantify the effects of solvent condition and guest residue
substitutions by comparing Kuhn segment lengths obtained by fitting a FJC model. ELPs are
well suited to our approach, because (1) the primary structure of ELPs can be precisely con-
trolled and easily modified by genetic engineering methods (35, 36), (2) the force-extension
behavior follows closely that of an intrinsically disordered protein and is thus amenable to fits
with the FJC model, and (3) ELPs are stimulus-responsive biomacromolecules that undergo
subtle changes in their conformational mechanics when solvent conditions are changed. Our
indicate that hydrophobic hydration, rather than local backbone conformational entropy,
modulates the molecular elasticity of ELPs under changes in amino acid sequence.

Our approach is able to resolve differences in Kuhn segment lengths as small as 0.01nm.
Such precision allows the study of subtle conformational and structural differences in biolog-
ical or synthetic macromolecules that cannot be resolved by visual inspection of the force-
extension behavior (2, 8, 11) or by conventional data analysis techniques (1, 2, 10, 13, 21, 24).

These results demonstrate that SMFS, when combined with our approach for data analy-
sis, can be used to study the subtleties of polypeptide-water interactions and thus provides a
basis for the study of hydrophobic hydration in intrinsically unstructured biomacromolecules.
Although we focus primarily on fitting the FJC model, our approach is directly applicable
to the WLC model and other polymer elasticity models.

2 Materials and Methods

ELPs were synthesized in the laboratory of Dr. Ashutosh Chilkoti (Department of Biomed-
ical Engineering, Duke University) using methods described previously (34, 36). Three ELP
libraries (Figure 1) were used in this study, all contain Val-Pro-Gly-Xaa-Gly (VPGXG) (X
is a guest residue) pentapeptide repeats flanked by a leader (Ser-Lys-Gly-Pro-Gly) and a
trailer (Trp-Pro). ELP1-180 contains Val, Ala, and Gly at the guest residue positions in
a 5:2:3 ratio and consist of 180 pentapeptides with a total molecular weight of 71.9 kDa.
ELP4-120 contains Val at all guest positions and has a molecular weight of 50 kDa. ELP2-4
is a block copolymer of 50 kDa (ELP2-60/ELP4-64) which includes an ELP2 containing
Val, Gly, Ala guest residues in a 1:7:8 ratio, and an ELP4 block containing only Val guest
residues. Polyethylene glycol (PEG) with a molecular weight of 35 kDa (Sigma Chemical
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Co., cat # 94646), and hexadecane (Sigma Chemical Co., cat # H0255) were purchased
from SigmaAldrich.

Sample Preparation ELPs were covalently attached to functionalized gold surfaces that
were prepared by vapor deposition of a 10nm chromium adhesion layer on to a glass sub-
strate followed by vapor deposition of 100nm gold. Before deposition, the glass surfaces
were cleaned for 20 min in a 1:3 (v/v) solution of H2O2/H2SO4 (Piranha) at 80◦C (Caution:
Piranha solution reacts violently with organic matter!). To minimize unspecific interactions
between ELPs and the gold surface we used a mixed SAM of oligoethylene-glycol termi-
nated alkanethiols (Prochimia, cat.#: TH 011-01). In this mixture CH3 terminated EG3

thiols provide a nonfouling background for the ELPs whereas COOH terminated EG6 pro-
vide chemical functionality to graft ELPs via amine coupling. We chose a ratio of 5% EG6

and 95% EG3 which provided sufficiently low grafting densities for single-molecule measure-
ments. The COOH groups of the EG6 thiols were reacted for 30 minutes with 1-ethyl-3-
(dimethylamino) propyl carbodiimide (EDAC) (0.4 M, Aldrich) and N-hydroxysuccinimide
(NHS) (0.1 M, Aldrich) in Milli-QTMgrade water. Prior to incubation with ELPs, the sub-
strates were rinsed with ethanol and water and dried in a stream of N2 gas. Next, a drop of
the desired ELP solution (5µM in PBS buffer) was placed on the functionalized gold surface
for 2-3 hours in a sealed Petri dish. After the incubation step, the samples were thoroughly
washed with Milli-Q grade water. Polyethylene glycol (PEG) was dissolved in Milli-Q water
to a concentration of 10µM and incubated on a bare gold surface for 2 hours.

Force Spectroscopy AFM force spectroscopy experiments were performed with a Mul-
tiMode AFM with Nanoscope IIIa controller (Veeco, Digital Instruments) using a fluid cell
attachment. The sensitivity of the photodetector was determined from the constant com-
pliance regime upon approach at large applied normal forces. Furthermore, force-distance
curves were converted into force-extension curves by accounting for the effect of cantilever
bending. A constant pulling rate of 1 µm/s was maintained throughout all experiments.
However, when a tethered molecule is stretched at a constant pulling rate, the microcan-
tilever bends and thus the actual tip velocity, relative to the substrate surface, will change.
This results in hydrodynamic drag forces that act on the cantilever during force-extension
experiments. We accounted for this additional force component by calculating the hydrody-
namic drag force on the cantilever (see Hydrodynamic Drag Subtraction in Section 4).Rect-
angular Si3N4 cantilevers (TM Microscopes) were used and their spring constants (typically
20-25pN/nm) were estimated before the experiments from the power spectral density of the
thermal noise fluctuations (37).

3 Polymer Elasticity Models

To describe force-extension curves we use parametric elasticity models derived from polymer
statistical mechanics. Such models have been extensively used in the literature (2, 3, 17, 18).
The most commonly used models for this purpose are the freely jointed chain (FJC), the
worm-like chain (WLC), and their extensions.
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Freely-jointed chain (FJC) and extended FJC When stretched, many macromolecules
exhibit ’random-coil’ behavior described by the random-walk statistics of the freely-jointed
chain (FJC) model (18, 23). The FJC model represents a polymer chain by n rigid segments
of length lK connected by freely-rotating joints with no long range interactions (2, 5), and
yields elasticity law:

x(F ) = L

(

coth

(

F lK
kBT

)

−
kBT

F lK

)

= LL(β) (1)

where β = F lK
kBT

and L(β) = coth(β) − 1
β

is the Langevin function. Here L = nlK is
the contour length, lK is the Kuhn segment length, kB is Boltzmann’s constant and T is
absolute temperature. The elastic behavior of many macromolecules has been shown to be
well approximated by the FJC model; examples include polydimethylsiloxane in heptane (3),
poly(methacrylic acid) (10), and polyethylene glycol (PEG) in hexadecane (11). Deviations
from the predictions of the FJC model can often be explained by higher-order structure
arising from interactions among chain segments or with solvent molecules (3, 11).

With increasingly larger applied forces and extensions, the molecular response becomes
increasingly enthalpic as the polymer backbone is stretched and bond-angles are deformed.
The FJC model assumes that the dependence of force upon extension is purely entropic, up
to a maximum extension given by contour length L. Discrepancies between the model and
empirical observations at high forces led to the introduction of the extended freely jointed
chain (EFJC) to account for enthalpic contributions such as backbone deformation (18).
The EFJC model incorporates an additional “segmental stiffness” parameter λ:

xExt(F ) = x(F )

(

1 −
F

λlK

)

(2)

where λ describes the elasticity of an individual segment when stretched. Differences between
the FJC and EFJC models for describing experimental data are demonstrated in Section 4.

Worm-like chain and extended WLC An alternative polymer representation is given
by the linear bending elasticity of a thin homogeneous rod described by the Kratky-Porod
or wormlike chain (WLC) model (15, 17, 38). The WLC can be obtained as a limit of a
freely-rotating chain as lK → 0 and n → ∞ simultaneously such that nlK = L. The WLC is
parameterized by its contour length L and the persistence length lp, which is the exponential
decay rate of the autocorrelation function. The energy of a stretched WLC is given (38, 39)
by the line integral

E = kBT

∫ L

0

lp
2

κ2ds − fd

where κ =
∣

∣

∣

∂2t(s)
∂s2

∣

∣

∣
is the curvature, t(s) is a unit tangent vector, and s the arc length. The

elasticity law cannot be obtained analytically but is given by the solution of a variational
problem, and an approximation which is valid for both small- and large-force limits was
given by (17):

F (x) =
kBT

lp

(

1

4(1 − x
L
)2

−
1

4
+

x

L

)

(3)
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This analytical approximation is often used to fit the WLC model to experimental force-
extension curves; an additional series expansion term is given by (15). The WLC model has
been applied to modeling force extension behavior for proteins (6, 7) and especially DNA
(17, 19), where in some cases the WLC model works well up to forces of several hundred
pN (3). To include stiffness of the chain, a modified WLC chain with “elastic modulus”
parameter Φ can be used (40):

F (x) =
kBT

lp

(

1

4(1 − x
L

+ F (x)
Φ

)2
−

F (x)

Φ
−

1

4
+

x

L

)

(4)

Although the polymer elasticity models described above do not explicitly account for the
detailed molecular composition of a polymer (e.g., polypeptide sequence), the molecular
elastic response and therefore the fitted parameters depend on molecular composition.

4 Data selection and preprocessing

In force spectroscopy experiments we collected several thousand force-extension curves for
each experimental condition. We denote the set of curves by (d, f) = ((d1, f1), . . . , (dm, fm))
where dj = (d1j , . . . , dnjj) and fj = (f1j , . . . , fnjj) denote the finitely-sampled measurements
of the jth curve, with dij the separation distance measured at applied force fij .

Only a fraction of the measured curves, however, represent the actual single-molecule
force-extension event of interest. Many exhibit artifacts such as multiple force-extension
events, simultaneous extension of more than one molecule, or large nonspecific adhesion. A
custom built Matlab program was developed to automatically filter the data based on several
criteria (see below) established to reject curves that exhibit these effects.

Smoothing Due to significant noise (in the order of ±20pN) arising from cantilever ther-
mal fluctuations (see Section 5.1) we smoothed individual force-extension curves using a
local linear regression smoother (loess) (41):

f̂j(d) = dj(d
T
j Wddj)

−1dT
j Wdfj

where Wd = diag(w(dj−d1)) and w(x) ∝ (1−|x|3)3 for x lying in the k-nearest neighborhood
of d and |x| ≤ 1, and 0 otherwise, with k = 30 chosen to give good performance.

Rupture peak identification First, all rupture events in a curve were identified using
the criteria:

(∆fj)i > Fr

where (∆fj)i = (fij − fij−1)/(dij − dij−1) and Fr is a constant (25pN) chosen to identify
sudden force decreases corresponding to rupture events. Let f ∗

j denote the maximum force fi

obtained at this rupture event for curve j, and d∗
j the associated separation distance. Curves

with more than one such event indicate multiple probe attachments and were discarded.
Because of unspecific and adhesion interactions some of the force curves exhibited a sig-

nificant force offset at small and intermediate extensions. These offsets represent noticeable
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deviations from the FJC model and significantly affect the fitted parameters. To remedy
this, curves with an offset greater than 60pN were eliminated from further analysis, as were
curves with too low of a force threshold. These filtering criteria impose the force threshold
requirements:

min
i:dij<d∗j

f̂ij < 60pN and f ∗
j ≥ 200pN

Normalization test Because an AFM cantilever tip attaches to a surface-tethered molecule
at a random location along the backbone, the contour (maximum extension) length varies
across pulls. The Kuhn segment length, however, is an intrinsic property which should be
independent of the attachment length. This suggests that the force extension behavior of a
molecule can be described by a canonical force extension curve obtained by normalization of
the curve for an individual pull with respect to attachment length. After normalizing individ-
ual curves by the extension at a fixed force (200pN), normalized curves which superimpose
closely were assumed to represent a valid single-attachment pull (3). Outlier curves (which
cannot be normalized with other curves obtained under the same experimental conditions)
were identified and removed as follows:

i) Smoothed curves (dj , f̂j) were normalized to unit distance by division by contour length

at 200pN (
dj

d200 ) (Figure 2a).

ii) An average normalized curve was estimated robustly using a pointwise median curve:

f̄(α) = median
j

f̂j(αd200
j ) α ∈ (0, 1)

Note: f̂j ’s and thus f̄ are defined everywhere on [0, 1], not just at observed points dij.

iii) A robust estimate of curve variance was obtained as the median absolute deviation:

σ̂f (d) = c median
j

∣

∣fj(d) − f̄(d)
∣

∣

and curves were rejected which deviated more than ±2σf (d) from the median curve
(Figure 2b):

max
i

∣

∣fij − f̄(dij)
∣

∣ ≥ 2σ̂f(d)

The remaining set of curves that satisfy all of the above criteria were then used for further
analysis.

Hydrodynamic Drag Subtraction The pulling rates used in force spectroscopy experi-
ments (11, 22, 42) are often sufficient to produce hydrodynamic drag on the cantilever. To
obtain more accurate force estimates this drag can be estimated and subtracted from force
measurements. Since the flow velocities are generally small (viscous flow regime), the drag
force FH can be described by

FH = CµV (5)

where C is a constant dependent on cantilever geometry, µ is the viscosity of the liquid, and
V is the velocity of the cantilever relative to the surrounding fluid phase.
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To estimate the hydrodynamic drag contribution associated with a particular cantilever
type we performed force measurements at different sample displacement rates. As expected,
the force values obtained from cantilever deflection measurements depended linearly on
pulling speed (Figure 3). The coefficient Cµ can then be determined by linear regression.

In a typical single molecule pulling experiment performed at constant displacement rate,
the relative velocity between cantilever and surrounding fluid changes as the molecule is
stretched. To account for this, we estimated the relative cantilever velocity by differentiating
the measured, smoothed force-separation data and then subtracted the drag force (Eq. 5) at
every point along the measured force-extension curve

fi = Fi − Ĉµv̂i (6)

where Fi is the measured force and v̂i = (di+1−di−1)/2∆t is the estimated cantilever velocity.
Figure 4 shows force-extension curves obtained for ELP1-180 in PBS buffer solution before
and after the drag force correction.

Force Window Selection Values of the fit parameters such as Kuhn length can vary
significantly depending on the force range chosen for fitting (2, 3, 13). To remove this
ambiguity we choose a force window between 60 pN and 200 pN for all curves when fitting
the FJC model to a force extension profile. These force values were chosen to maximize the
range of the force region in which all of the selected curves were well described by the FJC
(Eq. 1). Extending the force range to a larger force results in the deviation from the FJC fit
at low and large force ranges (Figure 5).

Figure 6 compares the fit of the FJC and EFJC to the same experimental force-extension
curve, where it can be seen that the two models yield very similar fits to the data in the
[60-200] pN force window. We therefore chose to work with the FJC model to remove the
unnecessary additional parameter of the EFJC.

5 Data Reduction and Modeling

5.1 Statistical model fitting

We now turn to the estimation of polymer elasticity model parameters. Given an experimen-
tally measured force-extension curve, we wish to determine the parameters of the polymer
elasticity model which best fit the observed data. Since our approach is applicable for any
of the various polymer models, we use the notation g(f ; θ) for the elasticity law of a generic
polymer model with parameter vector θ, except where it is necessary to specify the particular
model in use. (For the WLC, g−1(d; θ) is used instead.) Thus the model fitting methods
described in this section are applicable to all the polymer models discussed in Section 3, with
appropriate choice of θ given in Table 1. For example, in the FJC model used in most of
our examples, θ = (lK , L) will be a vector containing Kuhn and contour lengths.To simplify
notation in this section we suppress the curve index and simply denote an arbitrary curve
by (d, f) = (di, fi)

n
i=1.
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The commonly used approach to fitting such models is least squares (LS) error minimiza-
tion:

θ̂ = arg min
θ

n
∑

i=1

(di − g(fi; θ))
2

Since g() is nonlinear in θ, this yields a nonlinear least-squares (NLS) problem which must
be solved numerically (see Section 7).

While θ̂ provides a point estimate of the parameters, for purposes of comparing param-
eters obtained from different curves or molecules it is critically important to account for
uncertainty var(θ̂) in these fitted parameters. This can be done by adopting a statistical
model for the measurement errors, in order to obtain confidence intervals or perform sig-
nificance tests. Under certain assumptions (di = g(fi; θ) + ǫi with ǫi independent normally
distributed errors with constant variance), LS fitting gives maximum likelihood estimates of
the parameters θ (see e.g. (43)), and under such assumptions the uncertainty in the esti-
mated parameters θ̂ may be quantified by estimating the noise variance σ2 from the residuals
ri = di − g(fi; θ̂):

σ̂2 =
1

(n − p∗)

n
∑

i=1

(di − g(fi; θ̂))
2

where p∗ is the number of parameters being fit, approximately (m + 1) for the FJC model
and (2m + 1) for the EFJC, and using σ̂2 to obtain confidence intervals for the parameters.

Unequal Variances and Weighted Least Squares However, a plot of the residuals
(Fig. 7) from fitting typical force-extension curves shows a clear violation of the constant
variance assumption. This is reasonable as observations at low forces have significantly
larger contributions from thermal fluctuations of the end-to-end distances of the polymer
chain than those at higher forces, so that σ2 decreases as a function σ2(f) of f . When σ2 is
not constant, maximum likelihood estimates are obtained by a weighted least-squares (WLS)
minimization:

θ̂ = arg min
θ

n
∑

i=1

wi (di − g(fi; θ))
2 − log wi (7)

where wi = σ2(fi)
−1. To calculate the weights we need the variance function σ2(f) providing

the dependence on f .
The FJC elasticity law (Eq. 1) provides the mean (ensemble average) separation distance

d under applied force f . The full distribution of d may be obtained by noting that under
the FJC model

d =

nK
∑

i=1

xT
i f

is the projection onto the unit force vector f of a sum of independent random vectors with
Langevin or von Mises-Fisher distribution:

f(x; f , β) =

(

β

2

)
1
2 e

β
lK

xT f

lKΓ(3
2
)I 1

2
(β)
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where ‖x‖ = lK , ‖f‖ = 1, and β is defined by (Eq. 1). Here Iν is the modified Bessel function
of the first kind and order ν. The marginal distribution of di = xT

i f is given by (44):

f(di; β) =

(

β

2

)
1
2 e

β
di
lK

lKΓ(1
2
)I1(β)

di ∈ [−lK , lK ]

so that d =
∑

i di has mean (Eq. 1) and for large nK has asymptotic variance:

Vd(f) = x′(f) = nK l2K(1 − L(β)2 −
2

β
L(β)) (8)

Thus we take σ2(f) = σ̂2Vd(f) where σ̂2 is a scale parameter to be estimated:

σ̂2 =
1

(n − p)

n
∑

i=1

Vd(fi)
−1
(

di − g(fi; l̂K , L̂)
)2

Estimated values for σ̂ were around 3, on the order of experimental noise. Figure 7 shows
that this theoretical prediction of the force-dependence of fluctuations describes the observed
deviations from the FJC model well.

Nonlinear Least Squares Calculations Because the weights wi(θ) are functions of other
parameters θ, the resulting model is fit by an iteratively-reweighted least-squares procedure
(Appendix 7).

Confidence intervals via bootstrapping A critical aspect of comparing parameters
obtained under different experimental conditions or from structural variants is to quantify
the uncertainty in the estimated parameters. We use a nonparametric bootstrap procedure
(45) to obtain confidence intervals for the fitted parameters by Monte Carlo resampling;
details are given in Appendix 7.

5.2 Multiple curve fitting

Several force-extension curves are usually recorded during measurements under the same
experimental conditions. Because each curve represents the same molecular sequence, each
provides additional information for estimating the elasticity parameters of the molecule.
Here we wish to pool information from all of the curves to improve our estimate of lK and
reduce the uncertainty var(l̂K) of the estimated parameters. However, the random location
of AFM cantilever tip attachment to the molecule means that each curve has a distinct value
of L. We thus need to simultaneously estimate the parameters θ = (lK , L1, . . . , Lm), where
lK is the common Kuhn length parameter.

The maximum likelihood estimates θ̂ are again obtained by minimizing a weighted LS
criteria:

θ̂ = arg min
lK ,L1,...,Lm

m
∑

j=1

nj
∑

i=1

wij (dij − g(fij; lK , Lj))
2 − log σ2

j wij (9)

10



with wij = Vd(fi)
−1, using a single shared lK . Minimization of (Eq. 9) involves m(p− 1) + 1

parameters and again requires iteratively-reweighted least-squares calculations; an efficient
algorithm is given in Appendix 7. The noise variance estimate becomes

σ̂2 =
1

(n − p∗)

m
∑

j=1

nj
∑

i=1

Vd(fij)
−1
(

dij − g(fij; l̂K , L̂j)
)2

where n =
∑m

j=1 nj and p∗ = m(p − 1) + 1. Confidence intervals for multiple curve analysis
are again obtained by a nonparameteric bootstrap procedure (Appendix 7).

5.3 Accounting for Measurement Error in Force and Distance

The statistical fitting procedures described here, like other fitting procedures used in the
literature, rely on minimizing deviations between theoretical and measured distances at
prescribed forces (Section 5.1), or in the case of the WLC, fitting force at prescribed distances.
As described in Section 5.1, this approach implicitly assumes a statistical model of the form
d = g(f ; θ) + ǫ having measurement error in d, with f known. However, in AFM force
spectroscopy, measures for both f and d contain random noise due to thermal fluctuations
and other uncertainties. Fitting procedures that account for noise in one axis (force or
distance) but not both can provide biased parameter estimates for regression models where
measurement error is of comparable scale in both axes (46).

A more efficient parameter estimation approach in such cases is to model the random
error in both measurements, yielding a model of the form:

di = g(zi; θ) + ǫi fi = zi + δi (10)

which has the interpretation that zi and g(zi) are the “true” force and distance respectively,
while fi and di are the observed force and distance measured with respective independent
random errors ǫ and δ. Models of the form (Eq. 10) can be more realistic and provide better
parameter estimates; however, they are significantly more difficult to fit, leading to “total”
least squares minimization problems of the form:

θ̂ = arg min
z1,...,zn,θ

n
∑

i=1

wi(θ)
(di − g(fi; θ))

2

σ2
ǫ

+
(fi − zi)

2

σ2
δ

− log wi(θ) (11)

which provide maximum likelihood estimates under similar assumptions on ǫ and δ.
Minimization criteria of the form (Eq. 11) are called “total least-squares” problems, and

in the case of nonlinear g can be difficult to solve numerically (43, 46). Instead of maximum
likelihood, we use a Bayesian approach to parameter estimation (47, 48), by imposing a
Gaussian process prior on the z = (z1, . . . , zn):

zi | zj<i ∼ N(zi−1, σ
2
z)

and standard non- or weakly-informative priors on the elasticity model parameters θ: for
the FJC, we use broad uniform priors for the polymer parameters (lK ∼ U(0, 100), L ∼
U(0, 1000)) and diffuse gamma Ga(.1, .1) priors for inverse scale parameters σ2

ǫ ,σ
2
δ , and σ2

z .
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Combining these priors with the likelihood obtained from (Eq. 10) yields the posterior dis-
tribution over unknowns:

P (θ, z, σ2
ǫ , σ

2
δ , σ

2
z | d, f)

∝ P (θ, σ2
ǫ , σ

2
δ , σ

2
z)

n
∏

i=1

P (di | zi, θ, σ
2
ǫ )P (fi | zi, σ

2
δ )P (zi | zi−1, σ

2
z)

∝ w−n
i (σǫσδσz)

−(n+2α−2)e
−

»

β( 1

σ2
ǫ
+ 1

σδ
+ 1

σ2
z
)+ 1

2

„

n
P

i=1
wi

(di−g(zi;θ))2

σ2
ǫ

+
(fi−zi)

2

σ2
δ

+
(zi−zi−1)2

σ2
z

«–

and the marginal posterior distribution over parameters θ such as the Kuhn length lk is given
by:

P (lK | d, f) =

∫

. . .

∫

P (θ, z, σ2
ǫ , σ

2
δ , σ

2
z | d, f) dσ2

ǫ dσ2
δ dσ2

z dz dL (12)

The (n+4)-dimensional integral (12) can be approximated by Monte Carlo integration using
Markov chain simulation (49); here we used the Gibbs sampling package WinBugs (50, 51)
for ease of implementation, although other MCMC strategies will be more efficient for this
problem. The resulting force residuals shown in Figure 8 indicate that the constant variance
assumption is adequate in the force dimension.

6 RESULTS

Before turning to ELPs, we first illustrate the approach on a well-studied FJC system,
polyethylene glycol (PEG) in hexadecane. PEG in hexadecane is generally accepted to
behave as a FJC as shown in previous studies(11). This can be explained by the fact that
hexadecane is apolar, hence solvent-mediated supra-molecular structures in PEG molecules
are unlikely to form and PEG adopts a random coil conformation in this solvent. Thus PEG
serves as an ideal illustrative example system. We applied our data analysis approach to fit
a FJC model to force-extension data generated by SMFS studies on PEG as described in
Section 2. The resulting representative fit is shown in Figure 9, where the FJC model is seen
to fit the data well.

Elucidating the Molecular Elasticity of ELPs

It is of significant scientific and engineering interest to understand the mechanochemical
properties of elastin-like polypeptides. ELPs are stimulus-responsive polypeptides(35) con-
sisting of pentapeptide repeats Val-Pro-Gly-X-Gly (VPGXG), where X is any amino acid
except Pro (52). ELPs are attractive for a variety of applications requiring molecular level
control of polymer structure, as they are genetically encodable and can be synthesized easily
by heterologous overexpression from a synthetic gene, with precise control over their compo-
sition and chain length (35, 36). Typically SMFS experiments with globular proteins, DNA,
and synthetic macromolecules have focused on the analysis of molecular “fingerprints” aris-
ing from force-induced changes in secondary and tertiary structures (7, 22, 53) and changes
in intra-chain hydrogen bonding (2, 21). However, systematic experiments on the single
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molecule level that link differences in the elastic behavior of polypeptides to changes in their
hydration behavior have been missing.

Force-induced molecular stretching of polypeptides in SMFS experiments results in a
change in the equilibrium conformation of the macromolecule, likely increasing its solvent
accessible surface area by exposing previously buried sidechains and contact surfaces, espe-
cially for hydrophobic polypeptides like ELPs. The force required to stretch a single ELP
molecule in aqueous solvent thus reflects two main components: (1) the restoring force aris-
ing from the stretch-induced entropic elasticity of the polypeptide backbone, and (2) the
force arising from changes in the solvent-polypeptide interactions.

Here we explore the effect of solvent ionic strength and guest residue substitution on
the force-extension behavior (elasticity) of ELPs at large molecular extensions (60-80% of
the contour length) in terms of an effective Kuhn segment length. Our results suggest
that hydrophobic hydration, rather than local backbone conformational entropy, is the key
contributor to modulating the molecular elasticity of ELPs under changes in amino acid
sequence. These results also demonstrate that, using our improved-precision data analysis
methodology, SMFS can be used to study subtleties of polypeptide-water interactions. Al-
though we focus on ELPs, the approach is applicable to a range of intrinsically unstructured
biomacromolecules.

Effects of ionic strength on ELP elasticity Previous studies have shown that hy-
drophobic collapse of ELPs on surfaces and in solution can be induced isothermally by
changing the ionic strength of the medium (35, 54). An increase in ionic strength leads to
reduced interaction of solvation shell waters with the ELP side chains exposed upon stretch-
ing. Such change in hydrophobic hydration is likely to affect the mechanical properties of
ELP molecules in solution.

To test this hypothesis, we performed SMFS on ELP1-180 in PBS and PBS+1.5M NaCl
to measure the dependence of the restorative elastic force, and thus Kuhn segment length,
on solution ionic strength. However the change in the conformational mechanics of ELPs as
a function of solvent condition is subtle, and cannot be resolved by comparison of individual
force-extension curves. Figure 10 shows the estimated Kuhn length parameter values and
95% confidence intervals obtained using the single- and multiple-curve fitting procedures of
Sections 5.1 and 5.2. We observe an increase in effective Kuhn segment length, indicating
that less energy is required to stretch the polypeptide at high ionic strength.

Our results indicate that changes in the solvent conditions affect the apparent stiffness of
ELPs and are in good agreement with the two-phase model for elastin elasticity proposed by
Weis-Fogh and Anderson (55). However, changes in the elasticity of the ELP molecule due to
changes in the hydration of its hydrophobic groups are subtle, as they are dominated by the
entropic elasticity of the backbone. Encouraged by our results, we proceeded to explore the
effect of hydrophobic hydration on ELP elasticity as a function of the type of guest residue
(see below).
Single curve vs. multiple curve fitting: The average width of confidence intervals obtained
for individual pulls of ELP in PBS (≈0.04nm) and in PBS + 1.5M NaCl (≈0.045nm) is
more than 2.5 times the width of confidence intervals obtained using the multiple-curve
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shared parameter model (0.016nm and 0.018nm, respectively). The single curve fitting
approach leaves sufficient uncertainty to allow the 95% intervals for curves under the two
conditions to overlap, making it impossible to distinguish a statistically significant difference
between the two. However the use of multiple curves to estimate a shared parameter yields
significantly narrower confidence intervals which do not overlap, allowing straightforward
discrimination between average ELP behavior in the different solvents. Thus this experiment
also highlights the additional power of biophysical studies using SMFS with our multiple
curve-fitting approach compared with the standard single-curve approach.

Hydrophobic hydration of ELPs The interaction of water with hydrophobic groups
is important in protein folding/unfolding and profoundly affects their conformational prop-
erties. Protein conformation and flexibility are intimately linked to the hydration water
structure, in which the hydrogen-bonded hydration water network transmits information
around the protein and controls its dynamics. The interaction of water with hydrophobic
protein surfaces (hydrophobic hydration) produces a reduction in water density and an in-
crease in heat capacity, both of which are consequences of more ordering in the solvent which
also causes a loss of entropy. The effect of hydrophobic hydration on ELP elasticity can be
explored by varying the molecular composition of the ELP constructs. Genetic engineering
allows the synthesis of ELP constructs with a specific sequence of aliphatic amino acids at
the guest residue position. This provides us with molecular constructs of similar molecular
weight but significantly different side-group hydrophobicity.

To demonstrate the utility of our approach in providing insight into the subtleties of
hydrophobic hydration of elastin-like polypeptides that exhibit different guest residue sub-
stitutions, we use the effective Kuhn length as a reporter to study differences in their hy-
drophobic hydration. We collected SMFS force-extension curves from ELPs with slightly
different molecular sequences obtained by the guest residue substitutions shown in Figure 1,
and applied our multiple curves fitting approach to their analysis. Figure 11 shows the
resulting Kuhn length parameter estimate comparisons for the three ELP constructs with
different guest residues.

As described previously, changes in elasticity may be ascribed either to changes in back-
bone conformational entropy or to changes in hydrophobic hydration. Our choice of ELP
constructs allows us to infer which effect is dominant. Primary amino acid sequence largely
determines random-coil backbone entropy of unfolded proteins (56). In particular, back-
bone mobility typically decreases with increasing side chain volume, which would entail a
corresponding increase in the Kuhn length. For the ELP constructs studied here, the guest
residues of ELP4 (all Val) contain bulkier side groups than the guest residues in ELP1 (50%
Val, 20% Ala) or ELP2-4 (52% Val, 26% Ala). This would suggest that flexibility is reduced
for the ELP4 backbone and should result in a larger Kuhn length for ELP4 than for ELP2-4
or ELP1.

However, applying our data analysis approach to resolve the associated small differences
in Kuhn length, we find instead that the effective Kuhn length scales with the averaged
hydrophobicity (57, 58). ELP4-120, the most hydrophobic ELP containing only aliphatic Val
guest residues, has the shortest Kuhn length of 0.29nm; ELP1-180, the least hydrophobic,
has the longest Kuhn length of 0.38nm; and ELP2-4 with intermediate hydrophobicity has
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an intermediate Kuhn length of 0.36nm. (Valine has a larger sidechain volume and thus
an increased tendency to form ordered (clathrate) water if exposed to solvent, incurring
larger entropic penalties when compared to the hydration of alanine or glycine.) Based on
hydrophobic hydration, we would expect ELP4 to show the largest free energy loss due to
hydrophobic hydration upon stretching, therefore requiring the highest energy required for
stretching and having the lowest Kuhn length; while ELP1 has the highest Kuhn length
and therefore requires the lowest energy for stretching. These results also agree with the
ordering obtained by estimating the hydrophobicity of the distinct pentapeptide constructs,
either using standard hydrophobicity scales (59, 60), or by calculating solvent-accessible
surface area (ASA) of the nonpolar groups in an extended state from that of the extended
tripeptide Gly-X-Gly (58), which yields ASA of 645, 621, and 618Å2/pentapeptide for ELP4,
ELP2-4, and ELP1, respectively. The ordering of ELP elasticities we observe in our SMFS
experiments, as quantified by effective Kuhn length, is therefore consistent with the hypoth-
esis that hydrophobic hydration rather than local backbone conformational entropy forms
the dominant contribution to modulating the molecular elasticity of ELPs under primary
sequence variation.

It should be noted that the various ELP pentapeptides differ in only a single guest
position, and therefore the observed differences in effective Kuhn length due to residue
substitutions are small. Such effects could not be resolved above the noise level prior to
application of the data analysis methodology outlined in this paper. Further studies using our
approach to analyze additional effects on ELP elasticity due to solvent quality, temperature,
and related quantities will be reported elsewhere (61).

Comparison with Previous Data Analysis Approach Our data analysis approach
was motivated by the comparison of fitted Kuhn segment lengths across molecules and
experimental conditions as demonstrated above. Initially, we fit an extended FJC model
(Kuhn length, contour length, and segmental stiffness) to a set (n = 20 - 40) of force-
extension curves which showed a single force pull and collapsed onto one universal curve
after normalization by extension at a common, constant force (200 pN). The fit was not
constrained by a force window, i.e., all data were considered from approximately zero force
to rupture, and fits were performed using standard least-squares according to previously
published procedures (1, 2, 10, 21, 24).

The individual pull Kuhn segment lengths obtained with this approach (lK = 0.6±0.3nm)
were consistent with typical Kuhn lengths obtained in force spectroscopy experiments on
other polymers (2, 3). However, the large range of fitted parameters obtained across pulls
prohibits meaningful comparison of fit results obtained for one type of ELP under a range of
experimental conditions (i.e., above and below the transition temperature), and comparison
of different structural variants of ELPs (i.e., different guest residues), see below. To reduce
this parameter variability we developed and applied our approach as detailed in Section 5.
The distribution of Kuhn segment lengths obtained using traditional (old) approach are
compared with the bootstrap sampling distribution of the shared Kuhn length obtained
from our approach in Figure 12. It should be noted that our approach estimates the Kuhn
length for an “average” pull for the given molecule and experimental conditions; through
the statistical estimation procedures described in Section 5 this average Kuhn length may
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be estimated with significantly reduced variability relative to individual pull Kuhn lengths,
as is evident from the figure.

Sensitivity to Spring Constant An important source of error in SMFS experiments
arises from uncertainties in the spring constant calibration. This uncertainty in spring con-
stant (typically ±5-10% (37, 62–64)) leads to uncertainties in the measurements of force and
our estimations for the Kuhn segment lengths. We performed sensitivity analysis to ascertain
the effect of this spring constant uncertainty on the mean and variance of the fitted Kuhn
length parameters.

Table 2 shows the effect of the spring constant on the distribution of Kuhn segment
lengths for ELP1-180 in PBS+1.5 M NaCl. Varying the spring constant has a nonlinear
effect on the mean and variance of the Kuhn segment length distribution. As can be seen
however, the difference between means remains fairly stable. Thus an uncertainty in the
cantilever spring constant of ±10% still permits differentiation between estimated Kuhn
lengths under different conditions.

Measurement Error in Both Force and Distance In a typical SMFS experiment both
force and distance are measured with some amount of noise or uncertainty. Noise in force
measurements arises due to thermal vibrations of the cantilever, and is typically on the order
of tens of piconewtons. Uncertainty in distance measurements may arise from noise in the
capacitance sensor or strain gauge (65). Even when a position sensor is not used (as in some
commercially available AFMs), distance measurements are influenced by the discretization
of the digital to analog converters and effects such as creep in the piezoelectric material.
When fitting a polymer elasticity model using least-squares minimization, only noise in the
measured distance (FJC) is accounted for. Conversely, when fitting the WLC or inverse-
FJC, only noise in measured force is accounted for. As described in Section 5.3, this can
lead to bias and increased variance in the estimated parameters.

We repeated the fitting of several ELP curves to the FJC model using the Bayesian model
described in Section 5.3 which accounts for noise in both force and distance measurements
simultaneously. MCMC simulation was performed using the freely available WinBugs pack-
age. Figure 13 shows resulting Kuhn length distributions compared with those obtained in
the previous section. The resulting 95% posterior intervals show a 20-50% reduction from
those obtained from the model which accounts only for noise in the distance. Shifts in the
interval locations suggests that the bias is also significantly reduced.

The histograms in Figure 14 compare the results from the two models for a typical
force-extension curves. In this case, the effect of including noise in force is a moderate but
noticeable improvement. Whether this improvement justifies the additional computational
effort required to generate the Bayesian intervals probably depends on the magnitude of
differences one is attempting to discern. In many cases the original bootstrap intervals may
be sufficient.
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7 Discussion and Conclusions

Force spectroscopy by AFM and magnetic and optical tweezers has attracted significant
interest over the past decade for the study of mechanical and conformational behavior of
single molecules on surfaces (2, 3, 14). Many publications in this area have used polymer
elasticity models to analyze the force extension behavior (2, 3, 5, 11, 13).

In this paper we have developed a statistical approach for the quantitative characteri-
zation and comparison of force-extension curves obtained from force spectroscopy measure-
ments based on estimating parameters of polymer elasticity models. We demonstrated this
approach by extracting and analyzing the Kuhn segment length parameters of a freely-
jointed chain model from ELP force extension curves, but our approach applies directly to
other polymer elasticity models such as the extended freely-jointed chain and the worm-like
chain. As part of our approach, we identified a force window in which the experimental data
for ELP is well-described by the FJC model, with the model breaking down at higher forces
due to enthalpic contributions and a lower forces due to noise from thermal vibrations of
the cantilever. Our parameter estimation approach involves fitting multiple force-extension
curves for each molecular construct and quantification of uncertainty in the parameter val-
ues by bootstrap resampling. We also demonstrate a further refinement that handles noise
in force as well as distance via a Bayesian model estimated by Markov chain Monte Carlo
(MCMC) simulation.

While the single curve model is widely used for the analysis of force extension curves
(2, 10, 13, 24), the use of multiple curves to fit a shared parameter for each experimental data
significantly reduced the uncertainty associated with the resulting (Kuhn segment length)
parameters, allowing more precise comparison between Kuhn segment lengths obtained from
different molecular constructs or under varying experimental conditions (Figure 10). In
addition, modeling noise simultaneously in force and distance further increases the precision
of the parameter estimation (Figure 14). The reported approach produces narrow Kuhn
segment length distributions with a 95% confidence interval of ≈0.01-0.04nm, and enables
us to quantify subtle changes in elastic response.

We have applied our data analysis approach to enable us to perform previously impossible
studies to quantify and elucidate the molecular mechanics of stimulus-responsive ELPs under
varying solvent conditions and molecular composition. By reducing uncertainty in fitted
parameters, we were able to resolve small differences in Kuhn length. Our results for ELPs
indicate that hydrophobic hydration, rather than local backbone conformational entropy, is
the key contributor to modulating the molecular elasticity of ELPs under primary sequence
variation.

We have provided a detailed description of the procedure that can be used by other re-
searchers working with single molecule force spectroscopy. Our statistical methodology pro-
vides a new approach to obtaining polymer elasticity model parameters from force-extension
curves. The approach improves significantly on methods in common use and yields improved
precision in parameter estimates. These improvements have allowed us to demonstrate that
subtle conformational and structural variations in single macromolecules can be resolved,
which is of significant interest since conformation and chemical composition control many
important characteristics of biological and synthetic macromolecules (61). We anticipate
that even smaller variations in Kuhn segment length may be discernible by including a larger
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number of curves in the analysis, and by using using smaller cantilevers (66), minimizing
thermal noise contributions. These results suggest that the data analysis methodology re-
ported here enables SMFS to be used to study detailed molecular properties in intrinsically
unstructured biomacromolecules.
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APPENDIX

A: Nonlinear Least Squares Calculations

Single curves Fitting the above models requires minimization of (weighted) least-squares
criteria (Eq. 7). Since the wi’s are a function of θ, this is done iteratively by solving a
sequence of WLS problems

θ̂(t+1) = arg min
θ

n
∑

i=1

wi(θ̂
(t))(di − g(fi; θ))

2 − log wi(θ̂
(t)) (13)

Each successive minimization of the form (Eq. 13) is itself a NLS problem requiring iterative
solution. Here we use a simplex method to obtain θ̂ = (l̂k, L̂, λ̂) using the default Matlab
nonlinear optimization routine.

Multiple curves Whereas simplex methods work well for solving (Eq. 13) in p = 2 (lK , nK)
or p = 3 (lK , nK , λ) parameters, minimization of (Eq. 9) involves m(p − 1) + 1 parameters.
In high dimensions nonlinear solvers such as simplex often perform poorly. However, we may
rewrite the minimization criteria (Eq. 9) as:

min
lK

m
∑

j=1

min
Lj

nj
∑

i=1

wij (dij − g(fij; lK , Lj))
2 − log σ2

j wij

which immediately suggests a stage-wise or iterative decomposition. We performed stage-
wise minimization by discretizing lK in a range of plausible values

[

lmin
K , lmax

K

]

, so lK ∈

[l
(1)
K . . . l

(s)
K ] with l

(s)
K − l

(s−1)
K = ∆lK chosen approximately two orders of magnitude smaller

than a mean value of lK at the same experimental condition. For each value of Kuhn length
lK = l

(s)
K , we found optimal contour lengths (L̂

(s)
1 , . . . , L̂

(s)
m ) by solving

L̂
(s)
j = arg min

Lj

nj
∑

i=1

wij(l
(s)
K , Lj)

(

dij − g(fij; l
(s)
K , Lj)

)2

− log σ2
j wij

for j = 1, . . . , m independently, and then computing:

γ(s) =

m
∑

j=1

nj
∑

i=1

wij

(

dij − g(fij; l
(s)
K , L̂

(s)
j )
)2

− log σ2
j wij
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Then θ̂ is given by l
(s∗)
K , L̂

(s∗)
1 , . . . , L̂

(s∗)
m where s∗ = arg min

s∈{1,...,S}
γ(s).

Using such large-scale discretization is computationally intensive and the precision of the
resulting estimates is limited by ∆lK . A faster alternative that does not rely on discretization
is to perform an iterative minimization by iteratively computing:

l̂
(t+1)
K = arg min

lK

m
∑

j=1

nj
∑

i=1

wij

(

dij − g(fij; lK , L̂
(t)
j )
)2

− log σ2
j wij

L̂
(t+1)
j = arg min

Lj

nj
∑

i=1

wij

(

dij − g(fij; l̂
(t+1)
K , Lj)

)2

− log σ2
j wij

until convergence. This iterative minimization is significantly faster in practice, and by
comparing the results of both methods, we have found it to be robust to initial starting
values (data not shown), which may be chosen randomly. To speed convergence we initialize

by setting L
(0)
j = d∗

j which tends to be near the minima.

B: Bootstrap Confidence Intervals

A critical aspect of comparing parameters obtained under different experimental conditions
or from structural variants is to quantify the uncertainty in the estimated parameters. We
use a nonparametric bootstrap procedure (45) to obtain confidence intervals for the fitted
parameters by Monte Carlo resampling. A brief sequence of steps is outlined below.

1) Generate B random samples, each drawn as follows:

(a) Single curve fitting: Draw n pairs with replacement from the n observed values
(di, fi). Denote the bth sample by pairs (db

i , f
b
i )

n
i=1.

(b) Multiple curve fitting: Draw m full curves from the m observed curves (dj , fj).
Denote the bth sample by (db

j, f
b
j )

m
j=1.

2) For each bootstrap sample b = 1, . . . , B, obtain parameter estimates θ̂b by fitting the
polymer model g(f ; θ)

(a) to single curve data (db
i , f

b
i )

n
i=1 as described in Section 5.1, or

(b) to multiple curve data (db
j , f

b
j )

m
j=1 as described in Section 5.2

3) Construct the 95% confidence interval θ̂ ± 2ŝebstp where

ŝebstp =
√

1
B−1

∑B

b=1(θ̂
b − θ̄)2 θ̄ = 1

B

∑B

b=1 θ̂b

The number of bootstrap samples B is chosen to balance precision of standard error estimates
against computational limitations. All intervals reported in this paper use B = 100 for the
single curve model and B = 500 for the multiple curve model.
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More accurate confidence intervals may be obtained directly from the percentiles of the
bootstrap samples, by [θ̂b(.025), θ̂b(.975)], where θ̂b(α) is the (100 × α)th empirical percentile,
obtained by sorting the bootstrap samples and taking the (B × α)th value. This procedure
requires significantly more sampling (B = 500 or 1000) (45), and thus this was done here
only for the multiple curve model examples.
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Polymer Parameter vector Parameter names Elasticity law
Model vector θ g(f ; θ)
FJC (lK , L) Kuhn length, contour length (Eq. 1)

EFJC (lK , L, λ) Kuhn length, contour length, segmental stiffness (Eq. 2)
WLC (lp, L) persistence length, contour length (Eq. 3)

EWLC (lp, L, Φ) persistence length, contour length, elastic modulus (Eq. 4)

Table 1: Specific choices of θ and g(f ; θ) corresponding to the various polymer elasticity
models described in Section 3. Parameter fitting equations in text are given in terms of
generic θ, g to enable application of the described techniques to various polymer models.

ELP in PBS ELP in PBS+1.5M NaCl Difference
Kc

∗ Mean 95% int sebstp Mean 95% int sebstp Mean 95% int
[pN/nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm]
0.8 · Kc - - - .426 [.410 .443] .009 - -
0.9 · Kc .380 [.366 .396] .008 .421 [.400 .445] .012 .041 .004

Kc .382 [.357 .407] .013 .435 [.411 .458] .012 .053 .004
1.1 · Kc .374 [.357 .392] .009 .424 [.406 .442] .009 .050 .014
1.2 · Kc .360 [.339 .381] .011 .422 [.402 .440] .009 .062 .021

Table 2: Sensitivity analysis of Kuhn length estimates to changes in cantilever spring con-
stant, obtained for ELP in PBS and ELP in PBS+1.5M NaCl. Although changes in mean
are observed, differences between means remain relatively stable. Some values (-) were un-
available when the spring constant perturbation lowered the rupture force below the 200pN
window.

25



Figure Legends

1) Schematic structure of the ELP constructs used in the experiments.

2) Normalization and filtering of (a random subset of) force-separation curves. Show are
(a) original unnormalized curves (inset), and curves after normalization by contour
length at 200pN; (b) normalized curves, along with the median curve (black bold line),
+/- confidence bands, and two rejected curves (indicated by the arrows) which fall
outside the confidence bands.

3) The drag force plotted as a function of pulling velocity. Solid lines are linear fits to

the data and their slopes yield the coefficient C · µHex = 24 pN
µm/sec

for hexadecane and

C ·µH2O = 7 pN
µm/sec

for water. The resulting ratio of the slopes for hexadecane and water

is 3.43, comparable with the ratio of 3.76 obtained from the viscosities of hexadecane
and water at room temperature (3.35cP/0.89cP = 3.76). (I) and (II) denote different
cantilevers with the same geometry.

4) Estimated hydrodynamic drag force correction (Eq. 6) applied to force-extension profile
obtained for ELP1-180 in PBS buffer solution. Open circles indicate the force extension
data before the hydrodynamic drag subtraction, while the solid line corresponds to data
after drag force subtraction. Grey and black solid lines indicate FJC fits to the data
before and after subtraction of hydrodynamic drag contribution.

5) (a) Fitting the FJC model to a wide force range results in deviation between actual
and fit data at low and high forces. (b) Solid circles show separation residuals obtained
by subtracting measured data from the fitted FJC model. Dashed lines indicate the
60-200pN force window chosen for fitting.

6) Fitted polymer elasticity models in the 60-200 pN force window for an example force
extension curve. (a) Extended FJC fit (b) FJC fit. Very little difference between the
models is observed in the chosen force window. Inset shows separation residuals.

7) Separation residual plots from least-squares fitting of two force-extension curves using
the FJC model. (a) ELP, (b) PEG. Also shown are the variance functions (Eq. 8)
obtained from weighted least-squares shown as ±2σ̂

√

Vd(f).

8) Force residuals obtained from fitting the model of Section 5.3 which accounts for noise
in both force and distance. No evidence of heteroscedasticity is seen.

9) Force extension curve for PEG in hexadecane. The solid line shows the FJC model fit
to the data in 30-470pN force window.

10) Box plots obtained by the multiple curves model for ELP1-180 in PBS+1.5M NaCl
and ELP1-180 in PBS (center plot) and single curve mode (right and left plots). The
multiple (or shared) model utilizes the curves shown on the right and left sides of the
figure (i.e., ten curves were used for ELP in PBS and nine curves for ELP in PBS+1.5 M
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NaCl.). The use of the multiple curves approach produces narrower confidence intervals
and enables differentiation between smaller differences in Kuhn segment length.

11) Box plots showing the Kuhn length distributions obtained from the multiple curves
fitting approach for three different types of ELPs shown in Figure 1. The elastic re-
sponse behaviors of different ELP molecules are clearly distinguishable, despite differing
at only a single guest residue.

12) Comparison between Kuhn segment length distributions obtained for ELP1-180 in
PBS+1.5M NaCl using previously published data reduction procedures and that ob-
tained from the shared parameter estimate described in Section 5.

13) Reduction in bias and uncertainty of Kuhn length obtained when noise in both force
and distance are accounted for in the statistical model. Boxplots show the 95% intervals
for nine force extension curves. The reduction in interval width is given for each curve.

14) Histograms comparing results of Kuhn length estimation under models with and with-
out accounting for noise in force measurements. The force-and-distance model yields a
more narrow 95% (posterior) interval for lK compared to the 95% confidence interval
(shown as brackets) of the distance-only model.
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