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Abstract

We present a stochastic process model for the joint evolution of protein primary and

tertiary structure, suitable for use in alignment and estimation of phylogeny. Indels

arise from a classic Links model and mutations follow a standard substitution matrix,

while backbone atoms diffuse in three-dimensional space according to an Ornstein-

Uhlenbeck process. The model allows for simultaneous estimation of evolutionary

distances, indel rates, structural drift rates, and alignments, while fully accounting for

uncertainty. The inclusion of structural information enables phylogenetic inference on

time scales not previously attainable with sequence evolution models. The model also

provides a tool for testing evolutionary hypotheses and improving our understanding

of protein structural evolution.
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1 Introduction

Study of biopolymers has long relied heavily on alignment. Alignment algorithms identify

regions of similarity between proteins and nucleic acids as a means of identifying common

function and inferring homology. Sequence alignment also plays a key role in the recon-

struction of phylogenies, a task with application to diverse areas such as drug design and

resistance, epidemic monitoring, forensics, and anthropology. Alignment is vital for recon-

struction because when sequences share a common ancestor the degree of similarity between

them can be used to estimate evolutionary distances. In such situations, formal statistical

inference and proper accounting for uncertainty rely on a model of the evolutionary process.

Incorporation of alignment uncertainty has been shown to be crucial for proper characteri-

zation of uncertainty in phylogenetic reconstruction (Wong, Suchard and Huelsenbeck 2008;

Lunter et al. 2008). Improved phylogenetic estimation therefore relies in part on reducing

alignment uncertainty through more informative evolutionary modeling.

An enormous literature on statistical alignment and phylogeny exists, and we do not

attempt a comprehensive summary here. Felsenstein (2003) provides a broad overview.

Evolutionary models involve stochastic processes for mutation (Dayhoff, Schwartz and Or-

cutt 1978; Jones, Taylor and Thornton 1992) and insertion/deletion (Thorne, Kishino and

Felsenstein 1991, 1992; Miklós, Lunter and Holmes 2004), and combined these provide a

model suitable for use in Bayesian or maximum likelihood alignment calculations (Bishop

and Thompson 1986; Hein et al. 2000). Use of such models for Bayesian phylogenetics is

widespread (Holmes and Bruno 2001; Huelsenbeck et al. 2002; Lunter et al. 2005).

Existing evolutionary models for proteins focus on primary structure, treating each pro-

tein as a sequence of amino acid characters. (Some work has attempted to incorporate

structure-induced dependence among sequence positions - see e.g. Robinson et al. (2003);

Rodrigue et al. (2009) - but these models nevertheless operate at the sequence level.) How-

ever, it is well known that protein tertiary structure is conserved over much longer time scales

than sequence. This is because selective pressure occurs at the level of function; because

a large percentage of sequence positions contribute to function only through their role in
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structure formation; and because of the significant redundancy in sequence space of protein

folds. As a result, many homologous proteins may share limited sequence similarity, placing

them in the “twilight zone” for sequence alignment.

When protein tertiary structure information is available, structural alignment algorithms

can often be used to obtain highly accurate alignments in the absence of significant sequence

similarity. Many such algorithms have been developed, typically based on optimizing a

similarity score, including minimization of the sum of squared distances between aligned Cα

coordinates or corresponding pairwise Cα distances. See Eidhammer, Jonassen and Taylor

(2000); Hasegawa and Holm (2009) for comprehensive reviews. However, as these algorithms

are entirely based on optimization of heuristic score functions, most provide little or no

accounting for uncertainty or confidence in the resulting alignment, and no possibility of

formal statistical inference procedures. In addition, structural scores such as RMSD give

only indirect information about evolutionary distance (Chothia and Lesk 1986; Panchenko

et al. 2005; Zhang et al. 2010).

Rodriguez A and Schmidler SC (unpublished data) have developed a probabilistic ap-

proach to structure alignment (see also Schmidler (2006), Wang R and Schmidler SC (un-

published data)), and shown that some other structural alignment algorithms are special

cases of their model. This provides many advantages, including full accounting for uncer-

tainty in the alignment, enabling adaptive estimation of alignment parameters, and making

explicit the statistical assumptions implicit in commonly used score functions. Rodriguez

A and Schmidler SC (unpublished data) also provide a joint sequence-structure model, and

show significant improvements over a sequence-based approach alone in approximate esti-

mation of evolutionary distances via selecting PAM distances. However, these approaches

utilize a gap-penalty formulation, and as such do not serve as a formal, reversible evolution-

ary stochastic process suitable for use in phylogenetic applications. Gutin and Badretdinov

(1994) and Grishin (1997) explore spatial diffusion processes to describe structural evolution

and derive equations relating RMSD to sequence identity and evolutionary distance, but in

both cases the alignment is assumed to be given. In the absence of an indel process these
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methods do not provide an explicit evolutionary model for alignment or phylogeny.

In this paper, we build on these approaches to develop what we believe to be the first

stochastic evolutionary process for protein sequence and structural drift simultaneously, suit-

able for protein alignment and phylogenetic estimation. We show that the inclusion of struc-

tural information effectively stabilizes inference of alignments and evolutionary distances

for distant relationships. We also show how the model may be used to test evolutionary

hypotheses. We conclude with a discussion of several possible extensions to the model to

incorporate greater biophysical realism.

2 Materials and Methods

2.1 Evolutionary Model

Our evolutionary model is formulated as a continuous time Markov process composed of three

components: an insertion/deletion (indel) model, an amino acid substitution model, and a

structural drift model. The indel component follows the Links model of Thorne, Kishino,

and Felsenstein (1991). The sequence mutation component follows a standard substitution

rate matrix. Finally, the structural component models the evolutionary drift of individual

amino acids (represented by Cα coordinates) in three-dimensional space using an Ornstein-

Uhlenbeck (OU) process (Uhlenbeck and Ornstein 1930; Karlin and Taylor 1981). In what

follows we denote by SX the sequence of amino acid characters, and CX the 3D atomic

coordinates, of protein X.

2.1.1 Indel Model

Let X and Y represent two proteins, with X an evolutionary ancestor of Y . The indel model

describes the process of residues being added to and deleted from X. Thorne, Kishino, and

Felsenstein (1991) have previously developed a birth-death model for this process known as

the Links model. The model assumes a constant birth rate λ and death rate µ through time

and across the length of the protein chain, with independence from site to site. Amino acid
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survival probabilities can be determined from the Links model for any values of λ, µ, and

time interval t (see e.g. Holmes and Bruno (2001)):

α(t) = e−µt (1)

β(t) =
λ(1− e(λ−µ)t)

µ− λe(λ−µ)t
(2)

γ(t) = 1− µ(1− e(λ−µ)t)

(1− e−µt)(µ− λe(λ−µ)t)
(3)

Here α(t) is the probability of ancestral survival, β(t) is the probability of insertions given

at least one surviving descendant, and γ(t) is the probability of insertions given ancestral

death. These probabilities can be represented as a transition matrix for a pair hidden Markov

model (Durbin et al. 1998) with emitting states Match, Insertion, and Deletion, and null Start

and End states (Holmes and Bruno 2001). (See Appendix for details.) Let M denote the

alignment matrix between X and Y , defined as the adjacency matrix of an order-preserving

bipartite matching; then P (M |µ, λ, t) is given by the corresponding product of probabilities

in this transition matrix.

Although the Links model is the most commonly used, alternative models that allow for

larger indel events (Thorne, Kishino and Felsenstein 1992; Miklós, Lunter and Holmes 2004)

may also be substituted.

2.1.2 Sequence Model

Using the Links model for indels, a complete evolutionary sequence model is obtained by

specification of an amino acid substitution rate matrix. Several such matrices exist in the

literature; for the examples in this paper we employ the JTT 1992 matrix (Jones, Taylor,

and Thornton 1992) as adjusted by Kosiol and Goldman (2005). We make the standard

assumption that the substitution process is in equilibrium and that insertions arise according

to the equilibrium distribution. Letting SX and SY represent the sequences of X and Y , the
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joint likelihood of SX , SY and an alignment M is:

P (SX , SY ,M |λ, µ, t, Q) = P (SX , SY |M, t,Q)P (M |λ, µ, t)

= P (SYM |SXM , t, Q)P (SYM̄ |π)P (SX |π)P (M |λ, µ, t)

where SXM and SYM denote the matched (aligned) positions of SX and SY , SY
M̄

the unmatched

positions of SY , Q the substitution rate matrix, and π the equilibrium distribution of char-

acters. P (SYM |SXM , t, Q) is given by a product of independent substitution probabilities at

each site, obtained by exponentiation of tQ; P (SY
M̄
|π) and P (SX |π) are products of the ap-

propriate entries of π; and P (M |λ, µ, t) is described in the preceding section. This specifies

a complete model for sequence evolution of the type employed by many researchers (see e.g.

Holmes and Bruno (2001) and references therein).

2.1.3 Structural Model

We define a model for protein structure evolution analogously, building a structural drift

process on top of the Links indel process. Let CX and CY be nX × 3 and nY × 3 matrices

containing the Euclidean coordinates of the Cα’s of X and Y respectively, where nX is

the number of amino acids in X. Where the sequence model employs a continuous-time,

finite-state Markov process, the structure model utilizes a reversible diffusion process in 3D

space modeling drift and fluctuation in the amino acid positions (represented by their Cα

coordinates). We model positions as drifting independently in space according to an OU

process, or Brownian motion with a mean reversion coefficient. (Unlike standard Brownian

motion, the OU process has a stationary distribution and thus can be used as a component

in a reversible stochastic process.) If C
(t)
ij is the jth coordinate of the ith Cα at time t, this

process is described by the stochastic differential equation

dC
(t)
ij = θ(ζj − C(t)

ij )dt+ σdB (4)
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where dB is standard Brownian motion, ζ is the mean of the process, and θ represents the

strength of the reversion toward the mean. We set ζ = 0 for convenience, as we are concerned

with shape and thus location is arbitrary (see Section 2.1.4). This process has the advantage

of permitting closed-form expression of the equilibrium distribution

C
(t)
ij ∼ N

(
0,
σ2

2θ

)
(5)

and conditional distribution at time t, given time s:

C
(t)
ij |C

(s)
ij ∼ N

(
C

(s)
ij e

−θ(t−s),
σ2

2θ
(1− e−2θ(t−s))

)
. (6)

Therefore, again assuming that the parent structure CX and insertions in CY follow the

equilibrium distribution, the joint likelihood of two structures and an alignment between

them can be expressed in a form analogous to the sequence model:

P (CX , CY ,M |λ, µ, t, σ2, θ) = P (CX , CY |M, t, σ2, θ)P (M |λ, µ, t)

= P (CY
M |CX

M , t, σ
2, θ)P (CY

M̄ |σ
2, θ)P (CX |σ2, θ)P (M |λ, µ, t) (7)

with P (CY
M |CX

M , t, σ
2, θ) calculated according to (6), P (CY

M̄
|σ2, θ) and P (CX |σ2, θ) according

to (5), and P (M |λ, µ, t) as the appropriate product of transition probabilities from ma-

trix (9) in the Appendix. In addition, the marginal likelihood of the observed structures,

P (CX , CY |λ, µ, t, σ2, θ), can be obtained by summing across all possible alignments M using

a dynamic programming forward algorithm for pair HMMs (Durbin et al. 1998).

Note that this diffusion process assumes no significant structural reorganization and is

best viewed as a model of structural drift within the basin of attraction of a particular fold.

Evolution between folds is likely a discontinuous event with slowly accumulating sequence

changes suddenly crossing into the basin of an alternative fold; our model currently does not

account for such between-fold evolutionary events.

The model also assumes independence among sites, as with most commonly used se-
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quence evolution models. Site independence is necessary to maintain analytical tractability

of (5) and (6) after convolving with the indel process, while mean reversion of the OU pro-

cess (as opposed to Brownian motion) ensures existence of the equilibrium distribution (5).

Independence does mean that the insertion distribution is diffuse, allowing insertions to arise

anywhere in the protein (as dictated by the variance of CX), without regard to the loca-

tions of neighboring amino acids. As a result of these assumptions the model is inadequate

as a generative model for physically realistic protein structures, but behaves well for infer-

ence conditional on observed structures. Possible extensions of the model toward additional

biophysical realism are described in Section 4.

2.1.4 Rotation and Translation

For simplicity, we have introduced the structural component of the model under the assump-

tion that X and Y share a common coordinate frame. In practice, the coordinates CX and

CY are obtained through experimental methods in which the coordinate frame is arbitrary.

Thus when comparing CY to CX we should not distinguish between elements of the set:

{CYR + 1η : R ∈ SO(3), η ∈ R3}

containing all possible rotations and translations of CY , where SO(3) denotes the special or-

thogonal group of 3×3 rotation matrices. It is possible to resolve this by treating equivalence

classes of protein coordinates (shape spaces) using Procrustes transformations (Rodriguez

A and Schmidler SC, unpublished data). However, as the optimal transformation depends

upon the full alignment, the likelihood over all alignments cannot be decomposed recursively

as required for the HMM forward-backward algorithms. Instead, we treat R and η as un-

certain parameters to be estimated (Green and Mardia 2006; Schmidler 2006), and calculate

likelihoods conditional on a given rotation and translation. Then (7) becomes

P (CX , CY ,M |Θ) = P (CY
M |CX

M , t, σ
2, θ, R, η)P (CY

M̄ |σ
2, θ)P (CX |σ2, θ)P (M |λ, µ, t)
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with Θ representing the entire parameter set (λ, µ, t, σ2, θ, R, η).

2.1.5 Joint Sequence and Structure Model

The combined model is obtained by assuming independence between the sequence substi-

tution and structural diffusion processes, conditional on the indel process. Thus the full

likelihood of the combined model is simply the product of the individual model likelihoods.

P (X, Y |Θ) =
∑
M

P (CX , CY |M, t, σ2, θ, R, η)P (SX , SY |M,Q, t)P (M |λ, µ, t) (8)

with Θ again representing the entire parameter set. Each factor of the product in (8) is

provided by one of the preceding sections.

2.2 Parameter Estimation and Computation

We take a Bayesian approach to parameter estimation, with the posterior distribution ob-

tained via Markov chain Monte Carlo (MCMC) simulation. Parameters are updated via a

random walk Metropolis-Hastings (Metropolis et al. 1953; Hastings 1970), with acceptance

probability involving the marginal likelihood, equal to P (X, Y |λ, µ, t, σ2, θ, R, η) given by

(8). In practice, it is best to update λ and µ together, likewise for R and η, to account for

dependence in the posterior. All examples reported below use vague Gamma(1.01,.01) pri-

ors for t, λ, µ, σ2, and θ, a uniform distribution on rotations for R, and an improper uniform

prior for η.

2.2.1 Rotation/Translation Sampling

A random walk for R and η can be constructed as follows. Propose R′ from R by generating

an axis v uniformly from the unit sphere and angle φ from a von Mises distribution with

high concentration around 0, and form R′ as the composition of R and (v,φ). Then propose

η′ ∼ N(η, τ 2I), and accept or reject the pair R′, η′ together.

The mixing of R and η can be slow. To remedy this, an independence step is interspersed
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with the random walk, with proposal distribution constructed as a mixture with components

centered at a “library” of plausible transformations. This library is created by computing

the least-squares transformation between each pair of consecutive n-residue subsequences

between X and Y (Rodriguez A and Schmidler SC, unpublished data), and excluding all such

transformations with RMSD > δ, where the threshold δ is chosen to arrive at a manageable

number of mixture components. Each component of the mixture is the product of a von

Mises-Fisher distribution centered on the axis of rotation, a von Mises distribution centered

on the angle of rotation, and a normal distribution centered upon the translation. Then the

probability density of this distribution at any rotation R′ and translation η′ is

1

k

k∑
i=1

vMF(v′; vi, κ1)vM(φ′;φi, κ2)N(η′; ηi, τ
2I)

where vMF(v′; vi, κ1) is the density of the von Mises-Fisher distribution evaluated at v′, the

axis of rotation of R′; vM(φ′;φi, κ2) is the density of the von Mises distribution evaluated

at φ′, the angle of rotation of R′; N(η′; ηi, τ
2I) is a multivariate normal distribution centered

at ηi and evaluated at η′; and k is the number of components in the mixture. Mardia and

Jupp (2000) provide general information regarding spherical distributions. An algorithm

for generating samples from the von Mises-Fisher distribution is provided by Wood (1994).

The proposed pair (R′, η′) is then accepted or rejected according to the Metropolis-Hastings

criterion.

2.2.2 Monitoring convergence

Convergence of the MCMC algorithm was established by the following protocol in all anal-

yses reported in the Results section below. Multiple independent MCMC chains of 50,000

iterations were run from overdispersed starting points, with 10,000 iterations discarded as

burn-in. We used 8 chains for the sequence model and 16 chains for the combined model

(to account for larger state space due to additional parameters). Convergence was tested

by the Gelman and Rubin (1992) diagnostic on the marginal posterior distribution for each
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parameter.

3 Results

3.1 Inference for Distantly Related Proteins

The joint sequence-structure evolutionary model described in Section 2.1 enables improved

alignment and estimation of evolutionary distance and rates between distantly related pro-

teins. To illustrate this on a well-understood protein family, we applied both the sequence-

only model and the combined sequence-structure model to estimate the evolutionary distance

between the human hemoglobin α subunit and globins from a series of increasingly distant

species (Table 1 in Appendix). Figure 1 shows the resulting marginal posterior distributions

for evolutionary distance t. In both models, the posterior distribution of t accounts for

alignment uncertainty, which is critical for phylogenetic applications (Wong, Suchard and

Huelsenbeck 2008; Lunter et al. 2008). The two models yield comparable results for the

pairs with short evolutionary distances and hence high sequence similarity, but as similarity

decreases the uncertainty in sequence alignments grows. For sequences with very low sim-

ilarity, many alignments have virtually equal probability, and the sequence-only likelihood

becomes essentially flat for sufficiently large t. The inclusion of structural information via

the combined model dramatically reduces this alignment uncertainty, allowing better use

to be made of the sequence information, and also contributes additional information about

evolutionary distance through the simple model of structural drift.

This ‘range’ extension of the model through the addition of structure is significant. The

sequence-only model begins to differ from the combined model at distances of only 1.5

expected substitutions per site, becoming completely uncertain by 2.5 expected substitutions,

while the combined model continues to provide informative posteriors to distances of at

least 3.5 expected substitutions. In addition the sequence model parameters (t, λ, µ) become

confounded even at modest evolutionary distances (see also Figure 3 below). In contrast, the

combined model has no difficulty simultaneously estimating all parameters (t, λ, µ, σ2, θ, R, η)
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with no loss of precision in t.

Delaying the phase transition The sharp increase in entropy of the posterior distribu-

tion under the sequence model is suggestive of the phase transition discussed by Mossel (2003,

2004) (see also Daskalakis, Mossel and Roch (2011)), who shows that if the substitution rate

is above a threshold, it is impossible to recover either ancestral sequences or phylogenetic

topology over large evolutionary distances using sequence evolution models. Empirically we

see the transition even earlier (at shorter distances) than suggested by Mossel’s bounds, be-

tween t = 1.5 and t = 2; this is explained principally by the fact that Mossel’s result assumes

a fixed alignment, while accounting for uncertainty in the alignment (and indel rates) causes

the uncertainty to grow much faster.

To examine the effect of alignment uncertainty on evolutionary distance estimation, we

simulated (under the JTT substitution model, with no indels) the evolution of 100 indepen-

dent sequence descendants from human hemoglobin α up to time t = 4, and another 100

descendants involving indels (using the Links model with rates λ = .05 and µ = .0504).

We estimated the evolutionary distance from the ancestral sequence to each of the 200 de-

scendants, over the time interval t ∈ [0, 4] at increments of 0.1, using the MCMC algorithm

described above and treating all parameters as unknown, but with the alignment fixed for

the first 100 (no indel) sequences. Figure 2 shows the quantiles of the posteriors averaged

across the 100 simulations. When the alignment is known, the sequence model displays

a sharp transition in posterior uncertainty (credible interval width) at t = 3; beyond this

point the data inform only that the sequences are not closely related. This transition occurs

much earlier (around t = 1.5) when the alignment is unknown and its uncertainty must be

accounted for. In this case, when λ, µ and t are simultaneously estimated the model swiftly

loses identifiability, resulting in completely uninformative posterior distributions.

The addition of structural information in the combined sequence-structure model dra-

matically reduces uncertainty in the alignment, which should therefore push the transition

back to where it occurs for sequences with known alignment. Additionally, the structural
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drift model, while simplistic, does provide some information about distance. The results

in Figure 1 indicate that the transition for the combined model does not occur until after

t = 3.5, confirming that the structural information does add some information beyond just

the alignment. This suggests that the range of the model may be extended to even longer

evolutionary distances by improving the realism of the structural diffusion model to include

stronger information about t and not just M .

Estimating indel rates With the alignment known, the sequence model is able to pro-

vide a useful lower bound even after the transition, but this is no longer true when the

uncertainty arising from an unknown alignment is accounted for (compare Figures 2a and

2b). In particular, underestimation of evolutionary distance occurs due to overestimation of

the indel rates λ and µ: as sequence similarity decreases, differences become as likely to be

explained by rapid insertions and deletions over a short time period as by substitutions, so

deflated estimates of t can result. Around t = 2 in Figure 2a, approximately half of the sim-

ulated proteins exhibited high variance while the other half had narrower posteriors which

underestimated the evolutionary distance; thus it is not enough to obtain a concentrated

posterior from the sequence model, as larger values of t are likely to be underestimated.

Figure 1 contains three examples of this: 2LHB (lamprey), 1HLB (sea cucumber), and

1B0B (clam). For each of these, the sequence-only model gives significantly smaller estimates

of distance than the combined sequence-structure model. Examination of the posteriors for

λ (Figure 3) confirms that indel rates have been overestimated by the sequence model, with

underestimation of t particularly extreme in the case of 1B0B as a result of a very diffuse

posterior for λ. In fact, the long tailed posterior for λ leads to a second mode, near zero,

in the posterior for t (Figure 1). A previous treatment of the Links model based on human

α and β globins estimated the insertion rate at .03718 (Hein et al. 2000), and this value

was confirmed by Knudsen and Miyamoto (2003); it is provided in Figure 3 for reference.

Combined model estimates of indel rates are much more stable between protein pairs, and

much closer to the results obtained by Hein et al. (2000).
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3.2 Phylogeny Estimation

The uncertainty of evolutionary sequence models with respect to evolutionary distance can

dramatically impact the ability to accurately estimate phylogenies (Wong, Suchard and

Huelsenbeck 2008; Lunter et al. 2008). As our joint sequence-structure model drastically

reduces this uncertainty, we expect it will have significant impact on stabilizing phyloge-

netic estimation. Here we explore this impact by estimating pairwise evolutionary distances

and applying neighbor-joining methods (Saitou and Nei 1987; Howe, Bateman and Durbin

2002). In the future the combined model will be integrated into a full Bayesian simultane-

ous alignment and phylogeny estimation model, for which it is naturally suited and directly

applicable.

Figure 4a shows the estimated phylogeny for the hemoglobin α subunits of 24 organisms

(Appendix Table 1) including near and distant relationships (pairwise sequence identity 12-

87%), obtained by applying neighbor-joining to the set of pairwise posterior mean distances.

Commonly accepted taxonomy from the NCBI Taxonomy Database (Sayers et al. 2009;

Benson et al. 2009) is given in Figure 4b. The phylogeny estimated similarly (neighbor-

joining with posterior mean distances) under the sequence-only model is shown in Figure 4d,

albeit with unit distances (see below).

The reconstructed phylogeny obtained using the combined sequence-structure model

(Figure 4a) replicates the established taxonomy almost perfectly. All subgroups are cor-

rectly formed, including grouping of the only reptile (turtle) with the birds but as the

most distant member. There are minor differences in the topologies within groups where

branch lengths are small and minor changes in length can result in topology changes. A

fully Bayesian approach to phylogeny estimation would yield a posterior distribution over

competing topologies as well – here our intent is merely to indicate the potential of our

sequence-structure model for this purpose.

Using the sequence-only model, many of the pairwise distance posterior distributions

remain essentially unchanged from the prior, resulting in broad posterior support and very

large posterior means under diffuse gamma priors. In such situations point estimates have
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little meaning, and posterior intervals convey a near-total lack of information about the

evolutionary distance between the two proteins. A phylogeny based solely on the sequence

model therefore tends to form clusters of closely related proteins with very large inter-cluster

distances, and arbitrary relative placement of the groups. Inter-group branch lengths are so

long that visualization of the phylogeny is challenging; for this reason the sequence-based

phylogeny is given with unit branch lengths (Figure 4d) so that topology can be easily

examined. The topology contains multiple inconsistencies with the established taxonomy

(Figure 4b). The lamprey is separated from other vertebrates, as well as the rockcod from

other bony fishes. The mammals appear do not appear as a clade, but as zero-branch-length

points between subtrees.

3.2.1 Comparison to Multiple Sequence Alignment

Our sequence-structure model dramatically outperforms the analogous evolutionary sequence

model on a pairwise basis, as demonstrated. However simultaneous multiple sequence align-

ment (MSA) algorithms can also reduce alignment uncertainty, albeit to a lesser extent,

through sharing of information. In addition, many phylogenetic methods in common use do

not attempt to account for alignment uncertainty. We used MAFFT (Katoh et al. 2005)

as a representative, widely used MSA algorithm, and compared the resulting tree with that

estimated under our model for the group of 24 globins of Figure 4. Default parameters were

used for MAFFT. There are no major differences between the trees estimated by MAFFT

and our model, indicating that the combination of MSA and selective use of multiply con-

served positions used by MAFFT also does a good job of stabilizing the tree. Note however

that these procedures, while adding robustness, do not correspond to an explicit evolutionary

model as in our case.

More importantly, multiple sequence alignment algorithms rely on the presence of close

homologs. There are several closely related groups in the set of 24 globins, making this well

suited for an MSA approach. We performed the comparison again after removing the closely

related proteins to arrive at a subset of eight mutually distant globins (pairwise sequence
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identity 12% - 43%); Figure 5 compares the resulting phylogeny under our sequence-structure

model with that produced by MAFFT. The phylogeny from our model remains consistent

with the established taxonomy and with the tree obtained using the full set of globins,

with only a minor shift in the placement of the nematode. The MAFFT phylogeny, however,

becomes unstable, separating the lamprey from the other vertebrates. Changing the MAFFT

default substitution matrix from BLOSUM62 to BLOSUM30 (more appropriate for distant

homologs) has little effect, while modifying the gap penalty parameter caused MAFFT to

perform worse.

To further examine the different potential of the sequence-structure model and MSA

approaches to analyze distantly related proteins, we simulated ten sets of six pairwise-distant

descendants of the α subunit of the human globin at the leaves of a symmetric tree (top of

Figure 6) with inner branch lengths .35 and outer lengths 1.2 (pairwise sequence identity 13%

- 17% on average). Simulation parameters were (λ = .03, µ = .0302, σ2 = 0.7, θ = 0.005) –

values typically estimated from observed globins. To further challenge our structure model,

insertions in simulated structures were placed at the midpoint of their neighbors, as the

independence of the insertion distribution (5) would otherwise make them easier to identify

than naturally-occurring insertions. For each of the ten simulated data sets we estimated

the underlying phylogeny using MAFFT with default parameters, and using our joint model

as before (neighbor-joining on pairwise posterior means). The results are shown in Figure 6.

The sequence-structure model arrives at the correct topology in six of the ten cases, and

preserves correct nearest neighbors in three of the other four. MAFFT only estimates the

topology correctly in one instance, and mismatches neighbors in all of the rest. The principal

difficulty for the multiple sequence algorithm is insufficient sequence information to resolve

the alignment when sequences are highly divergent. The problem is exacerbated by reliance

upon a single optimal alignment, which is highly uncertain. Our model benefits from both

the Bayesian averaging over all possible alignments, and also especially from the dramatic

reduction of alignment uncertainty upon incorporating structural information, resulting in

significantly improved phylogeny estimation.
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Indeed, the effect of this stabilization extends to sets of proteins for which multiple

sequence alignment fails completely. With a broader set of globin-like proteins (pairwise se-

quence identity 9-32%, Table 2), MAFFT returns an error message that a reliable phylogeny

cannot be produced. Our model continues to be effective at these distances; the phylogeny

is given in Figure 7. The tree continues to correctly preserve the subtree containing the

human globin, with the hagfish and sea cucumber as nearest neighbors. The extracellular

giant hemoglobins of the earthworm and beardworm are placed together, and the nematode

is the last multicellular organism before arriving at the microbes. This tree is not intended

as a definitive estimate – a fully Bayesian treatment involving phylogeny sampling instead of

neighbor-joining would be preferable to deal with the multiple near-polytomies in the tree –

but these results nevertheless illustrate the significant improvement available from the joint

sequence-structure model.

At extreme evolutionary distances (7% sequence identity) even the sequence-structure

model becomes nearly unidentifiable, even when proteins share a common fold, for the fol-

lowing reason: as illustrated in Figure 2, there is a sharp threshold past which sequence

information provides only a lower bound on evolutionary distance, even in the case of fixed

alignment. Beyond this threshold, sequences are effectively in equilibrium and no longer pro-

vide any information for estimating t. At this point the structure component of the model

provides all information about t, but the OU process by itself is identifiable only up to the

product σ2t. (At shorter distances Q serves to determines the scale for t, making σ2 and t

simultaneously estimable.) Figure 8 demonstrates the relative precision of σ2t to t on these

time scales, for comparing the β subunit of phycocyanin from red alga with the α subunit

of human hemoglobin. Thus at the farthest within-fold distances, a structure-only approach

based on σ2t as a measure of distance between proteins can still provide some information

about evolutionary relationships, but we would need to fix σ2 (analogous to scaling Q to one

expected substitution per time unit) in order to estimate t itself.
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3.2.2 Reconstruction regimes

Our results highlight the existence of multiple “regimes” of reconstructability, depending on

divergence times of the input proteins. When sequence is sufficiently well-conserved that

pairwise alignments are easily resolved, neighbor-joining works well. As divergence increases

into the “twilight zone” of sequence similarity, pairwise alignments begin to fail but can

be recovered by pooling information across the set of sequences using MSA. However, as

demonstrated above, a third regime exists when sequence information is inadequate for even

MSA. In this case, our model demonstrates that structural information can still resolve the

alignment, and conditional on alignment the sequences still contain sufficient similarity to

infer evolutionary distance. Finally, as sequences become widely divergent we enter a fourth

regime where even though structural similarity may resolve the alignment, sequences are

effectively in equilibrium and provide essentially no information about either the alignment

or the evolutionary distance. In this last situation, our structural model may still be used

to estimate divergence times t, but only if σ2 is fixed by other means (see Fig 8), analogous

to scaling sequence substitution models to one expected substitution per time unit.

4 Discussion

We have described a stochastic process model for combined protein sequence and structure

evolution, suitable for use in likelihood-based alignment and phylogeny estimation. Re-

sults on example protein families indicate that the inclusion of structural information can

dramatically decrease uncertainty due to alignment, and as a result significantly stabilize re-

constructed phylogenies. The current model has certain shortcomings and we briefly describe

them here, along with possible extensions for future investigation.

Availability of structural data. Clearly the benefits of our approach are reliant on avail-

ability of experimental structural data for the proteins of interest. However, the number of

known structures continues to grow rapidly as a result of high throughput structure determi-

nation efforts. Moreover, our results suggest that availability of structures for even a subset
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of the sequences can significantly stabilize the reconstructed tree, by informing rate parame-

ters (through a hierarchical model) and decreasing uncertainty in key evolutionary distances

that may drive topology uncertainty. It may also be possible to incorporate high-accuracy

predicted structures, such as those based on homology modeling, for sequences of unknown

structure.

Improving the structural evolution model. Intuitively, the inclusion of structure adds

quantitative information (compared to the discrete characters of sequence models): the diffu-

sion process penalizes large displacements of atoms in Euclidean 3-space. This helps identify

homologous residues by favoring indel scenarios that best preserve the relative positions of

residues present in both ancestor and descendant.

As mentioned in Section 2.1.3, the diffusion model of structural drift does not account for

significant structural reorganization leading to discontinuous changes in fold. Descendant

proteins are centered around ancestral structures, slowly losing fold information, without

the ability to significantly reorganize into new structurally distinct stable folds. Interesting

preliminary work by Herman J, Taylor W, Hein J (personal communication) provides a

possible approach to modeling such large scale events using transitions between discrete

states, and may be useful in combination with our model to provide a process that diffuses

locally but has potential for discrete transitions.

In addition, the independent-site assumption in the OU process lacks certain realistic

biophysical features such as excluded volume/repulsion and bond length constraints, which

give rise to dependence among positions. The challenge in incorporating such effects is ana-

lytical tractability: for a general (e.g. repulsive) potential U(X) the stationary distribution

is known only up to a normalizing constant, but that constant is required to evaluate changes

in model size due to the indel process, and moreoever the conditional distribution is gen-

erally not analytically tractable. Incorporation of some site-dependence may be achieved

by the addition of a between-site covariance matrix to the OU process, but the conditional

and stationary distributions again become problematic when convolved with the Links indel

process. The current independent-site OU process was chosen to provide simplicity and com-
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putational tractability, at the expense of some physical realism. However, since inference

is performed conditional on observed structures, these limitations may be less important.

Still, it is worth noting that a more realistic evolutionary process model for the structure

might help provide additional information about evolutionary distance, since as mentioned

in Section 3 we believe that in the current model structural information serves primarily to

dramatically reduce alignment uncertainty, with information about t coming primarily from

the sequence model.

Structure specific indel and substitution processes. Currently the model assumes constant

insertion/deletion rates (λ and µ), structural diffusion rate (σ2), and substitution matrix (Q)

at all sites along the protein. A more realistic model would take advantage of the known

structure, by allowing different rates according to secondary structure, solvent accessibility,

location in an active site or binding site, etc. Although this seems straightforward, some

care is required to preserve reversibility under indels. Structure-specific substitution ma-

trices have been used successfully in sequence alignment and sequence-structure alignment

(threading) and should improve the realism and information content of the model.

Dependence among sequence & structure. Currently the sequence and structural infor-

mation are combined by assuming conditional independence of substitutions and structural

deviations given the alignment. This is easily extended to incorporate dependence. The

magnitude of dependence may be explored by estimating the conditional mean and variance

of atom coordinate changes given sequence substitution from a database of hand-alignments.

Fully Bayesian structural phylogenetic tree reconstruction. Finally, the results in Sec-

tion 3 relate to pairwise evolutionary distances and phylogenies constructed using neighbor-

joining methods. We are currently incorporating the model into fully Bayesian simultaneous

alignment-and-phylogeny estimation, as done for sequence evolution models Lunter et al.

(2005); Redelings and Suchard (2005). The incorporation of structural data may go a long

way towards resolving the significant uncertainty reported in simultaneous estimation mod-

els involving sequence only (Wong, Suchard and Huelsenbeck 2008; Lunter et al. 2008),

particularly when the phylogeny involves long time scales.
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Despite these shortcomings, results reported in Section 3 with the current model show

significant improvements over sequence-only models commonly used in current practice. As

such, the model provides an additional tool for phylogenetic studies, especially those involv-

ing distant relationships or rapidly changing sequences, by extending the applicability of

evolutionary protein models to longer time scales.
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A Appendix

The transition matrix for the Pair HMM used to compute the marginal likelihood across all

alignments. Parameters λ and µ and functions α(t), β(t), and γ(t) are given in Section 2.1.1.



Start Match Delete Insert End

Start 0 λ
µ
(1− β(t))α(t) λ

µ
(1− β(t))(1− α(t)) β(t) (1− λ

µ
)(1− β(t))

Match 0 λ
µ
(1− β(t))α(t) λ

µ
(1− β(t))(1− α(t)) β(t) (1− λ

µ
)(1− β(t))

Delete 0 λ
µ
(1− γ(t))α(t) λ

µ
(1− γ(t))(1− α(t)) γ(t) (1− λ

µ
)(1− γ(t))

Insert 0 λ
µ
(1− β(t))α(t) λ

µ
(1− β(t))(1− α(t)) β(t) (1− λ

µ
)(1− β(t))

End 0 0 0 0 1


(9)
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Table 1: PDB entries and corresponding species from Figures 1, 3, 4, and 5.

PDB ID Species Common Name
1ASH Ascaris suum Nematode
1B0B Lucina pectinata Lucine clam
1CG5 Dasyatis akajei Stingray
1GCV Mustelus griseus Houndshark
1HBH Pagothenia bernacchii Emerald rockcod
1HLB Caudina arenicola Sea cucumber
1HV4 Anser indicus Bar-head goose
1IDR Mycobacterium tuberculosis Tuberculosis
1OUT Oncorynchus mykiss Rainbow trout
1X3K Tokunagayusurika akamusi Midge larva
1XQ5 Perca flavescens Perch
2BK9 Drosophila melanogaster Fruit fly
2C0K Gasterophilus intestinalis Botfly
2DHB Equus caballus Horse
2DN2 Homo sapiens Human
2LHB Petromyzon marinus Lamprey
2RAO Oryctolagus cuniculus Rabbit
2XKI Cerebratulus lacteus Milky ribbon worm
2ZFB Psittacula krameri Parrot
3A59 Struthio camelus Ostrich
3A5B Propsilocerus akamusi Midge larva
3AT5 Podocnemis unifilis Side-necked turtle
3BCQ Brycon cephalus Red-tailed brycon
3K8B Meleagiris gallopavo Turkey
3MKB Isurus oxyrinchus Shortfin mako
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Table 2: PDB entries and corresponding species from Figure 7.

PDB ID Species Common Name
1ASH Ascaris suum Nematode
1B0B Lucina pectinata Clam
1H97 Paramphistomum epiclitum Fluke
1HLB Caudina arenicola Sea cucumber
1IT2 Eptatretus burgeri Inshore hagfish
1ITH Urechis caupo Innkeeper worm
1MBA Aplysia limacina Slug sea hare
1NGK Mycobacterium tuberculosis Tuberculosis
1OR6 Bacillus subtilis Bacillus subtilis
1VHB Vitreoscilla stercoraria Vitreoscilla stercoraria
1X9F Lumbricus terrestris Earthworm
2D2M Oligobrachia mashikoi Gutless beard worm
2DN2 Homo sapiens Human
2HBG Glycera dibranchiata Bloodworm
2XKI Cerebratulus lacteus Milky ribbon worm
3A5B Propsilocerus akamusi Midge larva
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Figure 1: Posterior distributions for evolutionary distance between human hemoglobin α
and a series of increasingly distant globins, obtained by (a) sequence-only model, and (b)
combined sequence-structure model. Distributions obtained from both models are nearly
identical for the closest three orthologs (horse, turtle, stingray), but begin to diverge beyond
this point. The sequence-structure model stochastically orders the proteins according to
generally accepted taxonomy, while the sequence model begins to underestimate distances
with the lamprey and sea cucumber, and yields completely flat, uninformative posteriors for
the fruit fly, ribbon worm, nematode and tuberculosis.

Figure 2: Average 95% credible intervals and medians from 100 simulated descendants of
human hemoglobin α. The sequence model with unknown alignment (a) has a sharp tran-
sition at t = 1.5. Removal of alignment uncertainty (b) delays the transition to 3 expected
substitutions. For our combined sequence-structure model we witness this transition still
later, at times > 3.5 (see Figure 1).

Figure 3: Posterior distributions of birth rate (λ) between globins of human and (a) lamprey,
(b) sea cucumber, and (c) clam obtained under sequence-only (light) and sequence-structure
(dark) models. Increasingly diffuse indel rate posteriors lead to underestimated evolutionary
distance estimates; λ = .03718 estimated previously by Hein et al. (2000) is given as a
reference (vertical line).

Figure 4: Phylogenies for a group of 24 globins (Table 1, pairwise sequence identity 12-87%)
obtained by different methods. Branch lengths in (b), (c), and (d) have been normalized
for topology comparison. (a) Neighbor-joining tree using pairwise posterior mean evolution-
ary distances under sequence-structure model. (b) Accepted taxonomy (NCBI Taxonomy
Database). (c) Topology of (a). Estimated topology closely matches NCBI taxonomy (b),
with small differences. (d) Topology of neighbor-joining tree using pairwise posterior mean
evolutionary distances under sequence-only model. Some groups are incorrectly separated
and several species appear as zero-branch-length intermediate points. Figures created with
TreeView (Page 1996).

Figure 5: Estimated phylogenies for a subset of eight mutually distant globins (pairwise
sequence identity 12-43%) . The sequence-structure model still closely matches the estab-
lished NCBI taxonomy, while MAFFT begins to exhibit significant differences. Additionally,
the MAFFT phylogeny has become more sensitive to parameter choice, while the sequence-
structure model estimates appropriate parameters from the data.
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Figure 6: Phylogenies estimated from simulated highly divergent data sets (average pairwise
sequence identity 13-17%). Top: True tree used to simulate data. Left: sequence-structure
model estimates. Right: MAFFT estimates. Central green circle indicates correct topology,
while red, blue and yellow identify correct pairs where mismatches are made. The sequence-
structure model estimates the correct toplogy in 6 of 10 simulations, and preserves correct
pairings of the proteins in all but one. MAFFT produces the correct topology in only one
data set, and in all other cases matches pairs incorrectly.

Figure 7: Phylogenetic tree estimated under the sequence-structure model on a highly di-
vergent set of proteins (pairwise sequence identity 9-32%), from which MAFFT is unable to
reconstruct a phylogeny.

Figure 8: Posterior distributions of t (light) and σ2t (dark) between phycocyanin β chain of
red alga and human hemoglobin α obtained under sequence-structure model. At such large
distances (7% sequence identity), sequence provides no information about t and only the
product σ2t may still be reliably estimated through structural information.
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