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Abstract

We introduce a class of probability models for sequences of random variables with complex long-range

dependency structure, called stochastic segment interaction models, motivated by problems arising in the

analysis of biopolymer sequence data. We generalize and extend previous work in this area, and make

explicit the relations to existing literature on hidden Markov models (HMMs) and “generalized” HMMs.

We show that this class of models allows for incorporation of non-local interaction information in biological

sequence analysis. We demonstrate this approach by developing models for prediction of 3D contacts

in protein sequences using models for amino acid dependencies in β-sheets. We provide algorithms for

Bayesian inference on these models via dynamic programming and Markov chain Monte Carlo simulation.

Results are presented from an application to protein structure prediction from sequence.

Keywords: Hidden Markov models, segmentation, Bayesian methods, protein structure prediction,

β-sheets, sequence analysis

1 Introduction

Sequential data exhibiting long-range dependencies arises in many contexts, including time series analysis,

longitudinal data analysis, signal processing and speech recognition, and biological sequence analysis. Such

problems are intrinsically challenging due to the inherent difficulties in defining, estimating, validating, and

computing with models for joint distributions over large numbers of random variables. A key aspect of ana-

lyzing long-range dependency is the development of statistical models with limited, structured dependency
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for distant observations. Much effort has been devoted to continuous stochastic processes and time series

analysis, but may be less suitable for problems where the observed long-range dependencies arise from other

physical processes. Such is the case in analysis of biological sequence data (e.g. DNA, RNA, and proteins)

where the random variables are categorical and the long-range dependencies arise via physical interactions

in three-dimensional space.

In this paper we introduce a class of probability models for sequences of random variables with complex

long-range dependency structure, which we call stochastic segment interaction models. These models are

especially motivated by problems arising in the analysis of biopolymer sequence data. We review and extend

previous work on stochastic segment models (Schmidler et al., 2000; Ostendorf et al., 1996; Kulp et al.,

1996; Burge and Karlin, 1997), and formalize the relations between them. We then introduce stochastic

segment interaction models, a generalization of stochastic segment models which allows for incorporation

of long-range dependency structure. Bayesian analysis via prior distributions on these models is discussed,

and algorithms for computing with these models are provided using dynamic programming recursions and

Markov chain Monte Carlo (MCMC) simulation. Applications to modeling of protein and RNA sequences

are described, and empirical results are reported for a difficult problem in the prediction of protein structure

from sequence.

2 Non-local interactions in biopolymer sequences

Linear polymers are large molecules made up of strings of component submolecules arranged into a chain.

Among the best known biological polymers are DNA, RNA, and proteins, which play critical roles in sustain-

ing and reproducing life in biological organisms. Because they are linear (unbranched), they are commonly

represented by a linear sequence of letters, in which each letter represents the identity of the component at

that position. For example, a DNA sequence represents successive nucleotides:

ACCGTACATCGAGAAGTCCTAGATTATACTA

while a protein sequence represents successive amino acids:

DGVAEITIKLPRHRNALSVKAMQEVTDALNRAEEDDSVGAVMITGAE (1)
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Much has been learned from computational and statistical analysis of such character strings. However

this representation disguises the fact that these biopolymers are large, complex molecules which adopt

complicated geometric shapes in order to perform their many roles (see Figure 1a). In understanding the

function and evolution of these molecules and their roles in biological processes, including topics such as

protein folding, complex formation, ligand binding, chromatin organization, structure, and molecular design,

it is often necessary to understand aspects of this molecular structure. An important property of such

sequences is the formation of non-local dependencies, via physical interactions between positions far apart

in the linear sequence but close in 3-dimensional space.

Non-local interactions in protein structure Proteins fold into complex structures which can be de-

composed into elements of two major secondary structure classes known as α-helices and β-sheets (Schmidler

et al., 2001). β-sheets are formed by hydrogen bonding between distinct regions of the polymer separated

arbitrarily far in the linear sequence, as shown in Figure 1c. Many other such non-local interactions occur

in proteins, including helical bundles (Figure 1b) and coiled coils, hydrophobic contacts, salt bridges, and

disulfide bonds.

Non-local interactions in RNA structure Another well-known example of long-range interactions is

the formation of secondary structure in RNA. The most recognizable elements of RNA secondary structure

are the intramolecular double helices. These helices are similar to the well known double-helix of DNA, but

involve base-pairing between distant regions of the same sequence rather than between distinct sequences.

RNA secondary structure is perhaps the best-studied example of non-local interactions in biopolymers, and

can be described using stochastic grammars (see Section 4.3). An example RNA secondary structure is

shown in Figure 1c.

3 Stochastic segment models

3.1 Notation

Let X = (X1, . . . , Xn) be an observed sequence of random variables taking values in a finite alphabet

Xi ∈ AX , and let Y = (Y1, . . . , Yn) be an sequence of unobserved states for each Xi, taking values in finite

alphabet Yi ∈ AY (see Figure 2). We are particularly interested in the case where X is the sequence of a

biological polymer (protein or nucleic acid), and AX is the set of 20 naturally-occurring amino acids or 4
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Figure 1: Non-local interactions in biopolymer sequences. (a) A protein (b) A β-sheet (D sheet from mouse
immunoglobulin heavy chain (1a6w)) (c) An α-helical hairpin (residues 1-95 from a phenylalanyl-tRNA
synthetase (1eiy)) (d) an RNA secondary structure: yeast Phe tRNA (1ehz)
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Figure 2: (a) HMM representation of a sequence of observed random variables and corresponding unobserved
states. (b) Segment representation of unobserved states.

nucleotide bases. The alphabet AY is application dependent, but possibilities include backbone conformation

in proteins (Asai et al., 1993; Stultz et al., 1993; Schmidler et al., 2000) or genome structure in DNA

(Churchill, 1989; Stormo and Haussler, 1994; Kulp et al., 1996; Burge and Karlin, 1997; Braun and Muller,

1998).

Segmentations: An alternative representation for the unobserved state sequence Y is as a sequence of

segments, defined as (value, length) pairs obtained by grouping consecutive Yi’s with identical values. We

denote this sequence by S = (S1, . . . , Sm) = ((T1, `1), . . . , (Tm, `m)), and refer to S as a segmentation of the

sequence X .

Although S fully specifies a unique segmentation, it is convenient to introduce the following (slightly

redundant) additional notation:

(i) m = |S|, the number of segments

(ii) si = 1 +
∑

j<i `j , the first sequence position of segment i

(iii) ei = si + `i − 1, the last sequence position of segment i

An example of this notation is given in Figure 2. The segment locations {si}m
i=1 (or equivalently {ei}m

i=1)

are changepoints in statistical terms (Barry and Hartigan, 1993; Stephens, 1994; Braun and Muller, 1998).

Note the implicit constraints s1 = 1, em = n, and si = ei−1 + 1 for i = 2, . . . , m.

Segment interactions: (Schmidler, 2002) introduced the notion of segment interactions. A segment

interaction specifies a relation between two or more segments in a segmentation.

In general terms, given a sequence of random variables X and a segmentation S, we define a segment

interaction I to be a pair (H, η) where H = (H1, . . . , Hk) indexes a subset of segments and η is a set of

parameters specifying the precise pattern of interaction. (In the most general form, η = {hi}2k

i=1 where hi are
5



parameters specifying the interactions of the ith subset of H.) There may be multiple segment interactions

for a sequence, and we denote the set of interactions as I = {Ii}
p
i=1. An interaction I is defined to be

maximal (the maximal clique in a triangulated graphical model defined on segments of the sequence, see

Figure 3), so Hi ∩ Hj = ∅ holds ∀i 6= j. If we define any non-interacting segment in Si ∈ S to be an

interaction of size 1 (so Ij = ({i}, ∅) and kj = |Hj | = 1), then I induces a partition of S of size p, yielding

1 ≤ p ≤ m mutually exclusive and exhaustive subsets with S =
⋃p

i=1 Hi. We refer to the set (S, I) as an

interacting segmentation.

As a concrete example of a segment interaction (see Section 9.2), I may denote the set of β-sheets

in a protein, Hi the set of β-strands making up the ith sheet, and ηi parameters specifying the relative

orientation and register of neighboring strands. Alternatively, I ∈ I might represent a helical bundle or

other super-secondary structure, or a helix or pseudo-knot in RNA structure.

3.2 Stochastic segment models

In previous work we have developed a class of probability models defined on segmentations of the form

(Schmidler et al., 2000):

P (X,S | θ, γ) ∝ P (S | γ)

m
∏

j=1

P (X[sj :ej ] | S, θ) (2)

The key assumption of (2) is the conditional independence of positions Xi occurring in different segments,

given a segmentation S. (Note that marginally, the observed sequence X has a complex dependency struc-

ture.) The segment likelihoods P (X[si:ei] | S, θ) capture local dependencies through the joint distribution

of intra-segment positions, and may be of general form. These models have been shown to be particularly

appropriate for modeling aspects of protein secondary structure and hence for Bayesian protein structure

prediction (Schmidler et al., 2000). When the segmentation prior P (S | γ) in (2) is factored appropriately,

posterior quantities are obtained exactly by efficient algorithms (see Section 7).

A slightly less general form of (2) is discussed in (Ostendorf et al., 1996) under the name of stochastic

segment models, and we adopt this terminology here. The relations between these and other models developed

in the speech recognition and bioinformatics communities are discussed in Section 4.

For many applications such as those discussed in Section 2, parameters (θ, γ) may be estimated from

data X1, . . .Xr where Si is observed for each X i. Then the log-likelihood

L
(

X1, . . . , Xr; θ, γ
)

=

r
∑

i=1

log P (Si | γ) +

m
∑

j=1

log P (X i
[sj :ej ]

| S, θ) (3)
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decomposes according to the segment conditional independence, and parameters (θ, γ) may be estimated for

each segment type separately using MLE or Bayesian approaches.

In the absence of fully-observable S i’s (3) may be viewed as the complete-data log-likelihood, and standard

missing-data estimation methods such as EM (Depmster et al., 1977) or MCMC (Gilks et al., 1996) may

be applied. Thus in what follows, we focus instead on recovering the segmentation S itself given (θ, γ). We

formulate this as a Bayesian inference problem:

P (S | X, θ, γ) =

P (S | γ)
mS
∏

j=1

P (X[sj :ej ] | S, θ)

∑

S′

P (S ′ | γ)
m

S
′

∏

j=1

P (X[sj :ej ] | S
′ , θ)

and either condition on or integrate out the parameters (θ, γ). In what follows we suppress the dependence

on these parameters.

3.3 Stochastic segment interaction models

The class of stochastic segment models described by (2) can be generalized to a much larger class of models

involving the segment interactions introduced in Section 3.1. We write a joint distribution over the set of

interacting segmentations in the following form:

P (X,S, I) ∝ P (S, I)

p
∏

i=1

P ({X[sj :ej ]}Sj∈Hi
| S, I) (4)

which factors by conditional independence of sets of interacting segments. We refer to this new class of

models, first introduced in (Schmidler, 2002), as stochastic segment interaction models (SSIMs). Here models

of inter-segment sequence dependency may be introduced by inclusion of joint-segment likelihoods, replacing

the terms

P (X[sj :ej ] | Sj) and P (X[sk:ek ] | Sk)

for two interacting segments Sj and Sk in the product of (2) above with a joint term:

P (X[sj :ej ], X[sk:ek ] | Sj , Sk) (5)

Hence positions Xi in different segments may be made conditionally dependent by introducing an interaction

I containing the two segments (Sj , Sk ∈ HI). Thus arbitrary joint-segment distributions for segment pairs
7
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Figure 3: Segment representation of a sequence including segment interactions. (a) A parallel β-sheet from
(1nzy A) (b) Graphical representation of SSM model of this sequence. (c) Graphical representation of SSIM
model of this sequence. Here I = {I1} and I1 = ({2, 5}, η1).

may be incorporated into the model. The extension to joint distributions on three or more segments (as may

be required for 4-helix bundles or β-sheets, for example) is obvious. Figure 3 shows an example of such a joint

distribution. This class of models is sufficiently general to capture the significant non-local dependencies in

protein sequences; see Sections 4.3 and 9.2 for examples. When p = m, (4) reduces to (2), so this class of

models strictly generalizes those developed previously.

As will be described in Section 7, many models of the form (2) enjoy nice computational properties.

In contrast, models of the form (4) typically present significant computational difficulties. While the joint

distribution (4) is easily evaluated for any fixed segmentation S of X , calculation of relevant predictive

quantities under this model rarely permits efficient exact algorithms. Approximation algorithms based on

Monte Carlo simulation are developed in Section 8.
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4 Hidden Markov models and stochastic segment models

The class of models described by (2) above has close ties to other stochastic sequence models, and it is

helpful to make these explicit.

4.1 Hidden Markov models

Hidden Markov models (HMMs) have been widely used in bioinformatics (Churchill, 1989; Baldi et al.,

1994; Krogh et al., 1994; Asai et al., 1993; Stultz et al., 1993; Eddy, 1996), as well as many other areas of

engineering and statistics (Rabiner, 1989; MacDonald and Zucchini, 1997).

Letting Yi again be the hidden state at position i a HMM may be written in the form:

P (X, Y ) =

n
∏

i=1

P (Yi | Yi−1)P (Xi | Yi) (6)

where throughout we will let P (Y1 | Y0) denote P0(Y1), the initial distribution of the hidden Markov chain.

Rearranging (6) into segment form, we obtain:

P (X,S) =

m
∏

i=1

P (Yi | Yi−1)P (Yi | Yi)
`i−1

ei
∏

j=si

P (Xj | Yi) (7)

From (7) we observe that HMMs are a special case of stochastic segment models with two additional strong

assumptions imposed:

(i) Length distributions are geometric: Segment lengths follow a geometric distribution with parameter

pT = P (Yi = T | Yi−1 = T ), so

P (`i = k | Ti) ∝ pk
Ti

(8)

(ii) Positions are conditionally iid: All observed sequence positions are conditionally independent given

the segments, even those in the same segment:

P (Xi| S, Xj 6=i) = P (Xi| S) (9)

and positions within a given segment are identically distributed:

P (X[si,ei] | Si) =

ei
∏

j=si

P (Xj | Ti) (10)
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4.2 Hidden semi-Markov models, generalized HMMs, and stochastic segment

models

Violations of assumptions (8-10) in applications such as bionformatics and speech recognition have given

rise to generalizations of HMMs. These include incorporation of intra-segment position dependence and

arbitrary, type-dependent segment length distributions. These models are of the form:

P (X,S) ∝
m
∏

j=1

P (X[sj :ej ] | Tj)P (Tj | Tj−1)P (`j | Tj) (11)

and appear under various names, including generalized HMMs (Stormo and Haussler, 1994; Kulp et al.,

1996; Burge and Karlin, 1997) and stochastic segment (Ostendorf et al., 1996) or Bayesian segmentation

(Schmidler et al., 2000) models. Imposing (9) and (10) but relaxing (8) gives the special case of “explicit

state duration density” HMMs or hidden semi-Markov models (HSMM) (Russell and Moore, 1985; Levinson,

1986; Rabiner, 1989).

All of these models differ from HMMs by changing the (prior) distribution of S from a Markov process

P (S) =
n

∏

j=1

P (Yj | Yj−1) (12)

to a semi-Markov process:

P (S) =
m
∏

j=1

P (Tj | Tj−1)P (`j | Tj) (13)

In this paper we adopt the term stochastic segment models (SSMs) to denote the slightly more general class

of models described by (2) which allow general priors P (S). We use generalized HMMs (GHMMs) to refer

to the special case where the prior distribution P (S) is of the form (11).

Explicit modeling of segment length has proven useful in bioinformatics for accounting for differences in

intron/exon length in eukaryotic DNA (Kulp et al., 1996; Burge and Karlin, 1997) and different types of

secondary structure in proteins (Schmidler et al., 2000). Figure 4a shows the relative length frequencies of

two types of protein secondary structure segments in the dataset described in Section 9.

The advantage of GHMMs and SSMs over HSMMs lies in the ability to model conditional dependen-

cies between intra-segment sequence positions. Important dependencies exist between positions within sec-

ondary structure elements of proteins and within coding and regulatory regions of DNA. Standard methods

for protein structure prediction and gene recognition incorporate these dependencies to improve predictive
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Figure 4: (a) Histogram of observed segment lengths for protein α-helices (red) and β-strands (green). (b)
MCMC convergence for an example sequence (5nul) with and without supplemental moves. Shown is mean
Kullback-Leibler divergence between marginals P (TX[i]

| θ) obtained by exact and MCMC calculations for
SSM.

performance (see above references for details). Generally speaking, we may write the joint distribution of

intra-segment positions in log-linear form as a Gibbs random field potential:

log P (X[s:e] | ·) ∝

∑

s≤i≤e

fi(Xi) +
∑

s≤(i,j)≤e

gi,j(Xi, Xj) +
∑

s≤(i,j,k)≤e

hi,j,k(Xi, Xj , Xk) + . . . (14)

from which it is clear that HMM and HSMM models, which set all interaction coefficients to zero, are quite

restrictive.

4.3 Stochastic segment interaction models

As described in Section 3.1, SSIMs go further by relaxing the conditional independence assumption for inter -

segment sequence positions using a structured notion of segment interaction. In practice, the overly general

form of SSIMs given by (4) must be traded off against model complexity by modeling strong dependencies

and ignoring others. To see this generality, we note that random fields defined by pair potentials arise as

special cases of SSIMs (by taking m = n and p = 1). Pair potentials are common in physical models,

and empirical pair potentials have been used for the problem of β-sheet prediction in proteins described in

Section 9.2 (Hubbard, 1994).
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4.3.1 RNA folding and stochastic grammars

A class of models developed in the computer science and bioinformatics literature known as stochastic

context-free grammars (SCFGs) also fall into the SSIM framework. SCFGs have been successfully applied

to RNA secondary structure prediction and speech recognition (Lari and Young, 1991; Sakakibara et al.,

1994; Eddy and Durbin, 1994). We give a brief overview overview of SCFGs here; a detailed treatment in

the context of RNA structure prediction is given in (Durbin et al., 1998). SCFGs also encompass many

statistical mechanical models of RNA secondary structure parameterized using experimentally determined

energies (Zuker and Stiegler, 1981; Zuker and Sankoff, 1984; Zuker, 1989; McCaskill, 1990).

The secondary structure of an RNA sequence can be represented by a set of ordered base pairs H = {(i, j)}

under the constraints that for any two pairs (i1, j1), (i2, j2) ∈ H such that i1 ≤ i2, we have:

i1 = i2 ⇔ j1 = j2 (15)

i2 < j1 ⇒ i1 < i2 < j2 < j1 (16)

Biologically these constraints say that each nucleotide may participate in only one base pair, and restrict

the structure from forming pseudo-knots. Mathematically, they say that the structure may be drawn as a

planar graph, and may be represented by a context-free grammar (Searls, 1993).

Given a secondary structure H of this form, the probability of a ribonucleotide sequence X may be

written as a Gibbs random field (Kindermann and Snell, 1980):

P (X | H) ∝ exp(−U(X, H)/kT ) (17)

with

U(X, H) =
∑

i6∈H

f(Xi) +
∑

(i,j)∈H

g(Xi, Xj)

a pair potential where g(Xi, Xj) is the free energy obtained by pairing nucleotides i and j. Typically U is

defined over neighboring pairs to account for effects such as base stacking.

An useful representation for models of the form (15,17) is as a stochastic context-free grammar. Secondary

structures obeying the constraints (15) can be generated by a context-free grammar, defined by a set of rewrite
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rules of the form:

A → Aa | Au | Ac | Ag | B | ε and B → aAu | gAc

where A, B are non-terminals which are instantiated in various ways by applying the replacement on the

right hand side of the rules. The nucleotides a,u,c,g and null string ε are terminals, and repeated application

of these substitution rules generates sequences of terminals:

A → B → aAu → aBu → aaAuu → aaBuu → aacAguu → aacaguu

in this case generating a hairpin loop with three base pairs formed between aac and guu. A stochastic CFG is

obtained by assigning probabilities to the various replacement rules, making the non-terminals into random

variables, and resulting in a stochastic generative model for strings. HMMs can also be written in this form

and result in a special case of SCFGs known as stochastic regular grammars; other types of rewrite rules

give rise to other classes of grammars see (Hopcroft and Ullman, 1979) for details. Formal grammars are a

standard tool of linguistics and theoretical computer science.

The set of rewrite rule applications by which an observed sequence is generated is known as a parse tree;

the parse tree is analogous to the hidden state sequence in an HMM. As with HMMs, efficient algorithms

exist for computing with SCFGs; for example, the marginal likelihood of an observed sequence may be

calculated by summing over all possible parse trees in O(n3) steps using the inside-outside algorithm (Lari

and Young, 1990), a generalization of the forward-backward algorithm for HMMs (Rabiner, 1989).

For current purposes, it is sufficient to note that the conditional probability of a sequence given a parse

tree may be written in the form:

P (aacuu | T ) = P (A → B)P (B → aAu)P (B → aAu)P (A → Ac)P (A → ε)

= P (au | T )P (au | T )P (c | T ) (18)

and that rewrite rules of the form A → aBb lead to stochastic dependencies between distant positions in the

sequence. However, these long-range dependencies are restricted to those generated by the parse tree of a

CFG. Thus correlated positions must obey constraints of the form (15).

Models of form (17,18) are special cases of SSIMs (4) which use only a restricted subset of non-local

interactions. The primary advantage of such restrictions is the amenability to efficient calculation via inside-
13



outside algorithms. The tendency of many molecular interactions such as protein β-sheets to violate the

constraints (15) was a major motivation in the the development of SSIMs. SSIMs may also have applications

to RNA folding involving pseudo-knots, but we do not pursue this here.

Hierarchy of models: In general, we may view these models as a hierarchy of model complexity, each

subsuming the previous:

HMM ⊂ HSMM ⊂ SSM ⊂ SCFG ⊂ SSIM

Choosing the appropriate class of models and testing for fit falls into the domain of Bayesian model selection,

and will be described elsewhere.

5 Priors on segmentations

To complete the SSM model we must specify the prior probability distribution on segmentations P (S). As

mentioned in Section 4, our definition of SSMs (2) generalizes GHMMs (11) by allowing alternative forms

for P (S). From a Bayesian perspective, GHMMs (and the SSMs of Ostendorf et al., 1996) are SSMs with a

specific form of segmentation prior.

It is often convenient to specify a segmentation prior in the form:

P (S) = P (m)P (S1, . . . , Sm | m) (19)

where m is the number of segments. As seen in Section 4.2, GHMMs (and therefore HSMMs and standard

HMMs) implicitly assume a prior of this form, with P (S1, . . . , Sm | m) factored as a (semi-)Markov process.

This embodies certain assumptions on (19):

(i) Uniform number segments: We have

P (m) ∝ 1

so P (S) is improper (m is unbounded), but a proper posterior is obtained by conditioning on an

observed sequence X of finite length n.

(ii) Markovian segment types: The sequence of segment types is given a Markov or nearest-neighbor

dependency structure

P (T1, . . . , Tm | m) =

m
∏

j=1

P (Tj | Tj−1) (20)
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(iii) Lengths iid: The length distributions of all segments are conditionally independent, and are identically

distributed for all segments of the same type:

P (`1, . . . , `m | m, T1, . . . , Tm) =

m
∏

j=1

P (`j | Tj) (21)

The wide application of HMMs in practice suggests that these assumptions are generally reasonable; however,

they often go unnoticed and may be inappropriate in some domains. Below we describe several other possible

forms of segmentation priors.

5.1 Alternative segmentation priors

SSMs are not limited to the priors adopted implicitly in GHMMs. We briefly outline some natural alterna-

tives.

Uniform prior : A simple approach considers a prior that is uniform over segmentations:

P (S) ∝ 1 (22)

yielding the joint distribution

P (X,S) ∝
m
∏

j=1

P (X[sj :ej ] | S) (23)

Again (22) is improper but yields a proper posterior given finite n. Prior (22) is adopted implicitly in

related work on DNA and protein sequence segmentation (Auger and Lawrence, 1989; Stormo and Haussler,

1994; Liu and Lawrence, 1996). The resulting MAP segmentation (see Section 6) may be interpreted as a

maximum likelihood segmentation of the sequence X .

Semi-Markov process prior : The semi-Markov process prior (13) described above has been used by

(Snyder and Stormo, 1993; Kulp et al., 1996; Burge and Karlin, 1997) for DNA and (Schmidler et al., 2000)

for proteins. It may also be combined with any proper marginal prior P (m), yielding the joint distribution:

P (X,S) = P (m)
m
∏

j=1

P (X[sj :ej ] | S)P (Tj | Tj−1)P (`j | Tj) (24)

Choice of P (m) may affect computational complexity of inference; see Section 7.

Sequence-specific prior : Priors (22) and (13) provide a generative model for segmentations. Alternatively

we may consider sequence-specific priors over segmentations of a particular sequence X . This fixes the
15



sequence length n as part of the model rather than an observed quantity, assigning prior mass only to

segmentations satisfying the constraint
∑m

j=1 `j = n. This approach is used by (Liu and Lawrence, 1999),

who adopt a uniform prior on m-segmentations conditional on m. In our notation this becomes:

P (S | n) ∝ P (m)

(

n − 1

m − 1

)−1

(|AT | − 1)−(m−1)/ |AT | (25)

Similarly, one can adapt the uniform prior (22) to the sequence-dependent case, where the only effect of

conditioning on n:

P (S | n) ∝ 1 (26)

is to make the prior proper.

Other segment-decomposable priors: The above priors all share an important property, which we call

segment decomposability :

Definition. A probability distribution P on S is segment-decomposable if

P (S) ∝
m
∏

j=1

f(ej−1, ej , Tj−1, Tj)

for some f independent of j.

Note that to satisfy this definition, the distribution P (m) must factor accordingly (e.g. geometric or

uniform). When it does not, we may obtain a similar property by conditioning on m:

Definition. P is conditionally segment-decomposable given Z if

P (S | Z) ∝ g(Z)

m
∏

j=1

f(ej−1, ej , Tj−1, Tj | Z)

For SSMs (2) the posterior P (S | X) is (conditionally) segment decomposable if and only if the prior P (S) is,

a sort of conjugacy property. Segment decomposability of the posterior dramatically affects computational

complexity of inference (see Section 7). All priors given above are examples of (conditionally) segment-

decomposable priors.

General segmentation priors: It is easy to construct desirable priors which are not segment-decomposable.

For example, one may wish to specify a prior on the percentage of various types of segments, such as the
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percentage secondary structure content of proteins:

P (S) = P (%H, %E, %L ∈ T | m)P (m) (27)

Priors involving such global features of a segmentation impose a non-decomposable structure on the joint

distribution (2) which complicates posterior computation (see Section 8).

5.2 Priors on segment interactions

In specifying SSIM models, we require priors involving interactions of the form P (S, I). Again, we distinguish

several types:

Uniform: Analogous to (22), we may adopt a uniform prior on interacting segmentations:

P (S, I) ∝ 1 (28)

which yields a maximum likelihood interacting segmentation.

Conditionally uniform: Any of the priors discussed in Section 5.1 may be extended by a conditionally

uniform prior on segment interactions, yielding:

P (S, I) ∝ P (S)/c(S) (29)

where c(S) is the number of possible interactions formed on segments in S, and P (S) is e.g. a semi-Markov

prior of the form (13).

Noninformative: A related approach sets

P (S, I) ∝ P (S)

Note that this is equivalent to multiplying (29) by a factor c(S), and strongly favors segment types which

interact, as discussed in Section 9.2.

Conditionally informative: Alternatively, a non-uniform conditional prior on interactions may also be

used in combination with segmentation priors:

P (S, I) ∝ P (S)P (I | S)
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Some care is required in specifying P (I | S); examples of this approach are given in Section 9.2.

General informative Alternatively, general priors on interacting segmentations may be specified. By

analogy to (27) for example, we might write

P (S, I) = P (S) = P (%H, %E, %L ∈ T, #I ∈ I | m)P (m) (30)

in order to model the observed frequency of occurrence of various numbers of various types of β-sheets.

Section 9.2 and (Schmidler et al., 2004) provide concrete examples of some of these forms, including

effects on predictive accuracy for applications in protein sequence analysis.

6 Inference and prediction in SSIMs

In this section we discuss inference and prediction with SSMs and SSIMs. Sections 7 and 8 discuss algorithmic

issues associated with these tasks. Where appropriate, we use as an example the problem of protein secondary

structure prediction.

6.1 Segmentation with interactions

We refer to the task of recovering the unobserved (S, I) given an observed sequence X as segmentation of

X . Many applications involve segmentation problems, including parsing of human speech, identification of

gene structure in DNA, prediction of protein secondary structure, and identification of change points in time

series data.

We first consider SSMs without interactions. A commonly used estimate of S is the maximum a posteriori

(MAP) value of S, or MAP segmentation:

SMAP = argmax
S

P (S | X, θ, γ)

= arg max
(m,`1,...,`m,T1,...,Tm)

P (m, (`i, Ti)
m
i=1 | X, θ, γ)

(31)

The estimator SMAP minimizes the Bayesian expected loss (Berger, 1985):

ES|X(L, Ŝ) =
∑

S

P (S | X, θ, γ)L(S, Ŝ)

for 0-1 loss (L(S, Ŝ) = 0 for S = Ŝ , and 1 otherwise), making it the optimal estimator or Bayes rule for S in
18



the sense of minimizing the Bayes risk (Berger, 1985). An alternative estimator for S is the marginal mode

predictor, known as “smoothing” in HMMs:

SMM = {argmax
T

P (TX[i]
| X, θ)}n

i=1 (32)

where P (TX[i]
| X, θ) denotes the marginal posterior distribution over segment types at position i in the

sequence, marginalized over all possible segmentations:

P (TX[i]
| X, θ) =

∑

S

P (S | X, θ)1{TXi
=t} (33)

and SMM is the sequence of marginal modes at each position. SMM is optimal under a Hamming distance

loss L(S,S∗) =
∑n

i=1 1{TXi
=T∗

Xi
}. Thus if we wish to maximize the number of correctly classified positions

then SMM is preferred. A disadvantage of SMM is that the resulting segmentation may have posterior mass

zero. Section 9 demonstrates a significant improvement of SMM over SMAP in predicting protein secondary

structure.

Segmentation under the framework of SSIMs introduced in Section 3.3 proceeds similarly. In a direct

parallel to (31,32), we define

(S, I)MAP = arg max
(S,I)

P (S, I | X) (34)

SI
MM = {argmax

T
P (TX[i]

| X)}n
i=1 (35)

where P (TX[i]
| X) is now marginalized over interacting segmentations:

P (TX[i]
| X) =

∑

(S,I)

P (S, I | X)1{TXi
=t} (36)

Again, these predictors are Bayes optimal under 0-1 and Hamming distance loss, respectively. However use

of uniform priors (28) yields a marginal prior P (SI) which is highly biased towards interacting segments,

and thus is expected to perform poorly in prediction of marginal quantities via (35). Conversely, conditional

priors (29) significantly downweight the contribution of any particular interaction and are unlikely to improve

marginal predictions through incorporation of joint-segment information. Instead, we focus on prediction of

the interactions themselves.
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6.2 Contact map prediction

In addition to providing segment locations and types, the MAP interacting segmentation (S, I)MAP defined

by (34) also includes the MAP set of segment interactions and associated parameters. For the β-sheet models

described in Section 9.2 this provides MAP β-sheet topologies.

We are often interested in predicting interactions between specific sequence positions, which we summarize

by a contact map matrix Cn×n where

Cij =















1 If Xi and Xj are paired in a segment interaction

0 otherwise

We denote by CMAP the contact map estimator derived from (S, I)MAP , so CMAP
ij = 1 if Xi and Xj are

paired in (S, I)MAP . We define the marginal predicted contact map to be the matrix CMM where

CMM
ij = P (i ↔ j) =

∑

S,I

P (S, I | X)1{i↔j} (37)

are the marginal probabilities of each potential contact marginalized over all possible segmentations and

segment interactions. CMM therefore yields a Bayes estimator for C under Hamming loss.

Calculation of the quantities (S, I)MAP , SI
MM , CMAP , and CMM defined here for SSIMs is significantly

more difficult than the computations in SSMs, and will be discussed next. Experiments comparing CMAP

and CMM as predictors of true contacts in protein sequences are described in Section 9.

7 Dynamic Programming Algorithms for SSMs

We now turn to issues of computation with SSMs. We give efficient algorithms for several types of SSMs

using dynamic programming. Section 8 discusses computation in SSIMs.

Prediction and inference with SSMs requires calculation of posterior quantities such as (31) and (32)

given an observed sequence X . The algorithms of choice depend on the form of the joint distribution

(2), including the prior. We consider three cases defined in Section 5.1: segment-decomposable priors;

conditionally segment-decomposable priors; and non-decomposable priors.
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7.1 Segment-decomposable priors

Calculations for SSMs are most efficient (barring special cases such as HMMs) for segment-decomposable

priors, such as uniform priors (22,26), or semi-Markov process priors with P (m) ∝ 1 improper (24,13),

which lead to a joint distribution which is also segment-decomposable. Exact calculations may be done

using standard HMM-type forward-backward and Viterbi algorithms generalized to HSMMs (Rabiner, 1989;

Stormo and Haussler, 1994; Schmidler et al., 2000). In particular, the SMAP may be calculated by dynamic

programming using forward variables:

δ(j, t) = max
v<j

l∈AT

[δ(v, l)f(e− = v, e = j, T− = l, T = t)] (38)

in a procedure analogous to the Viterbi algorithm for HMMs (Rabiner, 1989). Here e− represents the

endpoint of the previous segment. For the SSM of (11) and Section 9.1 we have

f(v, j, l, t) = P (X[v+1:j] | T = t)P (` = j − v | T = t)P (T = t | T− = l)

The algorithm recursively calculates δ(j, t) for j = 1, . . . , n and t ∈ AT , then reconstructs the MAP seg-

mentation by setting e∗m = n, T ∗
m = argmaxl∈AT

δ(n, l), and tracing backwards. This calculation requires

O(n3) steps. Often a maximum segment length D may be imposed, so the maximization (38) begins at

v = j−D and the algorithm becomes O(nD2), linear in n. Certain segment models permit further reduction

to O(nD), but this does not hold in general. Figure 4a shows that D = 30 is sufficient to account for nearly

all protein structural segments; experiments in Section 9 use this value.

The marginal posterior distributions (33) may also be calculated efficiently, using forward/backward

variables α/β:

α(j, t) =
∑

v<j

∑

l∈AT

α(v, l)f(v, j, l, t) (39)

β(j, t) =
∑

v>j

∑

l∈AT

β(v, l)f(j, v, t, l) (40)

P (TXi
= t | X, θ) =

1

Z

∑

j<i

∑

k≥i

∑

l∈AT

α(j, l)β(k, t)f(j, k, l, t) (41)

where Z is the marginal likelihood P (X | θ), available directly from the forward pass (39). Calculation of

(39) and (40) requires O(n3) (or O(nD2)) steps, while (41) yields the marginal posterior distribution at each
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position in O(n2) (or O(nD)) using:

P (TX[i+1]
= t | X, θ) = P (TX[i]

= t | X, θ)

+
1

Z





∑

k>i

∑

l∈AT

[α(i, l)β(i + 1, k)f(i, k, l, t)]−
∑

j<i

∑

l∈AT

[α(j, l)β(i, t)f(j, i, l, t)]



 (42)

Thus using the algorithms given in this section, both predictors SMAP and SMM may be calculated efficiently

under segment-decomposable priors.

7.2 Conditionally segment-decomposable priors

Another important case occurs when P (S) (and thus P (S | X)) is conditionally segment-decomposable given

m the number of segments but g(m) itself is not segment-decomposable. Examples include:

(i) Semi-Markov process priors (24) with non-uniform marginal prior P (m), where g(m | θ) = P (m) and

f() as above.

(ii) Sequence dependent priors with P (S | n) = h(m, n) such as (25), where g(m | n, θ) = h(m, n) and

f(v, j, t, l | m, n) = P (X[v+1:j] | T = t).

Here the algorithms of the previous section do not apply, and must be adapted. Algorithms for this case

may be adapted from (Auger and Lawrence, 1989) using the following forward and backward variables:

δ(j, t, k) = max
v<j

l∈AT

[δ(v, l, k − 1)f(v, j, l, t)]

α(j, t, k) =
∑

v<j

∑

l∈AT

α(v, l, k − 1)f(v, j, l, t)

β(j, t, k) =
∑

v>j

∑

l∈AT

β(v, l, k − 1)f(j, v, t, l)

defined for k = 1, . . . , n. Now SMAP is reconstructed by setting

(m∗, T ∗
m∗) = arg max

m∈{1,...,n}
l∈AT

δ(n, l, m)g(m)

and e∗m∗ = n and tracing back recursively. These computations require O(n4) (or O(n2D2)) steps, a factor

of n slower than in the previous section. Computation of the marginal posterior distributions P (TX[i]
| X)
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requires marginalization over m:

P (TXi
= t | X, θ) =

1

Z

n
∑

m=1

g(m)

m
∑

q=1

∑

j<i

∑

k≥i

∑

l∈AT

α(j, l, q − 1)β(k, t, m − q + 1)f(j, k, l, t) (43)

Thus we have efficient algorithms for calculation of posterior quantities such as SMAP and SMM in SSMs

with conditionally segment-decomposable priors.

7.3 Non-decomposable priors

In the case of general non-decomposable priors of the form (27), efficient algorithms do not exist. However

we may obtain approximate inference using MCMC techniques similar to those provided in Section 8 for

SSIMs.

8 MCMC Algorithms for SSIMs

We now turn to posterior calculations with SSIMs. Unlike SSMs, efficient algorithms do not exist for

SSIMs in the general case, where calculation of posterior quantities such as (S, I)MAP , SI
MM , CMAP ,

CMM , or marginal likelihood P (X) for SSIMs is a hard computational problem. SSIMs violate precisely

the conditional independence structure of SSMs (2) that is critical for recursive decomposition of the joint

distribution P (X,S) to enable dynamic programming solutions. In general, introduction of joint-segment

models into SSMs makes exact calculation of posterior probabilities intractable. Instead we describe Markov

chain Monte Carlo algorithms for inference and prediction with general SSIMs.

8.1 Markov chain Monte Carlo segmentation

Markov chain Monte Carlo (MCMC) is now a standard tool for Bayesian inference with complex models, see

e.g. (Gilks et al., 1996). We briefly describe a reversible-jump MCMC algorithm (Green, 1995) for inference

with SSIMs.

MCMC for SSMs We begin with an MCMC algorithm for sampling from SSM joint distributions (2);

we then extend this to SSIMs (4). To construct a Markov chain on the space of segmentations, we combine
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Gibbs sampling steps:

T
(i+1)
k ∼ P (Tk | `

(i)
k , S

(i)
[−k]) and `

(i+1)
k ∼ P (`k | T

(i)
k , S

(i)
[−k])

with Metropolis proposals from S to S∗:

• Segment split : Split Sk into two segments (Sk∗ , Sk∗+1) with m∗ = m+1, ek∗+1 = ek, ek∗ ∼ U [sk, ek−1],

and with probability 1
2 set Tk∗ = Tk and Tk∗+1 = Tnew ∼ U [AT ]; with probability 1

2 do the reverse.

• Segment merge: Similar to segment split, but a randomly chosen segment is merged into a neighbor

and m∗ = m − 1.

The factorization of (2) makes calculation of exact conditionals efficient, involving only terms local to the

affected segment:

P (Tk = t | `k, S[−k]) ∝

P (Tk = t | Tk−1)P (`k | Tk = t)P (X[sk :ek] | Tk = t)P (Tk+1 | Tk = t)

Split and merge moves change model dimension, and are accepted according to a reversible-jump Metropolis

criteria, again involving only local terms:

ρ(S,S∗) =

[
∏k+1

j=k P (X[s∗

j :e∗

j ] | T ∗
j )P (`∗j | T ∗

j )P (T ∗
j+1 | T ∗

j )

P (X[sk :ek] | Tk)P (`k | Tk)P (Tk+1 | Tk)

]

[

m(`k − 1)|AT |

(m + 1)

]

Together these 4 steps are sufficient to yield an ergodic Markov chain, and hence an algorithm for MCMC

segmentation under SSM models. However two additional moves facilitate rapid mixing of the Markov chain:

• Segment create: Given S, propose S∗ with m∗ = m + 2 segments by splitting segment k into three

segments (k, k + 1, k + 2), as follows: Set e∗k+2 = ek, draw l1 6= l2 ∼ U [sk, ek − 1], and set e∗k =

min(l1, l2), e∗k+1 = max(l1, l2), T ∗
k = T ∗

k+2 = Tk, and draw T ∗
k+1 ∼ U [AT \{Tk}].

• Segment remove: Similar to segment create, but segment k with Tk+1 = Tk−1 is removed and its

immediate neighbors merged, yielding m∗ = m − 2.

Acceptance ratios for these dimension-altering Metropolis moves are similar to those above. The result is a

faster mixing Markov chain (see Figure 4b).
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MCMC for SSIMs For sampling from SSIM models (4), the above algorithm must be supplemented by

additional moves involving segment interactions:

• Segment join: Given (S, I), propose an interaction I∗ between two segments Sj , Sk 6∈ I and set

I∗ = I ∪ {I∗}.

• Segment split : Reverse of segment join; splits a 2-segment interaction into two independent segments.

• Segment insert and Segment delete Insert a segment Si 6∈ I into an existing interaction I ∈ I, or

remove a segment from an interaction.

• Segment align: Given Ij ∈ I, sample interaction parameters Hj .

These moves follow the general format of those described previously, except for align which is application-

specific. Section 9.2 details these moves for an application to protein β-sheet prediction.

This combined set of moves provides an MCMC scheme for inference with SSIMs, enabling approximate

calculation of posterior quantities P (S, I | X) such as StructMAP and StructMM .

9 SSIM models for protein sequence analysis

Protein structure prediction was described briefly as a motivating problem for SSIMs in Section 2.

9.1 SSMs models for secondary structure prediction

Protein secondary structure prediction is the problem of assigning each sequence position to one of the classes

α-helix, β-strand, or loop/coil. SSMs have been applied to this problem by developing segment models for

each class, yielding results comparable to the best published (Schmidler et al., 2000). Segment models take

the form:

P (X[sj :ej ] | Tj = H) =

ej
∏

i=sj

PM(i)

(

Xi | X[sj :i−1] | Tj = H
)

where

M(i) =































Ni−sj
i − sj ≤ `H

N

Cej−i ej − i ≤ `H
C

I otherwise
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Total Helix Strand Loop Helix Strand Loop

Q3 Qobs
α (Qpred

α ) Qobs
β (Qpred

β
) Qobs

L (Qpred
L

) Cα Cβ CL

MMSM 68.0 65.1 (68.1) 44.9 (58.7) 79.2 (70.6) .53 .41 .46
MAPSM 64.0 69.7 (59.9) 24.4 (62.2) 76.7 (66.6) .48 .31 .38
MMU 50.3 58.7 (53.3) 71.2 (33.4) 37.0 (78.5) .36 .28 .30
MAPU 50.2 63.2 (48.1) 58.5 (35.0) 39.2 (72.1) .33 .26 .27
SSIM 65.1 48.5 (76.3) 59.6 (46.7) 77.0 (69.9) .49 .39 .44
SSMMC 67.9 64.7 (68.1) 44.7 (58.4) 79.1 (70.4) .53 .41 .46

Table 1: Cross-validation results for protein secondary structure prediction using SSMs, comparing SMAP

and SMM predictors under semi-Markov (SM) and uniform (U) priors. Q3 denotes % correct over all 3

states; Q
obs/pred
α denotes sensitivity/positive predictive value and Cα the Matthews correlation coefficient

(Matthews, 1975) for class α. Also shown: SSIM model, and SSM model using MCMC inference (SSMMC)
in place of exact algorithms.
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Figure 5: (a) Strong correlation between predictive accuracy and predicted probability, shown for both semi-
Markov and uniform priors. (b) ROC curve for β-sheet contact predictions as a function of (log) probability
of predicted contact.

indexes a collection of position-specific conditional distributions PNi/Ci
for the first `N/C N-/C-terminal

amino acids (Ni denotes the ith position from the N-terminus), and an identically distributed but dependent

distribution I for internal positions.

Table 1 and Figure 5a show the results of applying this SSM model to secondary structure prediction on

a large non-redundant database of experimentally determined protein structures via cross-validation. The

SMM predictor consistently out performs SMap in correctly predicted positions. We note that (41) provides

the exact marginal posterior distribution over segment types at each position, averaging over all possible

segmentations, and hence provides a clear indication of prediction uncertainty at each position. Figure 5a

shows that this measure correlates strongly with prediction accuracy. Results are shown using both semi-

Markov (13) and uniform (22) segmentation priors, demonstrating that maximum likelihood segmentation

is a poor choice in this setting.
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9.2 SSIM models for β-sheet contact maps

We now consider SSIMs for protein β-sheet prediction. As described in Section 2, β-sheets are an example of

non-local interactions in protein sequences which give rise to long-range sequence correlations, violating the

conditional independence assumptions of SSMs. To model these non-local dependencies, we have developed

SSIMs involving joint-segment models neighboring β-strands within β-sheets, building on previous work

using empirical pair potentials (Hubbard, 1994). Analysis of inter-strand side chain dependencies and more

detailed model development for this application will be reported elsewhere (Schmidler et al., 2004).

Simple joint-segment models for β-sheets are given by

P ({R[sHj
:eHj

]}
k
j=1 | S, I) =





k
∏

j=1

eHj
∏

i=sHj

P (R[i])





k−1
∏

j=1

ljj+1−1
∏

i=0

P (R[njr+i], R[p(i,A)])

P (R[njr+i])P (R[p(i,A)])
(44)

where conditioning on (S, I) has been suppressed for clarity, and Hj is the segment index for the jth β-

strand, njr denotes the first N-terminal position of SHj
interacting with the right neighbor, ljj+1 the number

of positions interacting between β-strand SHj
and neighboring strand SHj+1 , and A denotes the orientation

of pairing (parallel or anti-parallel), with

p(i, A) =











cj+1l − i if A = −1 (pairing is anti-parallel)

nj+1l + i if A = 1 (pairing is parallel)

giving the right neighbor residue in the ith pair. This model incorporates a simple dependency between

amino acids within a β-sheet: each cross-strand pair is iid, with no intra-segment dependency.

The prior distribution on β-sheet interactions is given by:

P (I | S) = P (p | S)

p
∏

j=1

P (Ij | S)

P (Ij | S) =
1

kj !
P (A)

kj−1
∏

i=1

P (nir)P (cir)P (ni+1l)P (ci+1l) (45)

where P (A) is the prior probability of parallel vs. anti-parallel β-sheets estimated from database frequencies,

and we currently take P (p | S) ∝ 1. Under (45) all strand topologies are equally likely, and registration
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parameters (nil/r, cil/r) are given priors P (nil) = 1
3 for (nil − si) ≤ 2, 0 otherwise, making the the first (last)

interaction or hydrogen bond between two paired strands uniform over the first (last) 3 positions.

In this context, the MCMC moves from Section 8 propose β-sheet formation by joining unpaired β-

strands, destruction by separating paired strands, and insertion/deletion of β-strands into existing β-sheets

during sampling. Segment align samples the registration of a β-strand with its neighbor. (S, I)MAP provides

a MAP set of β-sheets including number, topology, orientation, and registration parameters. SI
MM provides

predictions of secondary structure which marginalize over possible β-sheet formation, allowing prediction of

secondary structure and β-sheet topology in within a common statistical framework.

Experimental results : Figure 6 shows predictions for two small proteins, BPTI and (5pti) and ribonuclease

A. While the native contacts in these small proteins are typically among the high probability predicted contact

regions, at least one alternative pairing for each strand commonly exists.

Figure 5 shows an ROC curve obtained by applying this model to a random sample of 100 proteins from

the non-redundant set of Section 9.1. Further development of the β-sheet models to improve predictive

accuracy is ongoing (Schmidler et al., 2004).

Table 1 shows the results of using the marginals of the SSIM model for structure prediction. It can be

seen that this results in a small decrease in accuracy, resulting from a higher sensitivity (but lower specificity)

in predicting β-strand positions. This is attributable to the asymmetric treatment of segment types in the

current SSIM model, since only β-strands are permitted to participate in interactions. A small amount of

error is also introduced by using the Monte Carlo approximation, as demonstrated by the results shown for

prediction under the SSM model via the MCMC algorithm.

10 Discussion

We have discussed stochastic segment models (SSMs) and algorithms for analysis of sequence data, and

introduced a new class of models for long-range dependence called stochastic segment interaction models

(SSIMs). We describe priors for both classes of models. Examples were given for the use of SSMs and SSIMs

for prediction of protein secondary structure and protein β-sheet contact maps from sequence, respectively.

The SSIM framework developed here is quite general, and applicable to any sequential data involving

long-range dependency between sequentially separate blocks. Other applications which exhibit such repeated

patterns may included econometrics and finance, computer intrusion detection, or other physical processes.
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Figure 6: β-sheet contact map prediction for bovine pancreatic trypsin inhibitor (5pti) and ribonuclease A
(1rbx) proteins. Shown are (a,b) X-ray crystallographic structure obtained from Protein Data Bank, (c,d)
true contact map derived from crystal structure, and (e,f) probability of contacts predicted from sequence.
Contact map axes represent position in sequence. Shading of pixels (x,y) indicates predicted probability of
residues x,y forming contacts within a β-sheet.
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