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Abstract

Ising and Potts models are discrete Gibbs random field models originating in sta-

tistical physics, which are now widely used in statistics for applications in spatial

modeling, image processing, computational biology, and computational neuroscience.

However, parameter estimation in these models remains challenging due to the appear-

ance of intractable normalizing constants in the likelihood. Here we compare several

proposed approximation schemes for Bayesian parameter estimation, including mul-

tiple Monte Carlo methods for approximating ratios of normalizing constants based

on importance sampling, bridge sampling, and recently proposed perfect simulation

methods. On small lattices where exact recursions can be used for comparison, we

evaluate the accuracy and rate of convergence for these methods, and compare to a

pseudo-likelihood based method. We conclude that a pseudo-likelihood approxima-

tion to the posterior performs surprisingly well, and is the only method that scales to

realistic-size problems. We demonstrate this approach for statistical protein modeling,

and compare the results on a protein fold recognition experiment, where it signifi-

cantly outperforms knowledge-based statistical potentials based on the ‘quasi-chemical

approximation’ commonly used in structural bioinformatics.
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1 Introduction

Ising and Potts models are discrete Gibbs random fields first developed in statistical physics

as models for ferromagnetism (Brush, 1967; Potts and Domb, 1952), and now widely used in

statistics for applications in spatial modeling, image processing, and computational neuro-

science among others (Banerjee et al., 2004; Geman and Geman, 1984; Green and Richardson,

2002; Hopfield, 1982). Here we consider their use for problems in computational structural

biology. Protein structure prediction remains a central question in structural biology, and a

key challenge is finding energy functions whose minima correspond to proteins’ native states

(Anfinsen, 1973). Currently, the most successful approaches rely on ’knowledge-based’ or sta-

tistical potentials derived from large datasets, either by a ”quasi-chemical” approximation

(Miyazawa and Jernigan, 1985; Sippl, 1993), or by maximizing the native structure stabil-

ity among an ensemble of alternative structures (Maiorov and Crippen, 1992; Mirny and

Shakhnovich, 1996). Here we consider model-based statistical inference for such potentials

using a generative, Potts-type model.

Estimating the parameters of Ising and Potts models, including our protein model, is

notoriously difficult by likelihood-based methods due to appearance of an intractable nor-

malizing constant in the likelihood. A variety of approximate methods and computational

schemes have been proposed, but it remains unclear which to prefer for practical use. For

certain graphs and small lattices, the normalizing constant can be calculated exactly using

standard graphical model recursions (Lauritzen and Spiegelhalter, 1988; Reeves and Pettitt,

2004), but these algorithms take time exponential in the size of the graph for lattices.

The most commonly used methods therefore involve pseudolikelihood estimation (Besag,

1974, 1975), or Monte Carlo approximation of the likelihood (Geyer, 1991, 1992; Geyer and

Thompson, 1992, 1995). Neither is considered ideal, as the pseudo-likelihood approximation

is known to introduce non-negligible bias, and Monte Carlo approximation of normalizing

constants is notoriously difficult and computationally expensive. However pseudo-likelihood

methods are asymptotically consistent (Mase, 2000; Comets, 1992; Guyon and Kunsch, 1992),

and thus practical adequacy depends on empirical rate of convergence. Similarly, significant

progress has been made on Monte Carlo methods for normalizing constants (see e.g. Meng

and Wong (1996); Gelman and Meng (1998) for overviews). In addition, Møller recently

proposed an intriguing approach for posterior sampling without direct calculation of the

normalizing constant in the Ising model (Møller et al., 2006) which relies on the ability to

generate exact samples from the model. Ising models are one of the few cases where this can

be achieved in practice (Propp and Wilson, 1996).
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Finally, in the computational biology and protein biophysics literature it is common to use

a ”quasi-chemical approximation” or pairing frequency estimate for determining parameters

of a knowledge-based statistical potential based on Boltzmann’s law (Miyazawa and Jernigan,

1985; Sippl, 1993). However, theoretical properties of this estimator do not appear to have

been studied. In Section 4.4 we show that it appears to be an inconsistent estimator.

This paper is organized as follows. In Section 2 we review the Ising and Potts models, and

introduce a generative model for protein structure using a Potts-like potential. In Section

3, we review several parameter estimation methods proposed in the literature, as well as

some relevant Monte Carlo methods. In Section 4, we compare three Bayesian parameter

estimation methods and two point estimators by a simulation study, where the true model is

known. In Section 5, we apply the conclusions to our protein model, and test the performance

of the resulting estimated energy function in a protein fold recognition experiment.

2 Preliminaries

2.1 Ising and Potts Models

Let X = {X1, . . . , Xm} be a set of random variables taking values Xj ∈ {1, . . . , k} in a

discrete set of ‘colors’, and let G = (X, E) be an undirected graph with edge set E ⊂ X×X.

A Gibbs random field (GRF) is a joint distribution over X = Zm
k defined by a potential U :

P (x) = Z−1e
− 1

kBT
U(x)

where Z =
∑

x∈X e
− 1

kBT
U(x)

is normalizing constant or partition function. A Potts model is

a GRF having potential U with respect to the neighborhood system G of the form:

U(x) = −
∑
i∼j

Jijδ(xi, xj)−
∑

i

Hixi

Here i ∼ j denotes neighbors (i, j) ∈ E in the graph, δ is Kronecker’s delta, and the H’s and

J ’s are marginal and interaction parameters of the model, called the external magnetic field

and coupling constants respectively. When Jij ≡ J and Hi ≡ H, we have a homogeneous

Potts model. The special case of k = 2 is called the Ising model; labeling the colors {1,−1}
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and taking J ′ = J/2 then gives:

U(x) = −J ′
∑
i∼j

xixj −H
∑

i

xi.

The case J ≥ 0 is called the ferromagnetic Ising (or Potts) model, and J < 0 anti-

ferromagnetic.

2.2 Protein Model

For modeling protein sequence-structure relationships, we adopt a slight generalization of

the k = 20 color Potts model. (Each color represents one of the 20 naturally-occurring

amino acids.) Let s = (s1, . . . , sn) be the amino acid sequence of a protein and c the

protein conformation. Denote by S and C the space of possible sequences and conformations,

respectively. Let Ec(s) be the energy of conformation c taking sequence s. We assume a

generative model of sequence given structure, which specifies that the sequence follows a

Boltzmann law:

p(s | c) = Z−1
c e

−Ec(s)
kBT (1)

where Zc =
∑

s∈S e
−Ec(s)

kBT is the partition function and kB is Boltzmann’s constant.

The generative model (1) can be viewed as a protein design model, with sequences

chosen to generate a desired conformation according to their corresponding free energies

(Shakhnovich, 1994; Meyerguz et al., 2004; Fromer and Yanover, 2008). It has been argued

that this model also reflects the evolutionary process, which selects sequences to adopt a

given functional conformation (Meyerguz et al., 2004; Fromer and Yanover, 2008; Kleinman

et al., 2006). Indeed, studies have shown that the native protein sequences are close to

optimal for their structures (Kuhlman and Baker, 2000), and that this model can be used

to select sequences which fold into a desired structure (Kuhlman et al., 2003). Formally

it is sometimes justified by use of the more widely accepted Boltzmann law in the reverse

direction (Seno et al., 1996; Micheletti et al., 1998), which gives the probability of s taking

conformation c at temperature T :

p(c | s) =
1

Zs

e
−Es(c)

kBT

where Es(c) is the energy of sequence s adopting conformation c and Zs =
∑

c∈C e
−Es(c)

kBT , and

then applying Bayes rule assuming sequences s ∈ S are uniformly likely a priori, and that
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Zs ≈ Z for all s ∈ S.

Our potential is a slight generalization of the k = 20 color Potts model, given by

Ec(s) =
∑
j∼i

θ(si, sj) +
∑

i

µ(si)

where si is the ith amino acid in s, and θ is a 20×20 matrix of contact energies, with µ(si)

the marginal energetic preference for amino acid si. The neighborhood graph is defined

by spatial proximity in the 3D conformation c. We define contacts via distance between

Cβ atoms as suggested by a comparative study (Melo et al., 2002), with two amino acids

considered to be in contact if their Cβ distance is less than 8Åand they are not neighbors in

sequence. (A virtual Cβ is created for Gly by Procrustes superimposition of (N ,C,Cα,Cβ)

positions from a standard Alanine (Maiorov and Crippen, 1992; Thomas and Dill, 1996a).)

We assume θ symmetric, and constrain θ(Ala,Ala) = 0 and µ(Ala) = 0 for identifiability

in parameter estimation. (For the fold recognition experiment we instead constrain
∑210

i=1 θi =

0 and
∑20

i=1 µi = 0, for reasons discussed in Section 5.) We set kBT = 1.

3 Parameter Estimation

Both Ising and Potts models are examples of Gibbs random fields, exponential families where

the normalizing constant is a Laplace transform than cannot be calculated exactly for large

graphs. More generally, when the likelihood involves an unknown normalization:

f(y | θ) = qθ(y)/Zθ where Zθ =
∑

y

qθ(y)

then likelihood-based inference is challenging. Both likelihood maximization (Besag, 1974;

Geyer and Thompson, 1992) and calculation of a Bayesian posterior:

π(θ | y) ∝ qθ(y)π0(θ)/Zθ

under prior π0(θ) are challenging, due to the appearance of the unknown Zθ in the likeli-

hood. Although for Ising and Potts models on small graphs the normalizing constant can

be calculated directly, for even moderate size graphs this quickly becomes infeasible.
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3.1 Bayesian Estimation via Monte Carlo Methods

Monte Carlo sampling from the posterior distribution is a standard tool for Bayesian com-

putation. However, Monte Carlo methods typically require large numbers of evaluations

of the posterior density function, which is significantly complicated by the appearance of

the unknown Zθ. For example, Metropolis-Hastings methods for sampling π(θ | y) using a

proposal distribution p(θ′ | θ) require computation of the acceptance ratio:

H(θ′ | θ) =
qθ′(y)π0(θ

′)Zθp(θ | θ′)
qθ(y)π0(θ)Zθ′p(θ′ | θ)

which involves the ratio of normalizing constants Zθ/Zθ′ .

In this section we consider three alternatives for addressing this problem: (i) Approx-

imate evaluation of the ratio Zθ/Zθ′ via Monte Carlo methods; (ii) An auxiliary variable

method proposed by Møller that avoids evaluation of Zθ/Zθ′ ; and (iii) Sampling from a

“pseudoposterior” based on a pseudolikelihood approximation of the likelihood which does

not involve Zθ. The practicality and effectiveness of these different approaches is studied

through simulation experiments in Section 4, followed by application to the protein problem

in Section 5.

3.1.1 Estimating Ratios of Normalizing Constants by Importance Sampling

A direct approach to the problem is to approximate the normalizing constants Zθ by Monte

Carlo sampling whenever the likelihood involving f(y | θ) needs to be evaluated. That is,

the normalizing constant is estimated by:

Ẑθ =
1

B

B∑
t=1

qθ(x
(t))

g(x(t))
for x(1), . . . , x(B) ∼ g(x) (2)

for some distribution g(x) satisfying supp(g) ⊇ supp(qθ) from which samples x(t) can be

drawn efficiently. Note that this relies on g(x) being normalized itself; if g(x) is also unnor-

malized then (2) estimates Zθ/Zg instead, and therefore (2) is often called the importance

sampling estimator (see e.g. Meng and Wong (1996)). This approach was explored for

likelihood maximization by Geyer (Geyer, 1991, 1992; Geyer and Thompson, 1992, 1995),

and has also been used for Bayesian inference in state-space models. The variance of the

estimator (2), and therefore the number of samples needed, is determined by variance of the

ratio qθ/g. Therefore g should be chosen to be as close to the target distribution as possible;

6



a convenient choice is another member of the parametric family, i.e. g = f(x | θ̃) for some θ̃.

Using (2), the ratio of two normalizing constants needed for a Metropolis acceptance can

be estimated by:

Zθ

Zθ′
≈ Ẑθ

Ẑθ′
=

1
B1

∑B1

t=1
qθ(x

(t)
1 )

qθ̃(x
(t)
1 )

1
B2

∑B2

t=1
qθ′ (x

(t)
2 )

qθ̃(x
(t)
2 )

(IS1)

where x
(1)
1 , . . . , x

(B1)
1 and x

(1)
2 , . . . , x

(B2)
2 are samples from f(x | θ̃); taking g the same for both

θ and θ′ avoids the requirement that g itself be normalized. Since f(x | θ̃) needs to be close

to both f(x | θ) and f(x | θ′), we take θ̃ to be the maximum pseudolikelihood estimate (see

Section 3.1.3) as in IS3 below.

Alternatively, taking g(x) = f(x | θ′) in (2) gives the estimator:

Zθ

Zθ′
≈ 1

B

B∑
t=1

qθ(x
(t))

qθ′(x(t))
(IS2)

where the x(t) are draws from p(x | θ′).
Finally, the inverse normalizing constant can be approximated instead:

1

Ẑθ

=
1

B

B∑
t=1

g(x(t))

qθ(x(t))

using draws from f(x | θ) itself, again requiring g normalized. This yields yet another

approximation of the ratio:

Zθ

Zθ′
≈ Ẑθ

Ẑθ′
=

1
B1

∑B1

t=1

qθ̃(x
(t)
1 )

qθ′ (x
(t)
1 )

1
B2

∑B2

t=1

qθ̃(x
(t)
2 )

qθ(x
(t)
2 )

(IS3)

where x
(t)
1 are draws from f(x | θ′) and x

(t)
2 are draws from f(x | θ). Møller (Møller et al.,

2006) suggests taking θ̃ to be the maximum pseudolikelihood estimate (see Section 3.1.3). IS3

is a special case of a bridge sampling estimate (Meng and Wong, 1996), with α(x) =
qθ̃(x)

qθ(x)qθ′ (x)

and is a multiple-sample version of Møller’s method described in the next section.
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3.1.2 Møller’s Auxiliary Variable Method

The above methods for Monte Carlo approximation of the ratio of normalizing constants is

computationally very demanding, requiring many samples and needing to be repeated for

each iteration of the Metropolis-Hastings algorithm on π(θ | y). Recently, Møller proposed

an alternative method for sampling such posterior distributions using an auxiliary variable

method which avoids this approximation, which is applicable when the model itself can be

sampled from exactly (Møller et al., 2006).

To sample from the posterior π(θ | y) ∝ π0(θ)f(y | θ) where f(y | θ) = 1
Zθ

qθ(y), Møller

introduces an auxiliary variable x with conditional distribution g(x | θ, y), and constructs a

Metropolis-Hastings chain on with target distribution π(θ, x | y) ∝ π0(θ)g(x | θ, y) 1
Zθ

qθ(y).

This chain proposes a new state (θ′, x′) jointly by drawing θ′ from p(θ′ | θ, x) and then x′ from

f(x′ | θ′) = 1
Zθ′

qθ′(x
′). Then the problematic normalizing constants cancel in the acceptance

ratio:

H(θ′, x′ | θ, x) =
g(x′ | θ′, y)π0(θ

′)qθ′(y)qθ(x)p(θ | θ′, x′)
g(x | θ, y)π0(θ)qθ(y)qθ′(x′)p(θ′ | θ, x)

(3)

This method then produces Markov chain with stationary distribution exactly π(θ, x | y),

requiring no approximation of the acceptance ratio. An extension to this approach has been

given by Murray et al. (2006)

As pointed out by Møller, (3) multiplies the acceptance on the original state by qθ(x)/g(x|θ,y)
qθ′ (x)/g(x′|θ′,y)

which can also be viewed as approximating the ratio Zθ/Zθ′ using two single-sample impor-

tance sampling estimates. Note that this provides a biased estimate of the ratio, a fact often

considered negligible for large sample sizes but potentially important for single samples. This

connection motivates consideration of (IS3) as a potential improvement.

Exact Sampling with Bounding Chains Møller’s method requires the ability to gen-

erate exact samples from f(x | θ). For the ferromagnetic Ising model, this can be achieved

by coupling from the past (CFTP) (Propp and Wilson, 1996), and this idea has been ex-

tended to the homogeneous Potts model using bounding chains (Huber, 2004). The latter

constructs a bounding chain y with state space (2k)m along with the original chain x on km,

such that x
(−t)
i ∈ y

(−t)
i ensures x

(−t+1)
i ∈ y

(−t+1)
i for all i and time t. Then we need only

consider the possible transitions of x from states bounded by y(−t), to obtain y(−t+1). For −t

such that |y(0)
i | = 1 for all i, the chains have coalesced and x(0) = y(0) is an exact sample.

A straightforward extension of Huber’s algorithm to the non-homogeneous Potts model is

given in Algorithm 1. As with CFTP, the chain is constructed starting backwards in time
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at −T , until T is large enough to ensure coalescence at time zero.

The above algorithms are constructed from an underlying heat-bath (or Gibbs sampler)

Markov chain, which is known to exhibit critical slowing down at certain values of J/T (the

critical temperature). Because Møller’s method involves embedding this CFTP in the loop of

the larger MCMC sampling many values of J (or in our case, the matrix θ), the efficiency is

a concern. In particular, if the posterior distribution has mass near the critical values of J ,

the perfect sampling steps will take exponentially long and thus so will the overall Markov

chain. We explore this issue via simulation studies in Section 4.1.

Algorithm 1 Exact sampling from non-homogeneous k-color Potts model on m node graph.

T = 1, ut = runif(T, 0, 1) and tm = maxi∈{1,··· ,m};a,b∈{1,··· ,k}{
∑

i∼j θ(a, b)}
while |yi| 6= 1 for some i do

for t = −T to 0 do
Choose i ∈ {1, · · · , m} randomly, let Ni be the neighbors of i, let yi = ∅
repeat

Choose c ∈ {1, · · · , k}
Let bc =

∑
j∈Ni,j:yj={cj} θ(c, cj)

Let minc =
∑

j∈Ni,j:|yj |>1 min
cw∈yj

[θ(c, cw)] and maxc =
∑

j∈Ni,j:|yj |>1 max
cw∈yj

[θ(c, cw)]

if ut ≤ ebc+maxc −tm then
yi = yi ∪ {c}

end if
until ut ≤ ebc+minc −tm

end for
T = 2T and ut = (runif(T, 0, 1), ut)

end while

3.1.3 Pseudolikelihood Approximation of Likelihood Function

When a maximum likelihood estimator is not easy to obtain on a graphical model, a general

alternative is the use of a maximum pseudolikelihood estimator (MPLE) (Besag, 1974, 1975).

The pseudolikelihood function is given by the product of local conditional densities, and for

a k color Potts model on a lattice of m nodes takes the form:

Lp(θ) =
m∏

i=1

p(xi | xj : j ∼ i) =
m∏

i=1

e−(
P

i∼j Jijδ(xi,xj)+Hixi)∑k
x=1 e−(

P
i∼j Jijδ(x,xj)+Hix)

(4)

Pseudolikelihood estimation is convenient because it avoids the difficulties of evaluating

normalizing constants, making maximization straightforward. Although pseudolikelihood
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estimators are biased, they have been shown to be asymptotically unbiased and consistent

(Comets, 1992; Guyon and Kunsch, 1992; Jensen and Kunsch, 1994; Mase, 2000; Baddeley

and Turner, 2000).

Here we also consider using the pseudolikelihood function in place of the likelihood func-

tion for defining a “pseudoposterior”, approximating the posterior distribution by

π(θ | y) ∝ L(θ)π0(θ) ≈ Lp(θ)π0(θ) (5)

This circumvents the intractable normalizing constant problem, replacing the computation-

ally difficult likelihood function with the simpler pseudolikelihood function. We have not

found much discussion of this approach in the literature, but it seems an obvious approach

and we highly doubt we are the first to use it.

3.2 ’Quasi-chemical’ Approximation for Protein Contact Poten-

tials

A point estimator commonly used for protein contact potentials is the pairing frequency esti-

mator, or pair-wise statistical potential. This knowledge-based statistical potential is gener-

ated by a ”quasi-chemical” approximation using Boltzmann’s law (Miyazawa and Jernigan,

1985; Sippl, 1993). It is derived by assuming that all amino acids are in a gas phase, and by

the Boltzmann relation, the free energy between amino acid i and j is given by:

w(i, j) = −kBT log(
ρij

ρij∗
)

where ρij is the pairing frequency of amino acids i and j, and ρij∗ is the pairing frequency

at the reference state, which depends on the concentration of each amino acid. Let mij

be the number of pairs of amino acid i and j, m =
∑

i,j mij be the total number of pairs,

ni =
∑

j mij be the number of amino acid i, and n =
∑

i ni be the total number of amino

acids. Again taking kBT = 1, we have:

ρ̂ij =
mij

m
ρ̂ij∗ =

{
ninj

n2 i 6= j
ninj

2n2 i = j
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4 Numerical Results

Before comparing the three Bayesian posterior parameter estimation methods described in

Section 3.1, we first explore two intermediate questions: the runtime of the exact sampling

step (Section 3.1.2), and the number of samples needed in the importance sampling approx-

imations (Section 3.1.1).

4.1 Runtime of Exact Sampling with Bounding Chains

Application of Møller’s method (Section 3.1.2) to our protein model requires the generation

of exact samples using the bounding chains CFTP algorithm (Algorithm 1). Because a

typical protein has a few hundred contacts in its neighborhood graph, we first performed

a simulation experiment to investigate the efficiency of this algorithm for reasonable lattice

sizes. Simulations were run on an Intel Pentium Dual-Core Processor E2140, with code

written in C.

Fig. 1a shows the mean runtime for generating exact samples from a homogeneous Ising

model on a 10×10 lattice, as a function of interaction parameter, estimated from 10 samples

at each value. We see that the runtime is reasonable for parameters in the range J ∈
(−0.60, 0.60), but gets exponentially large outside this range. As described above, this is to

be expected as the exact sampling is based on the heat bath algorithm, and so also suffers

from critical slowing down.

Fig. 1b shows the mean runtime curve for a k = 20 color homogeneous Potts model,

which corresponds to our protein model with θ(i, i) ≡ θ and θ(i, j) = 0 for i 6= j. Again, 10

exact samples were generated for various θ’s. We see that the runtime is fast in the range

−1.8 ≤ θ ≤ 1.5, and again grows exponentially outside this range. Generating an exact

sample took as long as 7min for θ ≈ −1.93 and 5.5 min for θ ≈ 1.55.

4.2 Comparison of Importance Sampling Ratio Approximations

To determine the number of samples required to accurately estimate the ratio Zθ/Zθ′ by

importance sampling (Section 3.1.1), we performed a simulation experiment to compare the

three schemes given by equations (IS1), (IS2), and (IS3) (hereafter called IS1, IS2, and

IS3, respectively). Using each method, we estimated the ratios Z0.10/Z0.15, Z0.20/Z0.25, and

Z0.30/Z0.35 for a homogeneous Ising model on a 10×10 lattice. These ratios were chosen

because: (i) perfect samples are easily generated for θ in this range (Fig. 1); and (ii) when

using these methods in the context of parameter estimation MCMC algorithms, the newly
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Figure 1: Expected runtime of exact sampling as a function of interaction strength for (a)
10× 10 Ising model, and (b) 20 color Potts model.

proposed θ′ will typically not be too far from the current θ. For methods IS1 and IS3, we

use θ̃ = θ1 − 0.05 to estimate Zθ1/Zθ2 , again because in the context of parameter estimation

the use of the MPLE means θ̃ will typically be near but not equal to the posterior mode.

For each method, we repeatedly estimated the ratio Zθ/Zθ′ using independent Monte

Carlo samples of sizes 10, 100 and 1000. Fig. 2 shows boxplot of the resulting estimates,

compared to the exact value which can be computed for a lattice of this size by recursive

methods (Reeves and Pettitt, 2004). It can be seen that all three methods converge to the

true value as the sample size increases, but IS2 appears to do so more quickly, performing well

even with only 10 samples. In the MCMC context, method IS2 will also have the advantage

that the samples used are drawn from a different, nearby distribution at each iteration.

Thus in what follows we use method IS2 to evaluate the performance of IS methods for use

in parameter estimation.

4.3 Comparison of Bayesian Estimation Methods

We are now in a position to empirically compare the performance of the three Bayesian

parameter estimation schemes introduced in Section 3.1. In this section, we compare their

ability to recover parameters for data generated from a model with known parameters, for

the Ising and then Potts models. In the next section we look at performance for the protein
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model with real data. We denote the methods by the shorthand:

IS method: Metropolis-Hastings algorithm with Zθ/Zθ′ estimated by importance sampling

as in Section 3.1.1. Based on the results of Section 4.2, we use IS2 with 100 samples.

M method: Møller’s auxiliary variable algorithm described in Section 3.1.2.

PP method: Metropolis-Hastings algorithm targeting the “pseudoposterior” (5) described

in Section 3.1.3.

4.3.1 Ising model comparison

We generated two perfect samples from 10×10 Ising models with parameters J = −0.3 and

J = 0.3, respectively:

θ = −0.3

− + + − + − − − + −
− − + − − + + + + +

+ + + − + − − + − +

+ − + − − − + − + +

+ − + + + + − + − −
+ − + − + − + + − +

+ − − + + + − − + −
+ + + + − + − + − +

− + − − + − + + − +

+ − + + + + + − + −

θ = 0.3

+ − − − + + + − + +

+ + + − − − + − + +

+ + + − − − − + + +

− − + + − − + − + +

− − − − − + + + + −
− − + − + + + + + −
+ − − − − + + + + +

+ + − − − + + + + +

− − − − + + − + + +

− − − + + − − + + +

All methods use a random-walk Metropolis algorithm on θ, with proposal distribution

θ′ ∼ N(θ, σ2) where σ2 was chosen to achieve the acceptance rates ≈30-40%; (σ2 = 0.15 for

IS2, σ2 = 0.1 for M, and σ2 = 0.2 for PP). All chains were initialized at the MPLE, and θ̃

for the M method is also the MPLE. Priors are uniform: π(θ) ∼ U(0, 0.7) for θ = 0.3, and

π(θ) ∼ U(−0.7, 0) for θ = −0.3. MCMC chains are run for 10,000 iterations, discarding the

first 2000 iterations as the burn-in period.

For comparison, we calculated the posterior distribution and quantiles numerically, by

discretization of θ at a resolution of 10−6. At each value, the posterior density can be

directly calculated using the forward recursion method (Reeves and Pettitt, 2004), as can

the quantiles. Figures 3 and 4 show traceplots, posterior histograms, autocorrelation-plots

and quantile-quantile plots for the three different methods on the θ = −0.3 and θ = 0.3 Ising

model, respectively. We can see that the IS and M methods both approximate the theoretical

distribution well in each case. However, the M method suffers higher autocorrelation, while

the IS method is computationally intensive, requiring 100 exact samples at each iteration.
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Interestingly, the PP method approximates the theoretical posterior distribution reasonably

well, but does display a small bias in the antiferromagnetic case.

4.3.2 Generalized Potts model comparison

The Ising model is a particularly simple special case. For protein modeling it is common to

use hundreds of observations, each containing a few hundred contacts, to estimate the 210

contact potential parameters. Even for a few dozen structures, there will be on the order of

dozens of observed contacts per interaction parameter. To design a simulation experiment

comparable to this situation and still simple enough to generate perfect samples, we use a

3 color Potts model, generalized to have non-zero interactions on the off-diagonal of θ as in

the protein model, on a 10×10 lattice. This model has 5 parameters to be estimated, and a

single realization contains 180 total contacts.

We generated an exact sample from this model with parameters

θ =

 0.0 0.1 0.2

0.1 0.4 0.3

0.2 0.3 0.5


resulting in the sample observation:

2 3 1 2 3 3 3 2 1 1

2 1 2 3 2 3 1 2 3 2

2 2 2 1 3 3 1 3 1 1

3 2 2 3 3 2 1 1 3 2

3 3 3 1 3 3 3 3 2 3

2 2 1 2 1 3 3 2 2 3

3 2 2 3 3 3 1 3 3 3

3 3 2 3 1 3 3 2 3 3

3 2 2 1 2 3 3 3 3 2

3 1 3 1 3 3 2 3 3 1

Although this is a dramatic simplification of the k = 20 protein model, with elements of θ

chosen relatively small to ensure fast exact sampling, nevertheless the IS method takes several

days to run the MCMC chain. The major limitation is the generation of 100 exact samples

during each MCMC iteration. Moreover, the number 100 was chosen based on the Ising model

simulations of Section 4.2 and is probably insufficient to accurately estimate Zθ/Zθ′ for the

current model (checking by numerical calculation using exact recursions is prohibitive in this

case). We therefore conclude that the IS method is impractical for parameter estimation in

our protein model.

Therefore, we compare only the M and PP methods here. As before, the variance σ2 of the

random-walk proposal θ′ ∼ N(θ, σ2) is chosen to achieve acceptance rate ≈30-40%. (σ2 = 0.4
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for PP method). However, Møller’s method suffers from low acceptance rates for all σ2, and

we are only able to achieve acceptance rate around ≈ 20% with small σ2 = 0.02. As before,

θ̃ and initial states are chosen to be the MPLE. Prior distributions are π0(θ) ∼ U(−1, 2).

We run the MCMC chains for 100,000 iterations, and discard the first 5000 iterations as the

burn-in period.

Fig.5 shows traceplots, posterior histograms, and autocorrelation-plots of the two meth-

ods for two representative parameters θ(1, 2) and θ(3, 3). (Results for the other 3 parameters

are similar.) We see that even for this simple Potts model, the M method suffers from high

autocorrelation and slow mixing. Because the acceptance decreases with dimension of x, the

chain is likely to be unacceptably slow in our protein model where x entails tens of thousands

of sites (hundreds of observations each containing hundreds of sites).

More importantly, exact sampling is too slow even in this simple case: the Møller chain

takes about 48hrs to run. Since it takes significantly longer to generate exact samples from

a k = 20 color Potts model with a wide range of θ’s, we conclude that this sampling speed

limitation precludes use of Møller’s method and its extensions to complicated models such

as the protein design model.

In contrast, the PP method runs very fast (only a few minutes, regardless of the range

of parameters) and shows good mixing. Although the exact posterior distribution cannot be

calculated numerically by the forward recursion method in this case, we can compare the PP

results to those from Møller’s method which has the exact posterior as its limiting distribu-

tion. Fig. 6 shows quantile-quantile plots comparing the samples from these two methods for

θ(1, 2) and θ(3, 3). We see that they are in close agreement, although the PP method appears

to exhibit a small bias as expected (it is difficult to attribute differences purely to the PP

method due to the small effective sample size obtainable by the M method). These results

suggest that the PP method may approximate the posterior distribution reasonably well,

especially for larger sample sizes which mitigate the bias (see Section 4.4 below). Therefore

the PP method appears to be a reasonable choice for satisfactory parameter estimation in

our protein model. Given the intractable computational requirements of the IS and M meth-

ods for larger, more complex models with larger sample sizes, the PP method also appears

to be the only viable alternative.

4.4 Convergence of Point Estimators in Potts Models

Lastly, we evaluated the performance of the pairing frequency estimators (PFE) commonly

used in the protein science literature (see Section 3.2) by a simulation experiment, and
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compared the performance to the MPLE.

Writing the pseudolikelihood function for Potts models (4) for the generalized model

gives:

lp =
m×n∑
i=1

{−
∑
j∼i

θ(xi, xj)− log[
k∑

x=1

e−
P

j∼i θ(x,xj)]}

and since each p(xi | xj : j ∼ i, θ) is log-concave, the pseudolikelihood function is log-

concave, and the global maximum found efficiently by numerical optimization. We use a

Newton-Raphson algorithm, where the Hessian matrix is easily derived:

∂lp
∂θab

=
m×n∑
i=1

{
∑k

x=1 mab
i e−

P
j∼i θ(x,xj)∑k

x=1 e−
P

j∼i θ(x,xj)
−mab

i }

∂2lp
∂θab∂θcd

=
m×n∑
i=1

{ [
∑k

x=1 mab
i e−

P
j∼i θ(x,xj)

∑k
x=1 mcd

i e−
P

j∼i θ(x,xj)]

[
∑k

x=1 e−
P

j∼i θ(x,xj)]2

− [
∑k

x=1 e−
P

j∼i θ(x,xj)][
∑k

x=1 mab
i mcd

i e−
P

j∼i θ(x,xj)]

[
∑k

x=1 e−
P

j∼i θ(x,xj)]2
}

Here mab
i is the number of neighbors of xi taking value b if xi = a, and 0 otherwise.

We compare the ability of PFE and MPLE estimators to recover parameters for a k =

5 color 10×10 lattice Potts model. Elements of the parameter matrix θ were generated

uniformly on [−0.5, 0.5], subject to the constraints (symmetry, θ(1, 1) = 0 and w(1, 1) = 0).

The small range of parameters around zero ensured that observations could be generated

by exact sampling with reasonable speed. n independent samples of the 10×10 lattice were

then generated and the PFE and MPLE estimators applied to the sample of size n. This was

repeated 20 times in order to examine the sampling distribution of these point estimators.

Figures 7a and 7b show the results for the two estimators for sample sizes n = 10 and

n = 100, respectively. We see that the sampling distribution of the MPLEs are centered at

the true values, and converge quickly as n increases. Although the MPLEs are known to

be biased, they are asymptotically unbiased. In contrast to applications to single images or

spatial datasets, our application involves independent samples of the entire graph. It appears

that the asymptotics kick in quickly in this case. By comparison, the pairing frequency

estimates appear to be inconsistent: they are biased estimates and do not converge to the

true parameters.

We repeated this for the k = 20 model with parameters generated uniformly from

[−0.3, 0.3], this time performing 10 replications for sample sizes n = 100 and n = 1000.
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Fig. 8 shows the distributions of the errors (θ̂−θ). Although the intervals for both estimates

contain 0 for n = 100, when uncertainty is reduced (n = 1000) we see that once again the

MPLE converges to the true values while PFE converges to incorrect values.

We conclude that for independent samples from Potts models the MPL estimates converge

quickly to the true values as sample size increases, while the pairing frequency estimates

appear to be inconsistent.

5 Application to Protein Model

We now consider parameter estimation in the protein model of Section 2.2. Recall that we

concluded from the simulation studies of Section 4 that, of the Bayesian estimation schemes

described in Section 3, only the pseudoposterior method was sufficiently accurate and efficient

to scale to the protein problem. Thus in this section we evaluate the performance of the PP

method, along with the point estimators MPLE and PFE, on a protein modeling problem

using real data. The optimization procedure for finding the MPLE (also used to initialize

the MCMC for PP) is given in the Appendix.

5.1 Protein Data Sets and Pseudolikelihood Estimates

The protein structure dataset used is listed in Table 1. All structures are obtained from

the Protein Data Bank (www.rcsb.org), have > 2.5Å resolution, and share < 25% sequence

identity. 23 large proteins (> 255 residues) serve as templates for building alternative struc-

tures for the threading experiment, and 37 proteins with < 255 residues serve as the training

set; these sets are taken from (Maiorov and Crippen, 1992; Thomas and Dill, 1996a). The

test set contains 174 proteins chosen from a set of 302 proteins with little sequence similarity

(Hobohm and Sander, 1994). To distinguish between compact and non-compact structures,

only proteins with a relatively small radius of gyration are selected, following (Maiorov and

Crippen, 1992): only proteins with eg < 1.3 are selected, where eg is ratio of the radius of

gyration of the putative reference structure to rmin the minimal radius of gyration over the

set of all its alternatives. rmin is calculated by a linear regression rmin = −1.26+2.79(N)1/3,

where N is the number of residues in the protein. This process results in 174 proteins in the

training set.
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Training Set of 37 Small Proteins

155C 1ACX 1BDS 1CC5 1CRN 1CSE.I 1ECD 1FDX
1HIP 1HMQA 1HOE 1HVP.A 1LH4 1PP2.R 1REI.A 1RN3
1SN3 2AZA.A 2B5C 2C2C 2CDV 2HHB.A 2HHB.B 2OVO

2PAB.A 2PKA.B 2RHE 2SNS 2SSI 2STV 351C 3ADK
3EBX 4PTI 5CYT 5RXN 9WGA.A

Set of 23 Large Proteins for Building Alternative Structures

1ABP 1CSE.E 1CTS 1HMG.A 1PFK.A 1PHH 1PYP 1RHD
2CAB 2CYP 2TAA.A 3GPD.G 3GRS 3PGK 4APE 4MDH.A

4RHV.1 4TLN 5CPA 6LDH 7API.A 8ADH 8CAT.A

Testing Set of 174 Low Similarity Proteins

1AAK 1AAP.A 1ABA 1ABK 1ABM.A 1APS 1ATX 1AYH
1BAA 1BAB.B 1BAR.B 1BBA 1BBH.A 1BBL 1BBO 1BBP.A

1BBT.2 1BGC 1BOV.A 1BRD 1BW4 1C2R.A 1C5A 1CAU.A
1CAU.B 1CBN 1CD8 1CDT.A 1CID 1CIS 1CMB.A 1COB.A
1CPC.A 1CPC.L 1CTA.A 1D66.A 1DFN.A 1DHR 1DNK.A 1EAF
1ECO 1EGF 1END 1ERP 1FAS 1FC2.C 1FCS 1FDD
1FHA 1FIA.B 1FXI.A 1GKY 1GLA.F 1GMF.A 1GMP.A 1GPS

1GRC.A 1GSS.A 1HCC 1HDD.C 1HIV.A 1HLE.B 1IFC 1ISU.A
1IXA 1L92 1LE4 1LTS.A 1LTS.C 1LTS.D 1MDA.A 1MDC
1MHU 1MS2.A 1MUP 1NXB 1OFV 1OIA.A 1OVB 1PAZ
1PDC 1POA 1POC 1PPF.E 1PPN 1R1A.2 1RBP 1RCB
1RND 1RPR.A 1RRO 1SGT 1SHA.A 1SHF.A 1SNC 1TAB.I
1TEN 1TFG 1TFI 1TGL 1TGS.I 1THO 1TIE 1TLK

1TNF.A 1TRE.A 1TRO.A 1TTB.A 1UTG 1VAA.B 1WSY.A 1YCC
256B.A 2ACH.B 2ATC.B 2AVI.A 2BDS 2BOP 2BPA.2 2BPA.3
2CBH 2CBP 2CCY.A 2CPL 2CRD 2CRO 2ECH 2GB1
2HIP.A 2HSD.A 2IHL 2LAL.A 2LAL.B 2MAD.L 2MHR 2MHU
2MSB.A 2PDE 2PF2 2PHY 2PRF 2RN2 2SAS 2SCP.A
2SGA 2SN3 2SNV 2ZTA.A 3B5C 3CHY 3CLA 3DFR

3GAP.A 3IL8 3MON.A 3PGM.A 3RUB.S 3SC2.B 3SGB.I 3SIC.I
4BLM.A 4CPA.I 4FXN 4GCR 4HTC.I 4SBV.A 4SGB.I 4TGF

5P21 7API.B 7ZNF 8I1B 8RXN.A 9RNT

Table 1: List of Proteins Used in the Work
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5.2 Threading Experiment and Results

We evaluate the parameter estimates for the protein model via a protein structure predic-

tion experiment. Although the “true” parameters are unknown, it is assumed that correct

parameters will identify the native protein structure of a given sequence as the minimum

energy among a pool of alternative structures. (This is a test of the model as much as

the estimation scheme; but allows for comparison between estimation schemes for the given

model). To do so we perform gapless threading, a simple and common way to generate

alternative structures (see e.g. Thomas and Dill (1996a)). Briefly, the sequence of any small

protein is mounted on the backbone of the 23 largest proteins without gaps, and slides alone

the backbone one amino acid at a time, generating Nl − Ns + 1 alternative structures for

small and large proteins of length Ns and Nl respectively. The energy of each alternative

structure, as well as the native structure, is then calculated for each sequence using the

estimated energy function parameters.

Because the fold recognition experiment involves evaluation of the energy on native and

alternative structures containing varying numbers of contacts, care is needed in imposing

identifiability constraints. (For example, adding a large constant to all contact energies will

not affect the MLE or MPLE, but then a protein with a small number of contacts generally

have lower energy than a protein with a large number of contacts.) To exclude the effects of

different numbers of contacts, here we use constraints
∑210

i=1 θi = 0 and
∑20

i=1 µi = 0 instead.

Table 5.1 shows the maximum pseudolikelihood estimates obtained from the training

set. We compare the predictive performance of our parameter estimates with those obtained

using the pairing frequency estimates described in Subsection 3.2 (a pairwise ’empirical”

or ’statistical’ potential), and a discriminative model given algorithmically in (Thomas and

Dill, 1996a). The latter uses a Boltzmann distribution over structures, approximating the

partition function by the set of generated alternative structures:

p(c | s) =
p(c | s)∑

c∈C p(c | s)
≈ e−

P
i∼j θ(xc

i ,xc
j)∑

a∈CA∪{cN} e−
P

i∼j θ(xa
i ,xa

j )
(6)

where CA is set of alternative structures and cN the native structure. The contact energies

θ are then obtained by optimizing the right hand side approximation to p(cN | s) for the

training set. Further discussion of discriminative vs generative modeling for this problem is

given elsewhere (Zhou and Schmidler, 2009).

The results of threading experiment are summarized in Table 3. The native structure

is ranked among the pool of alternative structures according to the energy assigned by the
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potential. At 0% the native structure ranks as best, at 5% native structure is assigned

energy lower than 95% of alternative structures. We see that the pseudoposterior-based

parameter estimation dramatically outperforms the quasi-chemical model (PFE) commonly

used in the field. This shows the practical consequences of the inconsistency of the PFE

estimators demonstrated in Section 4.4. Indeed, using a proper estimation scheme such as

the MPLE or pseudoposterior, the generative model achieves nearly the same performance

and the Dill model where discriminative performance is directly optimized. This will be

surprising, good news for those protein modeling applications described in Section 2.2 which

desire a generative model.

It is worth noting that there remains considerable room for improvement in the protein

model described here. It is well known that potentials based on an distance-dependent,

all-atom representation substantially improve fold recognition accuracy (Melo et al., 2002).

However, our results suggest that such models should be fit by proper statistical estimators

rather than the PFE commonly used. An advantage of the pseudoposterior approach is that

it is easily extensible to such models.

6 Conclusion and Discussion

We have considered computational schemes for practical Bayesian estimation in Ising and

Potts models, and generalizations relevant to protein modeling, containing an intractable

normalization in the likelihood. Comparison of three alternative methods via simulation

studies indicate that while importance sampling approximation of the ratio of normalizing

constants, Møller’s auxiliary variable method, and sampling from a pseudolikelihood-based

posterior all work well in small Ising models, for realistic problems involving large graphs,

higher-dimensional parameter vectors, and/or repeated samples, only the pseudoposterior

method is practical. A critical limitation of both importance sampling and Møller’s method

is the large computational time required for generating exact samples using the bounding

chain algorithm. Since the bounding chain algorithm is based on a heat-bath algorithm,

exact sampling algorithms built on more sophisticated Markov chains may help alleviate

this problem. However, in our hands Møller’s algorithm also suffered from slow mixing

due to the necessity of using a very narrow proposal distribution, due to the low acceptance

rates arising from the use of a very high dimensional (equal to dimension of dataset) auxiliary

variable. The latter problem has been addressed somewhat by Murray et al. (2006), who

introduce multiple auxiliary variables. However, at present the first limitation (speed of
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exact sampling) prohibits application of Møller’s method or Murray’s extension to Potts

models on large graphs.

Surprisingly, the “pseudoposterior” method based on a pseudolikelihood approximation

performs rather well in this setting. Sampling is fast and straightforward, and although pseu-

dolikelihood estimates are known to exhibit significant bias when dependency in the graph

is high (Geyer, 1992; Gile and Handcock, 2007), the asymptotic unbiasedness appears to be

achieved relatively quickly when multiple independent samples of the graph are available as

common in protein modeling problems. The resulting estimators significantly outperform

the “pairing frequency estimators” commonly used in protein bioinformatics, both in recov-

ering known parameters, and in a practical protein structure prediction test on real data.

Indeed the PFE appear to be inconsistent, perhaps explaining previous observations that

the pairing frequency estimates often do not appear to reflect the underlying energetics of

protein structures (Thomas and Dill, 1996b).

Appendix: Pseudolikelihood optimization for the pro-

tein model

The log-pseudolikelihood function for the protein model is given by:

lp =
n∑

i=1

{−(
∑

i

µ(xi) +
∑
i∼j

θ(xi, xj))− log(
20∑

x=1

e−(
P

i µ(x)+
P

i∼j θ(x,xj)))}

Again this is log-concave and we use Newton-Raphson to maximize. The gradient vector

and Hessian matrix are easily derived:

∂lp
∂θab

=
n∑

i=1

{−mab
i +

∑20
x=1 mab

i e−E(xi=x)∑20
x=1 e−E(xi=x)

}

∂lp
∂µa

=
n∑

i=1

{−1{xi=a} +
e−E(xi=a)∑20

x=1 e−E(xi=x)
}
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∂2lp
∂θab∂θcd

=
n∑

i=1

{ [
∑20

x=1 mab
i e−E(xi=x)][

∑20
x=1 mcd

i e−E(xi=x)]

(
∑20

x=1 e−E(xi=x))2
− [

∑20
x=1 mab

i mcd
i e−E(xi=x)]∑20

x=1 e−E(xi=x)
}

∂2lp
∂µa∂µb

=
n∑

i=1

{ e−E(xi=a)e−E(xi=b)

(
∑20

x=1 e−E(xi=x))2
− 1{a=b}

e−E(xi=a)∑20
x=1 e−E(xi=x)

}

∂2lp
∂µa∂θcd

=
n∑

i=1

{ [e−E(xi=a)][
∑20

x=1 mcd
i e−E(xi=x)]

(
∑20

x=1 e−E(xi=x))2
−

mcd
i 1{xi=a}e

−E(xi=a)∑20
x=1 e−E(xi=x)

}

The identifiability constraints θ(1, 1) = 0 and µ(1) = 0 are easily imposed. As explained

in Section 5, the constraints
∑

θ = 0 and
∑

µ = 0 are used instead for the threading

experiment, obtained by subtracting a constant.
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Figure 2: Comparison of the three different importance sampling methods of Section 3.1.1
for approximating the ratios Z0.10/Z0.15, Z0.20/Z0.25, and Z0.30/Z0.35 on a 10×10 Ising lattice,
as sample size increases. Line shows exact value, computable for this size lattice via recursive
methods (Reeves and Pettitt, 2004).
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Figure 3: Comparison of three different parameter estimation methods for Ising model with
θ = −0.3 on a 10×10 lattice. Solid line on histograms is numerical integration using exact
recursions.
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Figure 4: Comparison of three different parameter estimation methods for Ising model with
θ = 0.3 on a 10×10 lattice. Solid line on histograms is numerical integration using exact
recursions.

28



0 20000 40000 60000 80000−
0

.5
0

.0
0

.5
1

.0

Traceplot

iterations

θ
(1

, 2
),

 M
 M

e
th

o
d

Histogram

θ(1, 2)

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0 50 100 150 200−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Autocorrelation

Lag

A
u

to
c
o

rr
e

la
ti
o

n

0 20000 40000 60000 80000

0
.5

1
.0

1
.5

Traceplot

iterations

θ
(3

, 3
),

 M
 M

e
th

o
d

Histogram

θ(3, 3)

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

0 50 100 150 200−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Autocorrelation

Lag

A
u

to
c
o

rr
e

la
ti
o

n

(a)

0 20000 40000 60000 80000

−
0

.5
0

.5
1

.0
1

.5
2

.0

Traceplot

iterations

θ
(1

, 2
),

 P
L

 M
e

th
o

d

Histogram

θ(1, 2)

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

0 50 100 150 200−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Autocorrelation

Lag

A
u

to
c
o

rr
e

la
ti
o

n

0 20000 40000 60000 80000

0
.0

0
.5

1
.0

1
.5

2
.0

Traceplot

iterations

θ
(3

, 3
),

 P
L

 M
e

th
o

d

Histogram

θ(3, 3)

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

0 50 100 150 200−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Autocorrelation

Lag

A
u

to
c
o

rr
e

la
ti
o

n

(a)

Figure 5: Comparison of (a) Møller’s and (b) pseudoposterior methods on two parameters
θ(1,2) and θ(3,3) of a k = 3 color 10×10 lattice Potts model. Because the low acceptance
rate requires the proposal σ2 small, Møller’s method exhibits high autocorrelation indicating
slow mixing.
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Figure 6: Quantile-Quantile Plot for θ(1,2) and θ(3,3) with M and PP methods.

θ Ala Arg Asn Asp Cys Glu Gln Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
Ala -0.075 0.43 0.058 0.14 -0.094 0.14 0.2 -0.0088 0.081 -0.0014 -0.11 0.058 0.12 0.081 0.44 0.14 0.028 0.028 0.033 -0.21
Arg 0.43 0.35 0.025 0.017 0.044 0.25 0.0076 -0.016 -0.084 -0.21 -0.1 0.56 -0.28 -0.3 0.53 0.29 -0.15 -0.08 -0.16 -0.088
Asn 0.058 0.025 -0.18 0.2 -0.31 0.083 0.09 0.023 -0.14 0.27 -0.07 0.24 -0.0350.0053 0.34 0.51 0.038 -0.25 -0.35 0.036
Asp 0.14 0.017 0.2 0.51 0.1 0.44 0.48 0.19 -0.1 0.0098 0.33 0.14 0.19 0.23 0.72 0.092 0.16 -0.079 0.13 -0.01
Cys -0.094 0.044 -0.31 0.1 -1.1 -0.24 0.16 -0.42 -0.37 -0.24 -0.24 0.067 -0.51 -0.48 0.12 -0.061-0.082 -0.1 -0.52 -0.3
Glu 0.14 0.25 0.083 0.44 -0.24 0.039 0.33 -0.016 0.36 -0.22 -0.099 0.36 -0.42 -0.04 0.19 0.39 -0.052 0.35 -0.35 -0.1
Gln 0.2 0.0076 0.09 0.48 0.16 0.33 0.067 0.17 -0.098 0.044 -0.0047 -0.022 0.23 0.23 0.41 0.36 0.32 0.45 0.2 -0.067
Gly -0.0088-0.016 0.023 0.19 -0.42 -0.016 0.17 -0.05 -0.0079 0.07 -0.1 0.00031-0.078 0.12 0.17 0.094 0.16 -0.076-0.065-0.035
His 0.081 -0.084 -0.14 -0.1 -0.37 0.36 -0.098 -0.0079 -0.21 0.074 -0.24 0.16 -0.41 -0.63 0.27 0.057 0.19 0.099 -0.27 -0.28
Ile -0.0014 -0.21 0.27 0.0098 -0.24 -0.22 0.044 0.07 0.074 -0.44 -0.52 -0.027 -0.048 -0.46 0.18 0.077 -0.12 -0.46 -0.49 -0.36
Leu -0.11 -0.1 -0.07 0.33 -0.24 -0.099-0.0047 -0.1 -0.24 -0.52 -0.57 0.14 -0.13 -0.56 0.12 0.12 -0.12 -0.51 -0.31 -0.51
Lys 0.058 0.56 0.24 0.14 0.067 0.36 -0.022 0.00031 0.16 -0.027 0.14 0.56 -0.1 -0.12 0.67 0.43 0.19 0.085 -0.02 0.022
Met 0.12 -0.28 -0.035 0.19 -0.51 -0.42 0.23 -0.078 -0.41 -0.048 -0.13 -0.1 -0.077 -0.52 0.17 -0.069 0.11 0.31 -0.22 -0.29
Phe 0.081 -0.3 0.0053 0.23 -0.48 -0.04 0.23 0.12 -0.63 -0.46 -0.56 -0.12 -0.52 -0.57 -0.071 0.12 -0.11 -0.51 -0.22 -0.43
Pro 0.44 0.53 0.34 0.72 0.12 0.19 0.41 0.17 0.27 0.18 0.12 0.67 0.17 -0.071 0.73 0.66 0.26 0.18 -0.19 0.047
Ser 0.14 0.29 0.51 0.092 -0.061 0.39 0.36 0.094 0.057 0.077 0.12 0.43 -0.069 0.12 0.66 -0.099 0.058 -0.1 0.089 0.02
Thr 0.028 -0.15 0.038 0.16 -0.082-0.052 0.32 0.16 0.19 -0.12 -0.12 0.19 0.11 -0.11 0.26 0.058 0.33 0.42 -0.059 0.095
Trp 0.028 -0.08 -0.25 -0.079 -0.1 0.35 0.45 -0.076 0.099 -0.46 -0.51 0.085 0.31 -0.51 0.18 -0.1 0.42 1.1 -0.56 0.068
Tyr 0.033 -0.16 -0.35 0.13 -0.52 -0.35 0.2 -0.065 -0.27 -0.49 -0.31 -0.02 -0.22 -0.22 -0.19 0.089 -0.059 -0.56 -0.37 -0.28
Val -0.21 -0.088 0.036 -0.01 -0.3 -0.1 -0.067 -0.035 -0.28 -0.36 -0.51 0.022 -0.29 -0.43 0.047 0.02 0.095 0.068 -0.28 -0.53
µ -1.2 -0.071 -0.42 -1.7 2.2 -0.28 -1.4 -0.94 0.97 1.1 0.94 -1.8 1.6 1.6 -2.1 -1.5 -1.1 1.6 1.4 0.95

Table 2: Pseudolikelihood Estimates for the Protein Model

Model correct <1% 1-5% 5-10% 10-20% 20-50% >50% total
Training Set

Statistical Potentials (PFE) 3 16 3 4 5 5 1 37
Dill Estimates 36 1 0 0 0 0 0 37

Pseudoposterior 33 3 1 0 0 0 0 37
Test Set

Statistical Potentials (PFE) 9 22 25 18 26 28 46 174
Dill Estimates 137 21 7 4 1 1 3 174

Pseudoposterior 134 21 7 2 6 2 2 174

Table 3: Threading Results on the Training and Test Sets with Different Models
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Figure 7: Comparison of MPLE and PFE estimators for k = 5 color 10×10 lattice Potts
model, with sample sizes n = 10 and n = 100. Open boxplots give sampling distribution for
pairing frequency estimates, grey boxplots represent pseudolikelihood estimates, and dark
bars indicate true values.
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Figure 8: Sampling distributions of errors for MPLE and PFE estimates of the 210 parame-
ters of the k = 20 color Potts model. Shown are sample sizes (a) n = 100, and (b) n = 1000.
At larger sample size, it can be seen that the PFE estimates converge to incorrect values.
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