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ABSTRACT We describe a statistical approach to the validation and improvement of molecular dynamics simulations of
macromolecules. We emphasize the use of molecular dynamics simulations to calculate thermodynamic quantities that may be
compared to experimental measurements, and the use of a common set of energetic parameters across multiple distinct mole-
cules. We briefly review relevant results from the theory of stochastic processes and discuss the monitoring of convergence to
equilibrium, the obtaining of confidence intervals for summary statistics corresponding to measured quantities, and an approach to
validation and improvement of simulations based on out-of-sample prediction. We apply these methods to replica exchange
molecular dynamics simulations of a set of eight helical peptides under the AMBER potential using implicit solvent. We evaluate the
ability of these simulations to quantitatively reproduce experimental helicity measurements obtained by circular dichroism. In addi-
tion, we introduce notions of statistical predictive estimation for force-field parameter refinement. We perform a sensitivity analysis
to identify key parameters of the potential, and introduce Bayesian updating of these parameters. We demonstrate the effect of
parameter updating applied to the internal dielectric constant parameter on the out-of-sample prediction accuracy as measured by
cross-validation.

INTRODUCTION

Computer simulation, especially molecular dynamics simu-

lation, has become an important and widely used tool in the

study of biomolecular systems (1–3). With the growing

availability of high-speed desktop computers and cluster

computing, simulations once requiring access to specialized

supercomputers are now within the range of many individual

laboratories. Nevertheless, simulation of macromolecules

such as proteins and nucleic acids remains a computationally

expensive, complicated process with many options and pa-

rameters that may significantly affect the results. An impor-

tant step in the development of standardized simulation

approaches for such problems is the study of predictive

power—the ability of the simulation to reproducibly generate

some externally validatable quantity such as a future experi-

mental measurement. In fields such as physics and chemistry,

as well as in macroscopic areas of engineering and astronomy,

simulations are regularly used in lieu of physical experiment,

due to their ability to accurately and consistently predict

physical quantities. Currently macromolecular simulations

are primarily used for exploratory and visualization purposes,

rather than quantitative prediction. However, as computa-

tional resources grow and algorithms and theory improve, we

can strive to develop truly accurate macromolecular computer

experiments.

To do so, we must meet several challenges. First, molec-

ular dynamics simulations of macromolecules typically

generate configurations on a pico- or femtosecond timescale,

due to limiting frequencies of bond vibration. Because we

cannot experimentally observe the motions of protein atoms

at such timescales, the quantities measured in experimental

settings can only ever be time-averaged quantities. With the

exception of single-molecule experiments, most experimen-

tal studies of macromolecules are also ensemble-averaged.

Thus, we must be concerned primarily with the time- and

ensemble-averaged behavior of our simulation model, which

may be validated against real experimental observations.

Because it cannot be compared against reality, more detailed

information generated by a simulation such as specific atomic

trajectories or kinetic pathways should be viewed with some

skepticism. This distinguishes molecular dynamics simula-

tions of macromolecules from common use of classical me-

chanics simulations in macroscopic engineering applications,

where larger timescales allow for trajectories themselves to

be predictively validated against observation.

Thus, to compare simulation with experiment requires the

computation of ergodic average quantities under our theo-

retical model (molecular mechanics potential). As is well

known, doing so requires adequate exploration of confor-

mational space during the simulation, a difficult problem.

However, modern simulation algorithms (4,5) have made it

possible to achieve adequate sampling for small systems. We

also require methods for determining when adequate sam-

pling has been achieved. Finally, because sample path av-

erages are only approximate due to finite simulation lengths,

we must quantify the remaining uncertainty in computed

quantities to properly compare them with experimental values.

Some standard statistical methods for addressing these issues

are described in Statistical Analysis of Simulation Output.

A grand challenge of macromolecular simulation is the sim-

ulation of protein folding (6). Adequate ensemble-averaging

for large proteins remains beyond current computational
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resources; here we study helical peptide folding, which has

been widely studied as a model system for protein folding

both experimentally (e.g., (7), and the large body of subse-

quent literature summarized in (8)) and computationally (in

(9–16)). For short helical peptides, using modern simulation

algorithms and a cluster of computer processors, we are able

to adequately address the sampling issue. We apply our ap-

proach to study eight helical peptides from the experimental

literature, and compare results obtained from simulation to

experimental data.

A common concern is whether existing force fields are

adequate to simulate protein folding. We approach this

question from a predictive perspective: all molecular me-

chanics potentials are ‘‘wrong,’’ but we can ask whether they

are ‘‘good enough’’ to accurately predict specified experi-

mental quantities of interest, just as we judge any other the-

oretical model. Due to the difficulties of comparing

simulations against experiment described above, it has pre-

viously been very difficult to separate the question of force-

field accuracy from that of adequate configurational sampling.

Here we systematically and quantitatively address the latter,

enabling us to focus on the former. In particular we ask the

question: given reproducible, quantitative predictions of en-

semble quantities (here, equilibrium helicities), how well do

the force field and parameter values used predict experimental

quantities (here, circular dichroism (CD) measurements)?

In taking a predictive perspective, we emphasize the need

for a single set of energy parameters, which successfully

predict experimental quantities of multiple different molec-

ular systems. Recent work has evaluated simulation versus

experiment for helicity and thermal melting of single peptides

(11,15). However, the force fields and parameter settings

chosen for simulation studies often vary significantly across

studies, making generalizability difficult to assess: in this

article, we show that the ranges of parameter values used in

the literature provide widely different equilibrium values. In

addition to choice of parameters, often the force field may be

modified to improve reproduction of experimental values, an

issue we address from a formal statistical perspective. A

single set of parameters (or well-defined criteria for choosing)

is critical for prediction of a new molecular system by simu-

lation.

We emphasize that helicity is a coarse-grained measure of

the equilibrium ensemble and thus provides only a first step

in evaluating the simulation accuracy; in this manner our

approach is meant to be demonstrative rather than exhaustive.

However, even by looking only at helicity, we obtain im-

portant results about reproducibility, parameter sensitivity,

and experiment predictive accuracy using a common set of

parameters for simulations of multiple distinct peptide sys-

tems.

The outline of the remainder of the article is as follows.

Replica-Exchange Molecular Dynamics describes the simu-

lation algorithm (replica-exchange) used in our studies. Sta-

tistical Analysis of Simulation Output describes the statistical

tools used to determine when the simulation has converged

and to measure the accuracy of quantities computed from the

simulation trajectories. Parameter Adaptation explores the

critical issue of sensitivity of simulation quantities to the

parameters of the simulation potential, and demonstrates the

use of Bayesian statistics to estimate improved parameter

values based on available experimental data. Results gives

the results obtained from applying our approach to evaluate

predictive accuracy for the eight peptides in Table 1.

THEORY AND METHODS

We have run extensive molecular dynamics simulations for eight helical

peptides, some naturally occurring and some designed, which have been

previously studied experimentally by CD and shown to have measurable

helicity (mean u222 ellipticity) in solution. Table 1 shows the peptides studied

along with their original experimental characterization; these peptides were

selected from a database of helical peptides (8) to obtain a range of helicities

among native peptides at physiological pH.

Replica-exchange molecular dynamics

All simulations were performed using replica-exchange molecular dynamics

(REMD) (17), an application of the parallel tempering method (18) to mo-

lecular dynamics (MD) simulation. REMD runs isothermal molecular dy-

namics simulations in parallel at a ladder of temperatures and attempts to

swap chains between temperatures intermittently. Each replica was run under

the AMBER94 force field using the AMBER 7 suite of programs (19) with a

generalized Born model of implicit solvent (20,21) and a time step of 2 fs.

SHAKE (22) was used (tolerance 5 3 10�5 Å) to constrain hydrogen atoms,

and a weakly-coupled heat bath with coupling constant of

l ¼ 1 1
Dt

2tT

TN

T
� 1

� �
is used to maintain constant temperature (23), where TN is the fixed reference

temperature and tT ¼ 1.0 controls the strength of the coupling. The specific

force field, solvent, and heat bath parameters used are given in Table 2, and

are an attempt to replicate as closely as possible a protocol which has

previously been successful in simulating helical peptide folding (11,24). A

key question in the wider use of simulation techniques is whether such

parameter sets that are successful in one instance are generalizable to other

systems; in Results we explore this issue by evaluating the use of these

parameters to predict experimentally measured helicities for the eight distinct

peptides given in Table 1. A more detailed exploration of the effect of

varying these parameter choices is described in Parameter Adaptation.

TABLE 1 Helical peptides studied by simulation in this article,

along with original experimental characterization and conditions

ID N- Peptide sequence C-

Experimental

helicity

Temp

(K) pH Reference

DG — DGAEAAKAAAGR Nhe 0.196 273 7 (46)

SA Ace SAEDAMRTAGGA — 0.168 273 7 (47)

RD — RDGWKRLIDIL — 0.050 277 7 (48)

ES — ESLLERITRKL — 0.217 277 7 (48)

LK Ace LKEDIDAFLAGGA Nhe 0.150 298 7 (49)

PS Ace PSVRKYAREKGV Nhe 0.097 298 7 (49)

RE Ace REKGVDIRLVQG Nhe 0.134 298 7 (49)

AE Ace AETAGAKFLRAHA Nhe 0.126 276 7 (50)

Peptides are either unblocked or have an N-terminal acetyl group (Ace)

and/or a C-terminal amide group (Nhe). ID provides the peptide identifier

used in other figures in this article.
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Our REMD protocol utilizes 30 distinct MD simulations run in parallel at

temperatures ranging from the target temperature T0 (273 Kelvin, 276 K, 277

K, or 298 K) to T29 ¼ 624 K for each peptide simulation. Temperatures are

spaced exponentially with Ti ¼ ºT0 exp [ki]c, where k ¼ ln(624/T0)/29 and

i ¼ 0, . . ., 29. During the REMD simulation, each replica is run at the as-

signed temperature for cycles of 1000 MD steps (2 ps), after which the

translational and rotational motion of the center of mass is removed and 300

temperature-swapping moves attempted, as per a previous protocol (24).

(Postsimulation analysis of swap acceptance rates indicated that approxi-

mately half as many replicas would have sufficed; this can be explained by

fact that the protocol adopted from (24) was designed for use with both

implicit and explicit solvent, the latter necessitating more replicas.)

Let xT ¼ (p, q)T denote the coordinates (positions and momenta) of the

replicate at temperature T. At each temperature-swap, two replicas xA and xB

are chosen at random and a swap of their respective temperatures TA and TB

is proposed, with acceptance probability given by the Metropolis criteria,

Paccept ¼ min 1;
pðxB; TAÞpðxA; TBÞ
pðxA; TAÞpðxB; TBÞ

� �
;

where p(x, T) } exp[–E(x)/kBT] is the Boltzmann distribution over config-

urations at temperature T, and E is the total energy EðxÞ ¼ UðxÞ1
DGsolv 1 1

2
+

i
kpik2=mi with U the potential function given by Eq. 4 and

DGsolv the implicit solvent free energy term given by Eq. 5. When a swap is

accepted, the two replicas exchange temperatures; otherwise, they remain at

their respective temperatures. Associated velocities are rescaled to reflect the

temperature swap before the next cycle of MD steps. This process of 1000

MD steps followed by 300 attempted temperature swaps is repeated until the

convergence criteria described in Statistical Analysis of Simulation Output is

reached.

The above REMD protocol is used to conform as closely as possible to

existing uses of REMD in protein simulation in the literature. The Metropolis

criteria is used to guarantee invariance of (and therefore convergence to) the

Boltzmann ensemble; however, recent theoretical analysis shows that cor-

rections are needed to guarantee the proper invariant measure (25).

Statistical analysis of simulation output

As described above, molecular dynamics simulations of molecules differ

somewhat from the use of classical mechanics simulations in macroscopic

engineering applications, since detailed comparison of dynamical trajectories

to experimental data is typically impossible. In fact, such trajectories are

highly sensitive to starting conditions (26), parameterizations of the energy

model, and other simulation details. Instead, it is the long-run, time-

averaged behavior of the simulation that we can expect to produce observ-

able macroscopic (thermodynamic) physical quantities, if the simulation

model is adequate. To evaluate simulations against experimental data then,

we must be able to accurately compute the long-run, time-averaged behavior

implied by our theoretical model, specified by the molecular force field or

potential. To do so, we rely on two important results. First, an ergodic the-

orem saying that if the dynamics of our simulation are ergodic (able to reach

any region of the configuration space from any other region), then the time-

averaged behavior of the simulation will converge to the configuration space

integral representing the ensemble-averaged behavior for any (integrable)

quantity of interest. Writing the quantity of interest as a function h(x) of

configurations x in configuration space X, we have

lim
t/N

1

t

Z t

0

hðxðsÞÞ ds ¼ Z
�1

Z
hðxÞe�

1
kBT

EðxÞ
dx¼def ÆhæT (1)

for the canonical (constant N,V,T) ensemble, where Æhæ denotes the expec-

tation or ensemble average of h(x) under the stationary Boltzmann distribu-

tion. Here h(x) is any quantity we wish to compute from a given

configuration, and may be used to compute means (e.g., internal energy or

helicity), variance-covariance matrices (for essential dynamics), indicator

functions (for free energies), and so on. A major advantage of simulation-

based methods is the ability to calculate a variety of such quantities from a

single simulation. The right-hand integral yields the ensemble-averaged

quantity under the theoretical model (force field); it is this quantity that can be

compared with real-world experiments, which are themselves averaged over

both time and molecules in solution.

Because we cannot run simulations infinitely long, we can only ever

compute an approximation to the left-hand side of Eq. 1. Therefore, to use

this result in practice, we need to know two things: how long must the

simulation be run such that this approximation is ‘‘pretty good’’ (the con-

vergence in Eq. 1 is approximately achieved), and how good is ‘‘pretty

good’’ (error bounds on the computed quantities). Not only must the simu-

lations have reached equilibrium, but they must also have run in equilibrium

long enough to produce accurate approximations of the time/ensemble-

averaged quantities of interest. From this perspective, MD simulation is

simply a tool for computing the integral (Eq. 1), and often alternative nu-

merical integration methods such as Monte Carlo sampling or replica-ex-

change dynamics may be more efficient than standard MD at this task.

However, these methods often disrupt the kinetics of the process; interest-

ingly, recently developed simulation methods, which do not guarantee

proper ensemble sampling, may be useful in taking ensemble samples gen-

erated by methods such as MC or REMD and reconstructing the kinetics

(27).

Another important result is statistical and provides guidance on these

questions. It says that, for well-behaved functions h(x), the time-average of h

computed from a simulation of N steps converges to the true value Æhæ as N /
N. (Here ‘‘well-behaved’’ means h(x) has finite variance under Boltzmann

distribution p(x), and the simulation dynamics are geometrically ergodic

(28), a stronger assumption that can be difficult to verify in practice (B.

Cooke and S. C. Schmidler, unpublished).) Moreover, this sample path

average obeys a central limit theorem, converging in distribution to a normal

random variable centered at the true value Æhæ,

ĥ ¼ 1

N
+

t

hðxðtÞÞ/d
NðÆhæ;s2

ĥÞ

where s
2

ĥ ¼ s
2

h 1 1 2

Z
t

rðtÞdt

� �
; (2)

where s2
h ¼ Æh2æ� Æhæ2

is the variance of h(x) under the Boltzmann distri-

bution p(x), and rðtÞ ¼ Æðhðxt0 Þ � hðxt01tÞÞ2æ=s2
h is the autocorrelation

function for fluctuations in h of configurations at time separation t when

the process is in equilibrium. Note that the Metropolis step in REMD creates

a stochastic process (25), so we state results in those terms; central limit

theorems for deterministic ergodic dynamical systems exist but are some-

what more delicate. Determinism of MD for molecules in solution is artificial

and often replaced with stochastic (Langevin or Brownian) dynamics. In the

stochastic case, however, ergodicity of the system is not an assumption, but

can be shown directly.

This theoretical result has important implications. It provides the distri-

bution of errors obtained when we use the time average from a finite length

simulation to approximate the theoretical ensemble average. This allows us

to quantify uncertainty and produce error bars based on (100-a)% confidence

intervals, which is critical for comparing the simulation output with exper-

TABLE 2 Force-field and simulation parameters used in the

helical peptide replica-exchange simulations, and as default

values for the parameter sensitivity analysis

Simulation

parameter eext ein

Salt

concentration

Nonbonded

cutoff See Snb edielc

Default value 78.5 4.0 0.0 M 8.0 Å 1.2 1.0 1.0

Parameters values are those used previously for simulating a helical peptide

(24).
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imental data. This in turn allows us to determine simulation time needed to

approximate quantities to a predetermined level of accuracy. Failure to run a

simulation long enough to adequately estimate quantities of interest is a

common pitfall of molecular dynamics simulation (29).

In addition, knowledge that the errors are approximately normally dis-

tributed allows us to treat the simulation model as a (rather complicated)

statistical model, and perform likelihood-based statistical inference on the

simulation parameters, as described in Parameter Adaptation.

Interval predictions

A critical aspect of comparing simulation output with experiment is to account

for the inherent variability of both the simulation output and the experimental

measurement. As described above, variability in the simulation output can be

characterized by a central limit theorem: the quantity ĥ approaches Æhæ in the

limit of large N, with error Æhæ� ĥ being normally distributed with variance s2

ĥ
given by Eq. 2. This result allows us to construct normal-based confidence

intervals for h of the form Æhæ 6 2ŝĥ: The variance of ĥ therefore determines

how long we need to run a given simulation to obtain a predetermined level of

accuracy. Since sh depends on the function h of interest, some quantities can

converge significantly faster than others, a fact observed empirically (30);

however, apparent convergence of some quantities while others have not

converged can also be misleading. Theoretical guarantees on how long a

simulation must be run are extremely difficult to come by, although recent

progress has been made in this area for parallel tempering algorithms (31).

To determine this interval we require an estimate ŝĥ for sĥ: Direct esti-

mates of the summed autocorrelation (Eq. 2) are inconsistent, but several

other estimation methods exist (32). A common and relatively straightfor-

ward technique, which we use here, is the batch estimate, obtained by di-

viding the simulation of length N into a ¼ N/M regions or batches of size M.

Each batch is used to independently estimate Æhæ,

ĥi ¼
1

M
+
ði11ÞM

k¼iM

hðxkÞ and ĥ ¼ 1

a
+

i

ĥi

and M is chosen large enough to ensure the autocorrelation rĥi ;ĥi11
� 0: The

batch estimates are then approximately independent samples whose empirical

variance

ŝ
2

ĥ ¼
1

a� 1
+

i

ð�hi � ĥÞ2

yields a simple estimate of the variance s2

ĥ
: The quantile plot in Results (Fig.

4 a) indicates approximate normality is a reasonable assumption for our

converged simulations.

Monitoring convergence

The energy surface of proteins and polypeptides is characterized by large

energy barriers and multiple local minima, making adequate exploration of

configuration space a major challenge of protein simulation. While theoret-

ical guarantees are very difficult to obtain for complex simulations, and

observing the output of a simulation can never guarantee convergence,

convergence diagnostics can be constructed to identify lack of convergence

from simulation output. Our preferred approach is the use of multiple parallel

simulations starting from diverse initial conditions to monitor the conver-

gence by comparison of sample path quantities across distinct simulations.

We use the multiple-chain approach (33) to assess convergence of our sim-

ulations by running multiple independent REMD simulations for each pep-

tide in parallel starting from a diverse set of initial configurations, with each

individual REMD simulation run according to the protocol of Theory and

Methods. Let M denote the number of simulations and xðiÞj for j ¼ 1, . . ., M

the configuration of the jth simulation at time step i. Convergence of an

observable quantity h(x) is by calculating

BN ¼
1

M
+
M

j¼1

ð�hj � �hÞ2 and WN ¼
1

NM
+
M

j¼1

+
N

i¼1

ðhðxðiÞj Þ � �hjÞ2

with �hj ¼ 1
N

+N

i¼1
hðxðiÞj Þ; and �h ¼ 1

M
+M

j¼1
�hj: The value BN represents the

between-chain variability and WN represents the within-chain variability.

When multiple starting configurations are chosen to be widely dispersed

throughout configuration space, early in the simulation the chains will be

sampling distinct regions of phase space and the between-chain variance will

be significantly higher than the within-chain. As the simulations converge to

sampling from the same equilibrium Boltzmann distribution, these two

quantities will converge. Comparison is based on techniques from the

analysis of variance to determine whether significant differences remain. and

convergence is monitored using the Gelman-Rubin shrink factor (37)

ffiffiffiffiffiffi
RN

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N
1

M 1 1

M

BN

WN

vN

vN � 2

r
;

where vN ¼ 2ðŝ2
N1BN

M
Þ2=WN: The quantity

ffiffiffiffiffiffi
RN

p
estimates the reduction in

variance of the estimator ĥ if the simulation were to be run infinitely long, and

converges to one as all of the parallel simulations converge to equilibrium.

Once the chains have equilibrated, samples from all M ¼ 4 independent

simulations can be combined to obtain a pooled estimate of Æhæ, with individual

chain estimates combined inversely proportional their respective variances:

ĥ ¼
+

j
ĥ

j
ŝ
�2

ĥj

+
j
ŝ
�2

ĥj

and ŝ
2

ĥ ¼ +
j

ŝ
�2

ĥj

 !�1

: (3)

Thus the effective trajectory length of the combined estimate is M �N where �N
is the average production phase length; the only price paid for using multiple

simulations compared to a single simulation is the replication of the

equilibration phase. In our opinion, the advantage of being able to run in

parallel and to obtain convergence diagnostics by inter-run comparisons far

outweighs this cost in most situations. Note that combining the results of

multiple simulations that have not been determined to have individually

converged to the same stationary distribution, as is sometimes done in MD

simulation, has no theoretical justification and can be badly misleading.

Numerous other convergence diagnostics have been developed in the

statistics and operations research literature (34), including further develop-

ments of the approach used here (35,36). Note that no diagnostic based on

simulation output can ever guarantee convergence, all such diagnostics can

be fooled (34). However, theoretical bounds on simulation time are very

difficult to obtain; although relevant work in this direction is ongoing (31).

Parameter adaptation

The energetics used in molecular dynamics simulations involve a large

number of parameters that must be specified in advance. These include the

parameters of the AMBER potential (19), given by the covalently-bonded

and nonbonded terms,

UðxÞ ¼ +
bonds

Krðr � reqÞ2 1 +
angles

Kuðu� ueqÞ2 1 +
dihedrals

Vn

2
½1 1 cosðnf� gÞ�

1 +
i , j

i;j;V1�4

Aij

r
12

ij

� Bij

r
6

ij

1
qiqj

erij

" #
1 +

i , j
i;j2V1�4

1

Snb

Aij

r
12

ij

� Bij

r
6

ij

 !
1

1

See

qiqj

erij

" #
; (4)

4500 Cooke and Schmidler

Biophysical Journal 95(10) 4497–4511



where V1–4 is the set of atom pairs (i, j) which are separated by three bonds.

For example, the parameter See weights the electrostatic interactions in V1–4,

Snb weights the corresponding van der Waals interactions, and the dielectric

constant e affects all longer-range electrostatic terms.

In addition, the implicit-solvent model given by the generalized Born

approximation (20,21) has associated parameters,

DGsolv ¼ +
a2A

baaaðxÞ1 DGpol; (5)

whereA is the set of atom types, aa is the total solvent-accessible surface area

of atoms of type a in configuration x, ba are solvation parameters, and the

electrostatic polarization component of the free energy of solvation is given by

DGpol ¼ �
1

2
+
i;j

1

emol

� 1

ewater

� �
qiqj

fGBðrijÞ
; (6)

which involves parameters such as the intramolecular dielectric constant emol

and the solvent dielectric ewater. (In AMBER, these parameters are specified

as ein, eext, and edielc, with ewater¼ eextedielc, emol¼ einedielc, and e¼ einedielc.)

Although in principle, these parameters represent physical quantities whose

values can be known; in practice, they are approximations with values

determined individually in empirical or theoretical studies.

The simulations of Results utilize a default set of parameters given in

Table 2, chosen to comply with standard practice as described in Theory and

Methods. Nevertheless, there is significant variation in the literature in values

chosen for some of these parameters. Since the ensemble simulated is defined

by these parameters, the simulation averages obtained and their comparison

with experimental values will be a function of these parameter choices. It is

therefore important to understand the how differences in these parameter

values may be propagated into the resulting thermodynamic quantities esti-

mated, and to determine the impact on the conclusions obtained. Sensitivity

analysis of these parameters is described in Sensitivity Analysis.

Bayesian estimation of force-field parameters

Given the sensitivity of simulation results to certain force-field parameters as

demonstrated in Sensitivity Analysis, we identify a standard set of values that

could be used by various researchers to ensure consistency and comparability

of simulations across different studies. A natural approach to determine such

values is to optimize the parameter values with reference to experimental

data. However, it is important to do so in such a way that the resulting pa-

rameter values are generalizable to other systems. A criticism commonly

leveled at simulation research is that with the large number of parameters

involved in specifying a potential energy function, a solvation model, and a

simulation algorithm, the simulation may be adjusted to produce almost any

behavior the investigator desires.

Such concerns can be addressed by standardized use of a common set of

parameters, but the adaptation of these parameters to better match experi-

mental observations remains important. The danger is that optimizing pa-

rameters on a specific set of data may provide good results, but generalize

poorly to the study of other systems, a phenomenon known as overfitting.

One solution to overfitting is the use of large datasets relative to the number

of parameters, where the simultaneous adaptation to multiple experimental

measurements ensures that no particular measurements are well described at

the expense of others. We do have large quantities of experimental helicity

data available (8), but we are currently limited by the fact that each data point

requires parallel simulations at nanosecond or greater timescales for inclu-

sion. However, overfitting is also avoided by a variety of parameter esti-

mation and predictive validation techniques developed in statistics, such as

Bayesian analysis and regularization. These techniques, which penalize large

parameter changes when insufficient data is available to justify them, regu-

larly allow the adaptation of complex, many-parameter models to relatively

small data sets while avoiding overfitting and producing parameters that

generalize well. In this article, we adopt a Bayesian approach, using prior

information to adapt the parameters by Bayesian inference. Because com-

putational considerations limit us to the use of the eight peptides in Table 1,

we perform only a small example of this approach, adapting only one pa-

rameter at a time. Computational methodology for adaptation of many pa-

rameters simultaneously will be described elsewhere.

To evaluate generalizability of the parameters resulting from this adap-

tation approach, we apply the statistical method of cross-validation. This

allows us to estimate out-of-sample prediction accuracy, i.e., how accurately

we can expect these parameters to perform when simulating a new peptide to

predict its experimental helicity.

We first specify a simple statistical error model for the experimental data,

which says that the measured helicities may be described as a combination of

the theoretical equilibrium helicity under our force field, plus some experi-

mental noise:

h
exp

R ¼ ÆhRæu 1 e e ; Nð0;s2Þ: (7)

Here hexp
R denotes the experimentally measured helicity of peptide R, and we

now denote explicitly the dependence of Æhæ on the peptide sequence R as

well as the force-field parameters u. If ÆhRæu was a linear function of the

parameters u, then Eq. 7 would simply be a linear regression model. Instead,

the ensemble helicity ÆhRæu is a complicated function given by the config-

uration integral under the Boltzmann distribution with potential function (Eq.

4) parameterized by u. Similar statistical principles apply, however, allowing

us to estimate the parameters u from data. This has a slightly unusual aspect

arising from the difficulty in calculating ÆhRæu, which can only be done

approximately by the simulation average from a finite length simulation as

described in Statistical Analysis of Simulation Output. The assumption of

normally distributed noise can be justified by the previously described central

limit theorem for ÆĥRæ as well as standard usage for experimental noise; the

quantile plot in Results (Fig. 4 b) shows that this assumption is quite

reasonable.

The Bayesian approach next specifies a prior distribution for the param-

eter P(u), which captures any background or biophysical knowledge we may

have about the parameter, to supplement the information contained in the

experimental data. We then base our inference about the parameter on the

posterior distribution,

PðujDataÞ ¼ PðDatajuÞPðuÞR
PðDataju9ÞPðu9Þdu9

}PðuÞ
Yp

i¼1

f
ĥ

u

i �h
exp

i

sexp 1s
ĥ

u

i

 !
;

(8)

where p is the number of peptides, f is standard normal density function, and

ĥu
i is the simulated helicity from Eq. 3 for peptide i run at parameter value u.

Note that s2
exp reflects the variance in hexp

i arising from experimental noise,

and s
ĥ

u

i

is the remaining simulation uncertainty in ĥu
i given in Eq. 3. We do

use the estimated value sexp ¼ 0.07, from Schmidler et al. (8), for con-

venience; more formally sexp could be estimated or integrated out to obtain

the marginal posterior distribution (37).

RESULTS

Predicting helicity of multiple distinct peptides
by simulation with a single parameter set

REMD simulations were performed for the eight peptides

given in Table 1. For each peptide, four REMD simulations

were run in parallel, with each REMD simulation utilizing 30

temperatures according to the protocol of Theory and

Methods. Initial configurations for the four REMD runs were

generated as follows for each peptide: one ideal helix, one

extended conformation, and two random configurations, one

generated by uniformly sampling (f, c) angles within the

helical range and one generated by uniformly sampling (f, c)

outside of the helical range. Fig. 1 a shows the starting
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configurations for a particular peptide at T0. Initial velocities

were generated randomly and independently for each con-

figuration. Quantities monitored for convergence included

backbone f- and c-angles of each amino acid, helicity of the

peptide, and total energy. Convergence to equilibrium was

declared when the Gelman-Rubin shrink factor for these

quantities reached 1.1, and the sample paths up to this time

(equilibration phase) discarded. Sample paths from this time

on (production phase) were included in computing time-av-

eraged quantities ĥ: Fig. 2 shows plots of the Gelman-Rubin

shrink factor for simulations of the eight peptides; for com-

parison, a standard MD simulation (without replica-ex-

change) of one of the peptides is shown.

Helicity of a peptide configuration was defined as the

fraction of amino-acid (f, c) pairs lying in a predefined

helical range with the potential to form hydrogen bonds,

hðxÞ ¼ 1

ðl� 2Þ+
l�1

i¼2

Yi11

j¼i�1

1ðflo#fðxjÞ#fhiÞ1ðclo#cðxjÞ#chiÞ; (9)

for configuration x of a peptide of length l, where 1() is an

indicator function. We use a standard range for defining

helical angles: fflo, fhig ¼ f�87, �27g and fclo, chig ¼
f�77, �17g (see Helical Backbone Angles for the effect of

changing these boundaries on the resulting helicities).

The total simulation time required to reach convergence for

each peptide is shown in Table 3. After equilibration, each

simulation was continued until the estimated variance ŝ2

ĥ
of the

combined estimate of equilibrium helicity (Eq. 3) decreased to

,0.001. The total simulation times required in the production

phase to meet this criteria are also shown in Table 3.

Fig. 3 shows the simulated equilibrium helicities versus the

published experimental helicities in Table 1. All experimental

FIGURE 1 Three configuration snapshots

from the four parallel REMD simulations of

peptide SAEDAMRTAGGA. Shown are (a) the

four starting configurations, (b) four configura-

tions observed at time of convergence to equi-

librium, and (c) four configurations from the

production phase of the simulation.

FIGURE 2 Convergence of REMD sim-

ulations of the eight peptides from Table 1,

as measured by the Gelman-Rubin shrink

factor (37) for helical content. Black lines

represent the estimated shrink factor with

dashed lines giving the boundary of the 95%

confidence interval. Each plot represents

convergence between four parallel simula-

tions started from diverse initial configura-

tions using parameters given in Table 2.

Shown for comparison (lower right) is a

convergence plot for four standard MD

simulations of peptide AE simulated with-

out replica-exchange.
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helicities are derived from mean-residue u222 ellipticity

measured by circular dichroism. Simulated helicities are

shown with 95% confidence intervals obtained as described in

Statistical Analysis of Simulation Output. For each peptide,

we show the helicity interval obtained from each of the four

independent REMD runs as well as the combined estimate ĥ
(Eq. 3). Simulated helicities are correlated with the experi-

mental helicities but are not within perfect agreement even

within the sampling error of the simulations. Recent estimates

place the standard deviation of experimental noise to be

;0.05, so the simulations may agree within the tolerance of

combined noise due to finite simulation sampling and experi-

mental error. Fig. 4 shows quantile plots that validate the nor-

mality assumptions given in Theory and Methods.

Sensitivity analysis

To address the questions of sensitivity of simulation results to

choice of simulation parameters described in Parameter

Adaptation, we performed a one-way sensitivity analysis of

seven of the force-field parameters described there:

The external and internal dielectrics eext and ein.

The salt concentration constant used with implicit sol-

vent, Salt.

The weight terms See and Snb, for atom pairs in V1–4.

The dielectric constant edielc.

A simulation parameter for the nonbonded cutoff dis-

tance, Cutoff.

Ranges for these parameters were chosen based on the

variation in use in published simulation studies and recom-

mended values in force-field documentation.

Sensitivity analysis was performed via short REMD sim-

ulations of two peptides (DGAEAAKAAAGR and SAE-

DAMRTAGGA) starting from equilibrium states obtained

from the longer simulations of Results. Parameters given in

Table 2 were used as reference values, and each parameter

was varied individually while holding the others constant,

performing short REMD simulations of 200 ps for each

peptide at 273 K. Four copies of each were run from different

equilibrium starting configurations to monitor convergence

as described in Monitoring Convergence. The resulting

sensitivity of helicity to perturbations of these seven pa-

rameters is shown in Table 4. Of the parameters examined,

the internal dielectric constant ein has the most dramatic ef-

fect on the helicity obtained from simulation.

The results in Table 4 suggest that the variability among

choices for both ein and Snb observed in the literature may

significantly impact the thermodynamic quantities measured

from these simulations. To evaluate the ability of this po-

tential and solvent model to reproduce experimental hel-

icities, we must obtain an appropriate consistent value for this

and other parameters.

Effect of ein and Snb parameters

Variation of the two force-field parameters ein and Snb

showed a significant effect impact on the helicity of the two

peptides studied in the one-way sensitivity analysis. We fo-

cus on determining an appropriate value for ein in Bayesian

Estimation of Internal Dielectric ein, but first we explore the

manner in which these parameters affect helicity. The value

ein affects both the solute-solvent electrostatic polarization

term in Eq. 6 and nonbonded electrostatic interactions in

Eq. 4. The DGpol term represents a difference in electrostatic

interaction energy resulting from solvent screening of

charges. As ein increases toward eext this difference shrinks,

effectively increasing internal charge screening by making

the interior of the molecule more polar. The electrostatic

interactions in Eq. 4 also decrease as ein increases, reducing

the favorability of hydrogen bonds formed in helix forma-

tion. Thus we expect that increasing ein will produce lower

simulation helicity levels, as observed in Table 4. (Sensitivity

to much larger changes in the structure of the solvation model

has been previously reported (24,38), but our results show

that, even for a given solvation model, the choice of pa-

rameter values may have a large impact.)

TABLE 3 Time length of equilibration and production phases

for REMD simulations of each peptide

Peptide DG SA RD ES LK PS RE AE

Equilibration phase (ns) 0.8 0.6 0.8 0.8 1.0 1.0 1.0 1.4

Production phase (ns) 1.0 0.8 1.4 1.6 2.4 2.4 1.6 2.9

Peptide identifiers are given in Table 1. Equilibration and production times

were determined according to the statistical convergence criteria described in

Statistical Analysis of Simulation Output. Due to the use of replica-exchange,

equilibration is significantly faster than physical timescales (see Fig. 2).

FIGURE 3 Peptide helicity as estimated from simulation versus experi-

mentally measured helicity for the eight peptides in Table 1. The diagonal

line y ¼ x is shown as a reference. Simulation results are shown as 95%

confidence intervals using standard errors estimates described in text, and

are shown both for individual REMD runs and for the pooled estimates.
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In contrast, Table 4 shows that as Snb increases, peptide

helicity decreases. The quantity Snb scales the nonbonded van

der Waals interactions in the potential energy U (Eq. 4). To

interpret the effect of this parameter on helicity, we examined

its effect on each of the 1-4 interactions along the peptide

backbone, as well as the relation of these 1-4 distances to

amino-acid helicity. The effect of the Snb parameter on most

1-4 interactions had little effect on helicity, with the notable

exceptions of nitrogen-to-nitrogen (N-N) and hydrogen-to-

carbon (H-C) distances, as pictured in Fig. 5. Equilibrium

values of both of these distances (N-N and H-C) decrease as

Snb increases, and in turn, lowers the helicity of the associated

amino acid as shown in Fig. 6 in both peptides for which this

sensitivity analysis was performed. Changes in other 1-4

atom pair distances induced by Snb increase had little effect

on helicity; Ca-Ca is shown as an example.

Bayesian estimation of internal dielectric ein

To demonstrate the parameter adaptation approach of

Bayesian Estimation of Force-Field Parameters, we applied it

to estimate the parameter ein shown in Table 4 to have the

greatest impact on equilibrium helicity. (Computational

considerations preclude simultaneous adaptation of many

parameters using this approach, and as such, this example is

intended to be illustrative. Computational methods for

adapting many parameters simultaneously will be reported

elsewhere.) To estimate an optimal value for internal di-

electric we discretized this parameter into a set of plausible

values ein 2 f1, 2, 3, 4, 5g spanning the range of values that

have been used previously in the literature (24,39). A non-

FIGURE 4 Quantile plots of standardized residuals (left)

ðĥij � ĥiÞ=sĥij
for the 8 3 4 ¼ 32 individual REMD

simulations, and (right) ðĥi � hexp
i Þ=sĥi

for the eight com-

bined simulation peptide helicities versus experiment. The

lack of significant deviation from the diagonal suggests the

assumption of normally distributed noise is reasonable in

each case.

TABLE 4 One-way sensitivity analysis of helicity as a function

of simulation parameters

DGAEAAKAAAGR SAEDAMRTAGGA

Parameter Value Mean Variance Mean Variance

eext 100 0.188 0.0006 0.170 0.0183

80 0.189 0.0024 0.209 0.0060

78.5 0.170 0.0031 0.174 0.0183

50 0.172 0.0006 0.232 0.0050

ein 20 0.063 0.0002 0.091 0.0035

10 0.124 0.0003 0.138 0.0087

4 0.168 0.0021 0.177 0.0191

3 0.260 0.0003 0.226 0.0110

1 0.388 0.0037 0.227 0.0112

Salt 5.0 0.197 0.0015 0.219 0.0065

2.0 0.161 0.0005 0.146 0.0188

1.0 0.173 0.0002 0.186 0.0204

See 5.0 0.238 0.0004 0.262 0.0197

2.0 0.215 0.0010 0.235 0.0094

1.5 0.179 0.0002 0.197 0.0184

1.2 0.188 0.0016 0.176 0.0188

1.0 0.161 0.0010 0.192 0.0155

Snb 5.0 0.052 0.0001 0.039 0.0003

2.0 0.109 0.0016 0.104 0.0070

1.5 0.171 0.0009 0.093 0.0043

1.2 0.176 0.0018 0.158 0.0122

1.0 0.202 0.0006 0.175 0.0188

Cutoff 99.0 0.167 0.0007 0.167 0.0254

20.0 0.183 0.0008 0.173 0.0200

15.0 0.177 0.0002 0.199 0.0230

12.0 0.181 0.0004 0.228 0.0315

10.0 0.171 0.0009 0.167 0.0160

8.0 0.161 0.0002 0.209 0.0130

5.0 0.111 0.0002 0.112 0.0052

edielc 100.0 0.059 0.0002 0.060 0.0015

80.0 0.052 0.0009 0.089 0.0046

78.5 0.065 0.0010 0.125 0.0039

50.0 0.093 0.0011 0.105 0.0072

20.0 0.091 0.0003 0.067 0.0039

5.0 0.074 0.0011 0.115 0.0071

3.0 0.083 0.0011 0.119 0.0111

Shown are mean helicity and variance obtained for two peptides DGAEAA-

KAAAGR and SAEDAMRTAGGA at a range of values for each parameter

studied.

FIGURE 5 The N-N (dashed) and H-C (dotted) 1-4 interactions along the

peptide backbone, which are most affected by changes in the Snb scaling

constant in the AMBER potential. The effect of equilibrium distances for

these atom pairs has a significant effect on the (f,c) angles of their

respective amino acids, and hence on peptide helicity.
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informative uniform prior distribution was assigned for ein by

giving each possible value of ein equal prior probability. To

obtain the posterior distribution (Eq. 8) for ein, REMD sim-

ulations as described in Replica Exchange Molecular Dy-

namics were then run for each peptide at each discrete value

of the dielectric constant with all other parameters fixed at

their default values given in Table 2. The resulting posterior

distribution over the discrete values of ein is shown in Fig.

7 a. Given this shape, we decided to refine the discretization

of ein by adding another value at ein ¼ 4.1 to obtain a more

detailed look at the posterior in the high probability region.

(Each such point requires eight peptides 3 4 REMD runs 3

30 MD simulations run to convergence to obtain equilibrium

helicities, hence the coarseness of the original discretization.)

The new posterior is shown in Fig. 7 b.

Fig. 8 shows estimated helicities obtained by simulation

versus experimental values for all eight peptides for the six

different values of ein. It can then be seen that the highest

posterior probability value of 4.1 is the one that gives the

closest approximation to the set of experimental values. Fig.

9 plots the simulated helicity versus the experimental helicity

individually for the eight peptides plotted at the different

values of ein. Fig. 7 b shows that resulting posterior distri-

bution is clearly peaked at 4.1. (Note that further refinement

of the discretization may well lead to an improvement be-

tween 4.0 and 4.1 or 4.1 and 5.) As more experimental data

FIGURE 6 Effects of the nonbonded scaling parameter Snb on the equilibrium distances (in Å) of successive backbone nitrogen atoms (N-N), hydrogen-

carbon atom pairs (H-C), and a-carbons (Ca-Ca). Line represents the ensemble-mean helicity for the ith amino acid as a function of the Ni-Ni11 distance (plots a

and b), Hi-Ci distance (c and d), or Ca-Ca distance (e and f) for the two peptides DGAEAAKAAAGR (a, c, and e) and SAEDAMRTAGGA (b, d, and f).
Individually labeled points give the average N-N or H-C distance for simulations with Snb ¼ f0.5, 1, 1.2, 1.5, 2, 3, 5g. Helicity changes in response to varying

Snb can be explained by sensitivity to N-N and H-C distances; other 1-4 atom pairs have little effect on helicity as demonstrated here for Ca-Ca.
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and associated simulations are included, this posterior dis-

tribution can be updated to reflect the information in the

larger data set, further refining the optimal value.

Helical backbone angles

As another example, we consider the boundaries of the helical

(f, c) region that define a helical backbone conformation in

Eq. 9. Although a general region may be defined based on

Ramachandran plots to be f 2 ffmin, fmaxg ¼ f�87, �27g
and c 2 fcmin, cmaxg ¼ f�77, �17g, the exact region mea-

sured by CD at ellipticity u225 is somewhat ambiguous. We

may view the boundaries of this region to be parameters of the

statistical mechanical model and estimate them by Bayesian

inference as above. In this case, evaluation of the posterior at a

range of fH
min; f

H
min;c

H
max; and cH

min may be done more easily

than for ein, since these are parameters of the statistical me-

chanical model for helicity but not of the force field that de-

termines the simulation ensemble; thus, we need simply

reanalyze the trajectories rather than resimulate for each

value.

For simplicity, again we discretize and construct a four-

dimensional grid for possible values of (fH
max;f

H
min;c

H
max;

and cH
minÞ: The marginal posterior distributions obtained

for (fH
min;f

H
max) under a uniform prior are shown in Fig. 10 a

and for (cH
min;c

H
max) in Fig. 10 b. Peaks representing high

probability values of (fmin, fmax) are seen at (�80,�50) and

(�90, �40), with a ridge for fmin between �100 and �70.

The joint distribution for (cmin, cmax) exhibits a sharp peak at

(�60, �40) and a minor peak at (�50, �30). The ranges of

dihedral angles with the largest peaks for both f and c

contain the values for an ideal helix (f, c)¼ (�57,�47), but

the joint mode of (fmin, fmax, cmin, cmax) ¼ (�90, �40,

�60, �40) yields a narrower range than that generally ac-

cepted for helical angles (�57 6 30, �47 6 30). Ridges are

centered near ideal values of�57 for f and�47 for c, further

increasing the probability in these regions. The ridge sug-

gests that the precise value of fmax is poorly identified, likely

due to peptide backbone geometry where, for f-values

,�100 and c-values .�40, backbone steric clashes prevent

configurations being sampled at all.

Cross-validation

To run further simulations, we must choose a particular value

for the internal dielectric parameter; a natural choice is the

mode of the posterior distribution at ein ¼ 4.1. This value

gives the best agreement between the experimental helicities

and the simulated helicities for our observed peptides.

However, we wish to know how sensitive this result is to

the particular set of peptides chosen, and thus how well we

can expect this choice to generalize to accurately simulate the

helicity of new peptides outside our data set. Simply taking

the accuracy of ein ¼ 4.1 in predicting these eight peptides

will tend to overestimate this accuracy, because this value has

been optimized to perform well on those peptides. Never-

theless, we can estimate the future (out-of-sample) predictive

accuracy from the current set of peptides using the statistical

method of cross-validation. We measure predictive accuracy

via the mean-squared error (MSE) between the predicted and

experimentally measure helicity values.

Cross-validation proceeds by removing one peptide (say

the ith one) from the dataset, and using the other seven to

estimate/optimize the parameter ein. Denote the resulting

parameter value by ê½�i�: We then use this value to simulate

the removed peptide and predict its helicity, calculating the

squared error between predicted and experimental values.

This process is then repeated to obtain similar predicted ac-

curacies for each of the peptides in turn, always using the

parameter value optimized over the other seven peptides, to

calculate the overall estimated predictive accuracy:

MSEcv ¼
1

p
+
p

i¼1

ðhexp

i � ĥ
ê½�i�
i Þ2:

This procedure has well-established properties as an unbi-

ased estimator of the out-of-sample predictive accuracy of

our parameter adaptation method (40). Because the vast

majority of our computational work is done upfront in

running the simulations of each peptide at each value of

ein, the expense of calculating the cross-validated prediction

accuracy is negligible.

Table 5 shows the MSE for each value of ein and the cross-

validated MSE; in this case the cross-validated MSE is equal

to the MSE for ein ¼ 4.1 since each ê½�i� was equal to 4.1.

Using the cross-validated MSE as an estimate of predictive

variance, the predictive standard deviation is 3.6% and a

standard interval prediction would contain simulated helicity

67.2%.

It is important to note the limitations of this current pre-

dictive accuracy estimate due to data size and composition. In

particular, the small dataset size leaves significant variability

in the prediction accuracy estimate. In addition, cross-vali-

dation estimates the predictive accuracy for new data drawn

from the same population as the observed data. Thus, the

estimate of Table 5 is intended primarily as a demonstration

of the approach; it should be interpreted as an estimated

predictive accuracy for monomeric helical peptides, but may

FIGURE 7 Posterior distributions for the dielectric constant ein evaluated

at discrete values, obtained using Bayesian parameter updating described in

Bayesian Estimation of Force-Field Parameters under uniform prior. (Left)

Posterior over ein 2 f1, 2, 3, 4, 5g. (Right) An additional simulation was run

at ein ¼ 4.1 to help identify the mode of the posterior distribution.
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be less accurate for predominantly b-peptides, for example.

A significantly enlarged and expanded dataset composition is

needed to address these issues more generally.

CONCLUSIONS

Macromolecular simulation is becoming a widely used tool

in structural and molecular biology. As usage grows and

computational resources continue to accelerate, the devel-

opment of true macromolecular computer experiments,

which can accurately and reproducibly calculate thermody-

namic or kinetic quantities that agree with experiment, is

within sight. For researchers developing or utilizing macro-

molecular simulation, it is an exciting time.

Here we have attempted to focus attention on use of sim-

ulation in this quantitative, prediction fashion. We have de-

scribed several statistical methods useful for addressing the

challenges in doing so: quantitative measures of simulation

convergence, construction of uncertainty intervals for simu-

lated quantities, Bayesian and shrinkage estimation for pa-

rameter adaptation, and the use of cross-validation to

evaluate predictive accuracy. We have also demonstrated the

use of this approach to evaluating and improving molecular

dynamics simulations of helical peptides, and explored the

sensitivity of such simulations to small changes in parameter

values. The tools described here are broadly applicable and

we hope they will be adopted by other researchers and will

help encourage further progress toward quantitative, predic-

tive simulations of macromolecular systems.

The results described here are only a first step and may be

improved in a number of ways. We have used relatively small

amounts of data representing only equilibrium helicity in

FIGURE 8 Simulated helicity versus experimental helicity for the peptides in Table 1 evaluated at a range of values of the internal dielectric parameter ein.
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FIGURE 9 Helicity versus ein for each peptide in Table 1 at values of ein 2 f1, 2, 3, 4, 4.1, 5g. The experimentally measured helicity for each peptide is

plotted as a horizontal line.
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evaluating the predictive accuracy of our simulations, and

more sophisticated comparisons to detailed experimental

data will add significantly more information to evaluate and

improve ensemble properties of simulations. Interesting re-

cent examples have been applied to short timescale peptide

kinetics (41,42) and comparison with nuclear magnetic res-

onance measurements (43,44). (Note that even when con-

sidering equilibrium helicity, Eq. 9 is crude, and may be more

accurate if replaced by a calculation of ellipticity (45) or an

entire CD spectrum for comparing with CD measurements;

however, calculation of CD spectra from configurations is

itself difficult.)

In addition, as pointed out above in Cross-Validation, our

results may suffer from the use of helical peptides only, in our

data set. An expanded study including b-peptides is war-

ranted, as it is of significant interest to determine parameters

appropriate for both a-helices and b-sheets. However, it is

important to note that our emphasis on quantitative evalua-

tion of equilibrium helical content (rather than, say, the min-

imum energy or most populated conformation) means that

accuracy suffers if the force field either under- or overpredicts

a-helix, and so this evaluation is sensitive to underprediction

of b. Without direct measurements of b-content, however,

we cannot resolve errors in the b-to-coil proportions, so in-

clusion of quantitative equilibrium data on b-content of

b-hairpin peptides is of significant interest. Unfortunately we

are currently limited by the lack of available experimental

FIGURE 10 Marginal posterior distributions of boundaries of the helical angle region (a) fmin and fmax, and (b) cmin and cmax.

TABLE 5 Mean-squared error (MSE) for each value of ein,

along with estimated out-of-sample prediction accuracy given

by MSE obtained from cross-validation

ein 1 2 3 4 4.1 5 CV

MSE 0.0405 0.0120 0.0025 0.0016 0.0013 0.0025 0.0013
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data in this area, due in no small part to difficulties in accu-

rately quantifying equilibrium b-content from CD and nu-

clear magnetic resonance data.

In the presence of more detailed experimental information,

the methods described in this article become even more

important in enabling reliable quantitative comparisons, and

for improving the predictive accuracy of force fields while

avoiding overfitting.

Similarly, the purpose of a molecular simulation is rarely

done simply to predict a single quantity such as helicity; and

when such predictions are desired, statistical models may

often be developed that are significantly more accurate across

a wider range of input molecules (8). The advantage of a

simulation is the ability to examine many different ensemble

quantities calculated from a single simulation output. Nev-

ertheless, predictive evaluation of measured quantities will

help improve the underlying force fields and algorithms, thus

improving the accuracy of, relevance of, and confidence in,

other quantities obtained from simulation output.
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